

BC2161 Sub-1GHz OOK Transmitter with Encoder

Features

- Operating voltage: V_{DD}=2.2V~3.6V
- Complete Sub-1GHz OOK (BT=0.5) modulation transmitter
- Key input function
 - 2 key inputs for the 8-pin SOP-EP package type
 - 8 key inputs for the 16-pin NSOP-EP package types
- Avoid battery exhaust due to jammed button (MAX_FCNT[7:0])
- Frequency bands: 315MHz, 433MHz, 868MHz, 915MHz
- Integrated 320-bit FUSE data memory
- Output power of up to 13dBm
- Supports 2-wire I²C interface
- Low sleep current of 0.4µA
- TX current consumption @ 433MHz:
- TYP. 18.5mA(10dBm, Data=1)/Typ. 11.2mA (10dBm, 50% duty cycle)
- Programmable symbol rate from 1.5ksps to 24ksps for OOK modulation
- Integrated full range VCO, loop filter and Fractional-N PLL synthesizer
- Supports 16MHz crystal
- 4-step programmable TX Power: 0/5/10/13 dBm
- FCC / ETSI Compliant
- Small size package types: 8-pin SOP-EP, 16-pin NSOP-EP/QFN

Abbreviation Notes

- TX: RF Transmitter
- SX: Synthesizer
- PA: Power Amplifier
- OOK: On-Off Keying
- PLL: Phase Lock Loop
- MMD: Multi-Mode Divider
- XTAL: External Crystal

Development Tools

For rapid product development and to simplify device parameter setting, Holtek has provided relevant development tools which users can download from the following link:

https://www.holtek.com/rf-workshop

https://www.holtek.com/rf-chip-parameters-setting-tool

General Description

The BC2161 is a highly integrated OOK transmitter for remote wireless applications. The transmitter is a true "data-in, antenna-out" monolithic device making it very easy for users to implement wireless systems.

The BC2161 can operate at the 315MHz, 433MHz, 868MHz and 915MHz frequency bands. It supports an OOK modulation scheme and can operate with a symbol rate of up to 24ksps.

The BC2161 offers a programmable output power level. It is capable of delivering +13dBm maximum power into a 50 Ω load. The BC2161 adopts agile state machines to ease the control and minimize the power consumption. With an external crystal and a few external components, the BC2161 can implement a complete solution for an effective RF transmitter.

These features can be easily programmed through I^2C interface or internal FUSE. With these combined features the BC2161 can provide a power-saving and cost effective solution for a huge range of remote wireless applications.

Block Diagram

Pin Assignment

Pin Description

The function of each pin is listed in the following table. Note that where more than one package type exists the table will reflect the situation for the 16-pin NSOP-EP package type.

Pin No.	Pin Name	Function	Туре	Description
		D0	I	Data input
1	D0/SDA/ICPDA	SDA	I/O	I ² C data pin
		ICPDA	I/O	ICP data pin
2	LED	LED	0	LED indicator
3	DVDD	DVDD	PWR	RF digital positive power supply
4	NC	No connection	—	—
5	VSS	Ground	PWR	Ground
6	RFOUT	PA_OUT	AO	RF output signal from power amplifier – Connect to matching circuit
7	PAVSS	VSSRF_PA	PWR	RF ground
8	VDDRF	VDDRF	PWR	Analog positive power supply
9	XOSCIN	Crystal	AI	Crystal input
10~13	D4/A0~D7/A3	D4/A0~D7/A3	I	Compound pin Data / Address / Key Trigger input
14,15	D2, D3	D2, D3	I	Data input
		D1	I	Data input
16	D1/SCL/ICPCK	SCL	I	l ² C clock pin
		ICPCK	I	ICP clock pin
	VSS/EP	Ground	PWR	Exposed pad, must be connected to ground

Legend: I: Digital Input AO: Analog Output O: Digital Output PWR: Power AI: Analog Input

Absolute Maximum Ratings

Supply Voltage	$V_{\rm SS}\mbox{-}0.3V$ to $V_{\rm SS}\mbox{+}3.6V$
Voltage on I/O Pins	$\mathrm{V}_{\mathrm{SS}}\text{-}0.3\mathrm{V}$ to $\mathrm{V}_{\mathrm{DD}}\text{+}0.3\mathrm{V}$
Storage Temperature	-60°C to 150°C
Operating Temperature	-40°C to 85°C
ESD HBM	±2kV

* Devices being ESD sensitive. HBM (Human Body Mode) is based on MIL-STD-883.

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those has listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Symbol	Parameter	Description	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	_	2.2	3.3	3.6	V
T _A	Operating Temperature	_	-40	_	85	°C
T _{FP}	FUSE Program Temperature	_		25	—	°C
V _{IH}	High Level Input Voltage	—	0.7V _{DD}		V _{DD}	V
V _{IL}	Low Level Input Voltage	—	0		$0.3V_{DD}$	V
V _{OH}	High Level Output Voltage	@I _{он} =-5mA	0.8V _{DD}	_	V _{DD}	V
V _{OL}	Low Level Output Voltage	@I _{oL} =5mA	0		$0.2V_{DD}$	V
		I _{Sleep} in the Deep Sleep Mode	_	0.4	_	μA
		I _L Data low & PA off current		6.0	_	mA
		P _{out} =0dBm	_	10.5	_	
	Current Consumption @ 315MHz Band	P _{out} =10dBm		18.5	_	mA
		P _{out=} 13dBm	_	24.5	_	
		P _{out=} 0dBm	_	11.0	—	
	Current Consumption @ 433MHz Band	P _{out=} 10dBm	_	18.5	_	mA
		P _{out=} 13dBm	_	25.0	_	
1 _H		P _{out} =0dBm	_	13.5	_	
	Current Consumption @ 868MHz Band	P _{out=} 10dBm		20.0	—	mA
		P _{out} =13dBm	_	24.5	_	
		P _{OUT=} 0dBm	_	12.5		
	Current Consumption @ 915MHz Band	P _{out=} 10dBm	_	19	_	mA
		P _{out=} 13dBm	_	24	_	

Ta=25°C, V_{DD} =3.3V, f_{XTAL} =16MHz, OOK modulation with Matching circuit, PAOUT is powered by V_{DD} =3.3V, unless otherwise noted.

A.C. Characteristics

RF Characteristics

Ta=25°C, V _{DD} =3.3V, f _{XTAL} =16MHz, OOK m	odulation with	Matching	circuit,
PAOUT is powered by V_{DD}	s=3.3V, unless	otherwise	noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ZRF						
				315	-	
¢.				433		
I'RF	RF Operating Frequency Range		_	868		
				915		
XTAL					*	
f _{xtal}	RF Operating XTAL Frequency	General case	—	16		MHz
ESR	XTAL Equivalent Series Resistance	_	—	_	100	Ω
CL	XTAL Capacitor Load	_	—	16	_	pF
	XTAL Tolerance ⁽¹⁾	_	_	±20		ppm
t _{Startup}	XTAL Startup Time ⁽²⁾	_	_	1	_	ms
PLL						
f _{step}	RF Frequency Synthesizer Step	_	_	0.5		kHz
	DI L Dhasa Naisa @ 422MU	Phase Noise @ 100k offset		-78		
	PLL Phase Noise @ 433MHZ	Phase Noise @ 1M offset		-105		dBc/
FINPLL	DI L Dhasa naisa @ 969Miliz	Phase Noise @ 100k offset		-68		Hz
	PLL Phase hoise @ 808MHZ	Phase Noise @ 1M offset] —	-100		

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ТΧ	-					
	Symbol Rate	OOK modulation	1.5	_	24	ksps
D		@ 433MHz	0	_	13	dDm
POUT	RF Transmitter Output Power	@ 868MHz	0	_	13	
ER _{OOK}	OOK Extinction Ratio	OOK Modulation depth	_	70	_	dB
		@ 315MHz		400	_	kHz
	Occupied Bandwidth (OOK, -20dBc)	@ 433MHz				
		@ 868MHz				
		@ 915MHz				
		f < 1GHz		_	-36	
SE _{TX}	Transmitter Spurious Emission (P _{our} =10dBm)	47MHz < f < 74MHz 87.5MHz < f < 118MHz 174MHz < f < 230MHz 470MHz < f < 790MHz	_		-54	dBm
		2 nd , 3 rd Harmonic	_	_	-30	

Note: 1. This is the total tolerance including (1)Initial tolerance (2)Crystal loading (3)Aging and (4)Temperature dependence.

2. Depend on crystal property.

I²C Characteristics

Ta=-40°C~85°C, Ta=25°C Typical

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I ² C Chara	I ² C Characteristics					
f _{scl}	Serial Clock Frequency	_	-	_	1	MHz
t _{BUF}	Bus Free Time between Stop and Start Condition	SCL=1MHz	250	—	—	ns
t _{LOW}	SCL Low Time	SCL=1MHz	500	-	—	ns
t _{HIGH}	SCL High Time	SCL=1MHz	500	_	—	ns
t _{su(DAT)}	Data Setup Time	SCL=1MHz	100	_	_	ns
t _{su(STA)}	Start Condition Setup Time	SCL=1MHz	250	_	—	ns
t _{su(STO)}	Stop Condition Setup Time	SCL=1MHz	250	-	—	ns
t _{h(DAT)}	Data Hold Time	SCL=1MHz	100	_	—	ns
t _{h(STA)}	Start Condition Hold Time	SCL=1MHz	250	—	—	ns
t _{r(SCL)}	Rise Time of SCL Signal	SCL=1MHz	-	-	100	ns
t _{f(SCL)}	Fall Time of SCL Signal	SCL=1MHz	_	—	100	ns
t _{r(SDA)}	Rise Time of SDA Signal	SCL=1MHz	_	_	100	ns
t _{f(SDA)}	Fall Time of SDA Signal	SCL=1MHz	_	_	100	ns

Power on Reset Electrical Characteristics

-40°C to 85°C Ta=25°C Typical

Symbol	Parameter		Test Conditions		Turn	Mox	Unit
Symbol	Farameter	V_{DD}	Conditions		Typ.	Widx.	Unit
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	—	—			100	mV
RR _{POR}	V_{DD} Rising Rate to Ensure Power-on Reset	—	—	0.035	—	_	V/ms
t _{POR}	Minimum Time for $V_{\mbox{\scriptsize DD}}$ Stays at $V_{\mbox{\scriptsize POR}}$ to Ensure Power-on Reset	_	_	1	_	_	ms

Functional Description

This fully integrated RF transmitter can operate in the 315MHz, 433MHz, 868MHz and 915MHz frequency bands. The additional of a crystal and a limited number of external components are all that is required to create a complete and versatile RF transmitter system. The device includes an internal power amplifier and is capable of delivering up to +13dBm. Such a power level enables a small form factor transmitter to operate near the maximum transmission regulation limits. The device can operate with OOK receiver type.

To provide extra user flexibility, the device contains an area of FUSE memory, which is a kind of one-time programmable non-volatile memory. If the FUSE has not been programmed, which can be determined by checking the EFPGM bit in the CFG0 register, users should connect the device to an MCU and setup the relevant RF register configurations in the I²C Mode using an I²C interface. For devices whose FUSE are already programmed, the FUSE memory contents will be copied to the relevant registers automatically. However, the registers will be reset to their initial state when the device is powered off.

State Control

The device has integrated state machines that control the state transition between the different modes.

Power-on States

After power on, if the ICPCK pin is kept at a High level by the internal pull-high function and the EFPGM bit state is high, the FUSE data will be automatically copied to the corresponding registers and will be also used for CRC calculation. If the EFPGM bit state is low, the FUSE power will be turned off and the device will enter the I²C mode.

Key Mode

If users want to enter the Key mode, the Fuse must be programmed, the Encoder bit should be set high. During the Standby mode, if there is no key trigger event, the device will enter the Deep Sleep Mode after a 2ms delay. When a key trigger event occurs, which is a level trigger generated by pressing a button for more than 1ms, the transmitter will start to transfer data. The interval between data frames can be figured out using the following equation: 2ms \times (FRAME GAP[2:0]). The transmission will end when the Frame counter stops. The device will then enter the Deep Sleep Mode after a fixed delay time of 2ms. In the Deep Sleep Mode, the clock stops and register configurations will all be reset. The device can only be woken up by an edge detection, which is implemented by pulling the Key pins from high to low. After this happens the FUSE memory will be automatically copied to the relevant registers and the device will enter the Standby mode.

FUSE ICP Mode

After powering on, the device checks the ICPCK pin state, which is active low but which will be pulled high by the internal pull high function. By adding this procedure, the device can still enter the programming interface to check the programmed value even if it has been programmed. For the 8-pin package applications, it is recommended that the D0 pin should be used as a Key. As the device clock frequency is 16MHz, the device will enter the ICP Mode for FUSE programming after a delay time of 32ms. Note that the FUSE can only be programmed once.

I²C Mode

The device will enter the I²C Mode if the Encoder bit is low. Note that in the I²C mode, the device should be connected with an MCU and operate as an I²C slave. During the Light Sleep Mode, the timer will be on and will start counting. After a delay time of 10ms the device will enter the Deep Sleep Mode. If a toggle action occurs on the SDA or SCL pin, the timer will be reset and will restart counting. The device can be woken up from the Deep Sleep Mode if a falling edge is detected on pin SCL or SDA. Here it should be noted that the high-to-low pulse should be maintained for at least 1ms. In this situation the FUSE data will be copied to the registers again and the device will return to the Light Sleep Mode. In this way the MCU can generate a complete I²C format to initiate the follow-up state machine. To start a data transmission, the I²C write TX data procedure must be executed first and when finished the TX transmission will be initiated after the I²C stop. The frames are transmitted continuously, the TX transmission ends when the frame counter stops after which the device will return to the Light Sleep Mode.

Note: In the Key Mode, pins D0~D7 can be used as key triggers, however in the I²C Mode, pins D0~D7 have no key trigger function and only pins D0 and D1 have wake-up functions. Therefore it is suggested that for the 16-pin package types, pins D2~D7 should be pulled high in the I²C Mode.

I²C Serial Programming

In the I²C Mode, the MCU can configure the internal relevant registers using I²C serial programming. The transmitter only supports the I²C format for byte write, page write, byte read and page read formats. The transmission procedure is shown below.

It should be noted that the I^2C is a non-standard I^2C interface, which only supports a single device for connection.

- Symbol definition
 - S: Start symbol
 - RS: Repeat Start
 - P: Stop symbol
 - DADDR[6:0]: device address, 21h
 - R/W: read write select, R(0):write, (1): read
 - RADDR[7:0]: register address
 - ACK: A(0): ACK, NA(1): NAK
 - Bus Direction:

P = Stop (1 bit)

Programming Methodology

The device programming interface should utilise an adaptor with an integrated 16MHz crystal.

Programming Function	Pin Name	Pin Description
ICPCK	ICPCK	ICP clock
ICPDA	ICPDA	ICP data/address
VDD	VDDRF & DVDD	Power supply
VSS, EP	PAVSS & VSS & Exposed-Pad	Ground
XTAL IN (Adaptor)	XOSCIN	IC system clock

When programming the device needs to be located on a Socket with a 16MHz crystal connected between pin XOSCIN and ground. Holtek provides an e-link or e-WriterPro tool for communication with the PC. Between the e-link and the device there are four interconnecting lines, namely VDD, VSS, ICPCK and ICPDA pins.

Encoder Packet Example – OOK Modulation

Packet Structure:

In the above structure, the procedures enclosed in brackets mean optional and can therefore be disabled. The rest are leading code, address and data, which are necessary parts of the packet. These parameters can be configured but can never be disabled.

Example 1: HT6P20B

Format:

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4-bit)
-------------	-----------------	-------------	------------

Pilot code is $24\lambda \rightarrow \text{LEAD}$ CODE[2:0]=000b;

Address: [155555h], Address Length is 22-bit \rightarrow ADDR_LEN[2:0]=100b;

DATA: 2 Keys (D1/D0) \rightarrow KEY_SEL[1:0]=00b;

End code is 4-bit \rightarrow END_CODE[1:0]=01b;

Bit format: Low to High \rightarrow Waveform=0b ;

 \rightarrow 1 λ low + 2 λ high (Data=Zero) / 2 λ low + 1 λ high (Data=One)

Example 2: HT6P20D

Format:

Pilot(24 λ)	Address(20-bit)	Data(4-bit)	End(4-bit)
· · · ·	· · · · · · · · · · · · · · · · · · ·		· · · ·

Pilot code is $24\lambda \rightarrow \text{LEAD}_\text{CODE}[2:0]=000b;$

Address: [55555h]; Address Length is 20-bit \rightarrow ADDR_LEN[2:0]=011b;

DATA: 4 Keys $(D3/D2/D1/D0) \rightarrow KEY$ SEL[1:0]=01b;

End code is 4-bit \rightarrow END CODE[1:0]=01b;

Bit format: Low to High \rightarrow Waveform=0b;

 \rightarrow 1 λ low + 2 λ high (Data=Zero) / 2 λ low + 1 λ high (Data=One)

Example 3: HT6P427A

Format:

Pilot(32 λ)	Address(20-bit)	Data(4-bit)

Pilot code is $32\lambda \rightarrow \text{LEAD}_\text{CODE}[2:0]=001b$;

Address: [99999h]; Address Length is 20-bit \rightarrow ADDR_LEN[2:0]=011b;

DATA: 4 Keys $(D3/D2/D1/D0) \rightarrow KEY SEL[1:0]=01b;$

Bit format: High to Low \rightarrow Waveform=1b;

 \rightarrow 1 λ high + 3 λ low (Data=Zero) / 3 λ high + 1 λ low (Data=One)

Example 4: HT6P437A

Format:			
Pilot(32 λ)	Internal Address(20-bit)	External Address(4-bit)	Data(4-bit)

Pilot code is $32\lambda \rightarrow \text{LEAD}_\text{CODE}[2:0]=001b$;

Address: [DDDDDh] + Dipswitch; Address Length is 20-bit \rightarrow ADDR_LEN[2:0]=011b;

DATA: 4 Dipswitches (A3/A2/A1/A0) + 4 Keys $(D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=10b;$

Bit format: High to Low \rightarrow Waveform=1b;

 \rightarrow 1 λ high + 3 λ low (Data=Zero) / 3 λ high + 1 λ low (Data=One)

Example 5: HT6P237A

Format:

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4-bit)

Pilot code is $24\lambda \rightarrow \text{LEAD}$ CODE[2:0]=000b;

Address: [3EEEEEh]; Address Length is 22-bit \rightarrow ADDR_LEN[2:0]=100b;

DATA: 2 Keys (D1/D0) \rightarrow KEY SEL[1:0]=00b;

End code is 4-bit \rightarrow END_CODE[1:0]=01b;

Bit format: Low to High \rightarrow Waveform=0b;

 \rightarrow 1 λ low + 2 λ high (Data=Zero) / 2 λ low + 1 λ high (Data=One)

Example 6: HT6P247A

Format:

Pilot(24 λ) Address(24-bit) Data(4-bit) End(4-bit)

Pilot code is $24\lambda \rightarrow \text{LEAD}_\text{CODE}[2:0]=000b;$

Address: [777777h]; Address Length is 24-bit \rightarrow ADDR_LEN[2:0]=101b;

DATA: 4 Keys $(D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b;$

End code is 4-bit \rightarrow END_CODE[1:0]=01b;

Bit format: Low to High \rightarrow Waveform=0b;

 \rightarrow 1 λ low + 2 λ high (Data=Zero) / 2 λ low + 1 λ high (Data=One)

Example 7: HT12E

Format:

Pilot(37 λ)	Address(8-bit)	Data(4-bit)

Pilot code is $37\lambda \rightarrow \text{LEAD}_\text{CODE}[2:0]=010b;$

Address: [55h]; Address Length is 8-bit \rightarrow ADDR_ LEN[2:0]=000b;

DATA: 4 Keys $(D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b;$

Bit format: Low to High \rightarrow Waveform=0b;

 \rightarrow 1 λ low + 2 λ high (Data=Zero) / 2 λ low + 1 λ high (Data=One)

Example 8: Custom Format

Format:

Pilot	Start	Address	Data	CRC	End
(16 λ)	(6 λ)	(8-bit)	(4-bit)	(8-bit)	(4 λ)

Pilot code is $16\lambda \rightarrow \text{LEAD}$ CODE[2:0]=100b;

Start code is $6\lambda \rightarrow \text{START}_\text{BIT}[1:0]=01b$;

Address: [93h]; Address Length is 8-bit \rightarrow ADDR_ LEN[2:0]=000b;

DATA: 4 Keys $(D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b;$

CRC: 8-bit \rightarrow CRC[1:0]=10b;

End Code is $4\lambda \rightarrow \text{END}_\text{CODE}[1:0]=10b$;

Bit format: High to Low \rightarrow Waveform=1b;

 \rightarrow 1 λ high + 3 λ low (Data=Zero) / 3 λ high + 1 λ low (Data=One)

Fuse Register Map

This list provides a summary of all internal registers. Their detailed operation is described under their relevant section in the functional description.

Address	Register	Bit										
Address	Name	7	6	5	4	3	2	1	0			
00h	CFG0	Reserved	EFPGM			XO_TF	RIM[5:0]					
01h	CFG1	FRAME_GAP[2:0] Reserved										
02h	CFG2		Reserved									
03h	CFG3		Reserved									
04h	CFG4		Reserved									
05h	CFG5				Rese	erved						
06h	CFG6				Rese	erved						
07h	CFG7				Rese	erved						
08h	CFG8				Rese	erved						
09h	CFG9				Rese	erved						
0Ah	CFG10		D_K	[3:0]			TXPW	/R[3:0]				
0Bh	CFG11			D_N	[5:0]			BAND_	SEL[1:0]			
0Ch	CFG12				D_K[[11:4]						
0Dh	CFG13				D_K[′	19:12]						
0Eh	CFG14		BI	T_WIDTH[4	:0]		LE	AD_CODE[2:0]			
0Fh	CFG15	A	DDR_LEN[2	:0]	END_CO	DDE[1:0]	START	BIT[1:0]	Waveform			
10h	CFG16	Reserved	Encoder	Rese	erved	CRC_S	SEL[1:0]	KEY_S	SEL[1:0]			
11h	CFG17		Reserved									
12h	CFG18				Rese	erved						
13h	CFG19				Rese	erved						
14h	CFG20				Rese	erved						
15h	CFG21				ENCODER_	ADDRL[7:0]					
16h	CFG22				ENCODER_	ADDRM[7:0]					
17h	CFG23				ENCODER_	ADDRH[7:0]					
18h	CFG24				ENCODER_	ADDRU[7:0]					
19h	CFG25				FRAME_C	CNTR[7:0]						
1Ah	CFG26				Rese	erved						
1Bh	CFG27		1		Rese	erved						
1Ch	CFG28	Reserved	TXD_INV	TXD_REV	LED_SWD		Rese	erved				
1Dh	CFG29				Rese	erved		-				
1Eh	CFG30				MAX_FC	CNT[7:0]						
1Fh	CFG31				EFCRC	C_L[7:0]						
20h	CFG32				EFCRC	_H[7:0]						
21h	CFG33		Reserved TX_FLAG									
22h	CFG34		Reserved									
23h	CFG35				Rese	erved						
24h	CFG36				Rese	erved						
25h	CFG37				Rese	erved						
26h	CFG38				Rese	erved						
27h	CFG39				Rese	erved						
28h	CFG40				I ² C_[DATA						

If the Fuse is un-programmed, the BC2161 device will have a default state, determined by register initial values.

Operating Frequency: 433.92MHz

XTAL Capacitor Load: 14.85pF

Symbol Rate: 4ksps

TX Output Power: 10dBm Encoding Format: HT6P427A Encoder: I²C Mode

• CFG0: Configuration Control Register 0

Address	Bit	7	6	5	4	3	2	1	0
	Name	Reserved	EFPGM	XO_TRIM[5:0]					
00h	R/W	R/W	R		R/W				
	Initial Value	1	0	1	0	0	0	0	0

Bit 7 Reserved, must be [0b1]

Bit 6 **EFPGM**: FUSE programmed, read only by the Holtek RF Tool

0: Fuse is not programmed - FUSE data is not mapped to the configuration registers

1: Fuse is programmed - FUSE data is mapped to the configuration registers

Bit 5~0 XO_TRIM[5:0]: Trim the internal capacitor load value for the crystal

XO_TRIM[5:0]	Equiv. C _∟ (pF)
0	9.87
4	10.00
8	10.12
12	11.44
16	12.16
17	12.33
18	12.49
20	12.83
24	13.50
28	14.15

XO_TRIM[5:0]	Equiv. C _L (pF)
32	14.85
36	15.48
40	16.16
44	16.81
48	17.49
52	18.07
56	18.67
60	19.20
63	19.61

CFG1: Configuration Control Register 1

Address	Bit	7	6	5	4	3	2	1	0
	Name	FR/	AME_GAP[2:0]	Reserved				
01h	R/W		R/W				R/W		
	Initial Value	0	0	0	1	0	1	0	1

Bit 7~5 FRAME_GAP[2:0]: TX frame interval time

$t = 2ms \times (FRAME_GAP[2:0])$
000: 0ms
001: 2ms
010: 4ms
011: 6ms
100: 8ms

101: 10ms

110: 12ms

111: 14ms

Bit 4~0 Reserved, must be [0b10101]

CFG2: Configuration Control Register 2

Address	Bit	7	6	5	4	3	2	1	0	
	Name	Reserved								
02h	R/W	R/W								
	Initial Value	1	0	1	1	0	1	1	0	

Bit 7~0 Reserved, must be [0b10110110]

• CFG3: Configuration Control Register 3

Address	Bit	7	6	5	4	3	2	1	0			
	Name		Reserved									
03h	R/W				R/	/W						
	Initial Value	0	1	0	0	0	0	0	1			

Bit 7~0 Reserved, must be [0b01000001]

CFG4: Configuration Control Register 4

Address	Bit	7	6	5	4	3	2	1	0	
	Name		Reserved							
04h	R/W		R/W							
	Initial Value	0	1	0	0	0	0	1	0	

Bit 7~0 Reserved, must be [0b01000010]

• CFG5: Configuration Control Register 5

Address	Bit	7	6	5	4	3	2	1	0		
	Name		Reserved								
05h	R/W		R/W								
	Initial Value	0	0	0	1	0	1	0	0		

Bit 7~0 Reserved, must be [0b00010100]

• CFG6: Configuration Control Register 6

Address	Bit	7	6	5	4	3	2	1	0	
	Name		Reserved							
06h	R/W		R/W							
	Initial Value	1	0	0	1	1	0	0	1	

Bit 7~0 Reserved, must be [0b10011001]

CFG7: Configuration Control Register 7

Address	Bit	7	6	5	4	3	2	1	0		
	Name		Reserved								
07h	R/W		R/W								
	Initial Value	0	1	0	1	1	0	0	0		

Bit 7~0 Reserved, must be [0b01011000]

• CFG8: Configuration Control Register 8

Address	Bit	7	6	5	4	3	2	1	0		
	Name		Reserved								
08h	R/W				R/	W					
	Initial Value	1	0	1	0	0	0	1	0		

Bit 7~0 Reserved, must be [0b10100010]

• CFG9: Configuration Control Register 9

Address	Bit	7	6	5	4	3	2	1	0	
	Name		Reserved							
09h	R/W		R/W							
	Initial Value	0	1	0	1	0	0	0	1	

Bit 7~0 Reserved, must be [0b01010001]

CFG10: Configuration Control Register10

Address	Bit	7	6	5	4	3	2	1	0	
	Name		D_K	[3:0]		TXPWR[3:0]				
0Ah	R/W		R/	W		R/W				
	Initial Value	0	0	1	1	1	0	0	0	

Bit 7~4 **D_K[3:0]**: Fractional of dividend for MMD, which will be described later.

Bit 3~0 TXPWR[3:0]: RF output power stage selection

The device has several output power values which are 0, 5, 10 and 13dBm.

TXPWR[3:0]	RF Output Power (Typ.)
<u>00</u> 00	0dBm
<u>01</u> 00	5dBm
<u>10</u> 00	10dBm
<u>11</u> 00	13dBm
TXPWR[3:0]	Fine Tune Level (Typ.)
XX <u>00</u>	0
XX <u>01</u>	1
XX <u>10</u>	2
XX <u>11</u>	3

Note that the adjusting range: Level 3 > Level 2 > Level 1 > Level 0

CFG11: Configuration Control Register11

Address	Bit	7	6	5	4	3	2	1	0	
	Name			BAND_SEL[1:0]						
0Bh	R/W		R/W R/W							
	Initial Value	0	1	0	1	1	0	0	1	

Bit 7~2 **D_N[5:0]**: Integer of dividend for MMD

Bit 1~0 BAND_SEL[1:0]: Band Frequency Coarse Selection

BAND_SEL	Frequency	Divider
00	315MHz	2
01	433MHz	2
10	868MHz	1
11	915MHz	1

Note that the BAND_SEL only selects an approximate frequency range while the exact frequency value is determined by the D_N and D_K bit fields. For example, the 433.92MHz belongs to 433MHz frequency band in the BAND_SEL setting.

CFG12: Configuration Control Register12

Address	Bit	7	6	5	4	3	2	1	0		
	Name		D_K[11:4]								
0Ch	R/W		R/W								
	Initial Value	0	1	1	1	0	0	0	0		

• CFG13: Configuration Control Register13

Address	Bit	7	6	5	4	3	2	1	0	
	Name		D_K[19:12]							
0Dh	R/W		R/W							
	Initial Value	0	0	1	1	1	1	0	1	

D_K[19:0]: 20-bit fractional of dividend for MMD

For example: XO=16MHz and TX frequency band=433MHz

1. For D_N field, (433M×Divider)/16M=54.125,

Take the integer part \rightarrow D_N[5:0]=54-32=22=010110b

2. For D K field, (433M×Divider)/16M=54.125,

Take the fractional part \rightarrow D_K[19:0]=0.125 × 2²⁰=131072=0010-0000-0000-0000b

Frequency	Divider	X'TAL	D_N[5:0]	D_K[19:4]	D_K[3:0]
315MHz	2	16MHz	000111	0110-0000-0000-0000	0000
433MHz	2	16MHz	010110	0010-0000-0000-0000	0000
433.92MHz	2	16MHz	010110	0011-1101-0111-0000	1010
868MHz	1	16MHz	010110	0100-0000-0000-0000	0000
915MHz	1	16MHz	011001	0011-0000-0000-0000	0000

• CFG14: Configuration Control Register14

Address	Bit	7	6	5	4	3	2	1	0
	Name		00	K Bit Rate[LEAD_CODE[2:0]				
0Eh	R/W	R/W R/W							
	Initial Value	0	0	1	0	1	0	0	1

Bit 7~3 **OOK Bit Rate[4:0]**: Define the data bit rate (0.5k~6kbps)

			_			
OOK Bit Rate	Data Rate	t _{DW}]	OOK Bit Rate	Data Rate	t _{DW}
00000	0.5kbps	2ms		10000	2.1kbps	0.476ms
00001	0.6kbps	1.67ms		10001	2.2kbps	0.454ms
00010	0.7kbps	1.43ms		10010	2.3kbps	0.434ms
00011	0.8kbps	1.25ms		10011	2.4kbps	0.416ms
00100	0.9kbps	1.11ms		10100	2.5 kbps	0.4ms
00101	1.0kbps	1ms		10101	2.6kbps	0.384ms
00110	1.1kbps	0.91ms		10110	2.7kbps	0.37ms
00111	1.2kbps	0.83ms		10111	2.8kbps	0.357ms
01000	1.3kbps	0.77ms		11000	2.9kbps	0.344ms
01001	1.4kbps	0.72ms		11001	3.0kbps	0.333ms
01010	1.5kbps	0.667ms		11010	3.5kbps	0.285ms
01011	1.6kbps	0.625ms		11011	4.0kbps	0.25ms
01100	1.7kbps	0.59ms		11100	4.5kbps	0.222ms
01101	1.8kbps	0.55ms		11101	5.0kbps	0.2ms
01110	1.9kbps	0.53ms]	11110	5.5kbps	0.181ms
01111	2.0kbps	0.5ms]	11111	6.0kbps	0.166ms

CFG15: Configuration Control Register15

Address	Bit	7	6	5	4	3	2	1	0
	Name	ADDR_LEN[2:0]			END_CODE[1:0]		START_BIT[1:0]		Waveform
0Fh	R/W	R/W			R/	W	R/	W	R/W
	Initial Value	0	1	1	0	0	0	0	1

Bit 7~5 ADDR_LEN[2:0]: Define the address length

ADDR_LEN	Format
000 (HT12E)	8 bits
001	12 bits
010	16 bits
011 (HT6P427A)	20 bits
100 (HT6P20B, HT6P237A)	22 bits
101 (HT6P247A, HT6P437A)	24 bits
110	28 bits
111	32 bits

Bit 4~3 **END_CODE**[1:0]: Define the End code

END_CODE	Format
00	Disable
01 (HT6P20B, HT6P237A, HT6P247A)	(1λ Low + 2λ High + 2λ Low + 1λ High) × 2=(12λ)
10	4λ ^(Note 1)
11	$2\lambda + 2\lambda^{(Note 2)}$

Notes:

1. The high or low level of the 4λ END CODE is the opposite of the previous symbol level.

• Example 1: Clear the Waveform to "0", no matter that whether the data is "1" or "0", the last symbol will be High, here the 4λ must be 4λ Low.

	Í	Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4 λ)
--	---	-------------	-----------------	-------------	----------

Pilot code is $24\lambda \rightarrow \text{LEAD}$ CODE[2:0]=000b;

Address: [155555h]; Address length is 22-bit \rightarrow ADDR LEN[2:0]=100b;

DATA: 2 Keys (D1/D0) \rightarrow KEY SEL[1:0]=00b;

End code is 4-bit \rightarrow END_CODE[1:0]=10b;

Bit format: Low to High \rightarrow Waveform=0b;

 1λ Low + 2λ High (Data=Zero) / 2λ Low + 1λ High (Data=One)

- Example 2: Set the Waveform to "1", no matter whether the data is "1" or "0", the last symbol will be Low, here the 4λ must be 4λ High.
- 2. $2\lambda + 2\lambda$: these two 2λ are opposite to each other, while the high or low level of the first 2λ is opposite to the previous symbol level.
 - Example 1: Clear the Waveform to "0", no matter whether the data is "1" or "0", the last symbol will be High, and here the $2\lambda + 2\lambda$ must be 2λ Low + 2λ High.

Pilot(24 λ) Address(22-bit) Data(2-bit) End(2 λ +2 λ)

Pilot code is $24\lambda \rightarrow \text{LEAD}_\text{CODE}[2:0]=000b;$

Address: [155555h]; Address length is 22-bit \rightarrow ADDR_LEN[2:0]=100b;

DATA: 2 Keys (D1/D0) \rightarrow KEY_SEL[1:0]=00b;

End code is 4-bit \rightarrow END_CODE[1:0]=11b;

Bit format: Low to High \rightarrow Waveform=0b;

 1λ Low + 2λ High (Data=Zero) / 2λ Low + 1λ High (Data=One)

Example 2: Set the Waveform to "1", no matter that the data is "1" or "0", the last symbol will be Low, and here the 2λ + 2λ must be 2λ High + 2λ Low.

Bit 2~1 START_BIT[1:0]: Only for OOK Encoder

	-
START_BIT	Format
00	Disable
01	(2λ Low + 4λ High)
10	(4λ High + 2λ Low)
11	6λ Low

Bit 0 Waveform:

CFG16: Configuration Control Register16

Address	Bit	7	6	5	4	3	2	1	0
	Name	Reserved	Encoder	Res	erved	CRC_S	EL[1:0]	KEY_S	EL[1:0]
10h	R/W	R/W	R/W	F	R/W	R/	W	R	W
	Initial Value	1	0	0	0	0	0	0	1

Bit 7 Reserved, must be [0b1]

Bit 6 Encoder: Mode selection

0: I²C Mode

1: Key Mode

Bit 5~4 Reserved, must be [0b00]

Bit 3~2 CRC_SEL[1:0]: Select the address + data for CRC processing

The unit is Bit (not λ), the address is used as the high order of CRC polynomial and the data is used as the low order.

CRC_SEL	Format	Polynomial	Initial Value	Note
00	Disable	_	—	OOK
01	$\begin{array}{l} 4 \text{ Bits} \rightarrow \text{Take the low nibble of the CRC8} \\ \text{ calculated result} \end{array}$	—	_	ООК
10	$8 \text{ Bits} \rightarrow X^8 + X^5 + X^4 + 1$	0x31	0x00	OOK
11	Reserved	—	—	—

Bit 1~0 KEY_SEL[1:0]

KEY_SEL	Format	Data bits
00	2 Keys	2 bits
01	4 Keys	4 bits
10	4 Dipswitches + 4 Keys	4 bits (4-bit external address + 4-bit data)
11	8 Keys	8 bits

For the 16-pin package type, in the Key mode:

- 1. If this bit field is set as "00" then to select Keys D0~D1, the other 6 keys D2~D7 have no trigger function;
- 2. If the value is "01" then to select Keys D0~D3, the other 4 keys D4~D7 have no trigger function;
- 3. If the value is "10" then to select 4 Dipswitches + 4 Keys, the 4 dipswitch I/O status will be latched after power on, the dipswitches will maintain a pull-high or pull low status according to the latched high or low level to avoid current leakage in the Deep Sleep mode. These four dipswitches D4~D7 have no trigger function but will affect the address.
- 4. If dipswitch ever been changed, it is recommended to re-trigger key or re-power on.

In the I²C Mode, the TX transmitting data is determined by the I²C_DATA bit field while the transmitting data bit format is determined by the KEY SEL bit field. The Data bit formats is shown as below:

I ² C Mode	OOK
2 Keys	xx
4 Keys	XXXX
4 + 4 Keys	AAAAxxxx
8 Keys	xxxx_xxxx

For 2-key/4-key/8-key configurations the data bit can be 2 bits, 4 bits and 8 bits respectively. As the above table shows, if the KEY_SEL bit field is set as "10" to select 4 Dipswitches + 4 Keys, then I2C will transmit 8-bit data (bit $7 \sim$ bit 0) and the bit $7 \sim$ bit 4 is regarded as Address.

In the Key Mode, the TX transmitting data is determined by the keys while the transmitting data bit format is determined by the KEY_SEL bit field. The Data bit formats is shown as below:

Key Mode	ООК
2 Keys	XX
4 Keys	XXXX
4 + 4 Keys	AAAAxxxx
8 Keys	XXXX_XXXX

As the above table shows, if the KEY_SEL bit field is set as "10" to select 4 Dipswitches + 4 Keys, the value of "A" is determined by Dipswitches and have no TX transmit trigger function. The data bit format can be 2 bits, 4 bits and 8 bits when the KEY_SEL bit field is configured to select 2 keys, 4 keys and 8 keys respectively. When the bit field is set to select 4 Dipswitches + 4 Keys, then the low nibble, bit 3~bit 0, is regarded as data and the 4-bit Dipswitches values is regarded as address.

LSB	MSB									
Internal A	ddress									
LSB					MSI	3				
Interr	nal Address	Externa	Addre	ess (dip		DATA				
A0 A1	~ An	An+0	An+1	An+2	An+3	D3	D2	D1	D0	
						or D0	1ח	D2	۶D	
						00		DZ	00	
• HT6P427A										
Pilot-code	A0~A19	D0~D3								
• HT6P437A										
Pilot-code	A0~A23	D0~D3								
• HT6P237A										
Pilot-code	A0~A21	D1~D0		"010	1"					
• HT6P247A										
Pilot-code	A0~A23	D3~D0		"010	1"					
• HT6P20B										
Pilot-code	A0~A21	D1~D0		"010	1"					
• HT12E2Tx										
Pilot-code	A0~A7	D0~D3								

CFG17: Configuration Control Register17

Address	Bit	7	6	5	4	3	2	1	0		
	Name		Reserved								
11h	R/W	R/W									
	Initial Value	1	0	1	1	0	0	0	0		

CFG18: Configuration Control Register18

Address	Bit	7	6	5	4	3	2	1	0		
12h	Name		Reserved								
	R/W		R/W								
	Initial Value	1	0	1	1	0	0	0	1		

• CFG19: Configuration Control Register19

Address	Bit	7	6	5	4	3	2	1	0	
	Name		Reserved							
13h	R/W		R/W							
	Initial Value	1	0	1	1	0	0	1	0	

CFG20: Configuration Control Register20

Address	Bit	7	6	5	4	3	2	1	0
	Name				Rese	erved			
14h	R/W				R/	W			
	Initial Value	1	0	1	1	0	0	1	1

The CFG17~CFG20 are reserved registers, whose default value must be fixed as 0xB0, 0xB1, 0xB2 and 0xB3 respectively.

CFG21: Configuration Control Register21

Address	Bit	7	6	5	4	3	2	1	0	
	Name		ENCODER_ADDRL[7:0]							
15h	R/W				R/	W				
	Initial Value	0	0	0	0	0	0	0	0	

CFG22: Configuration Control Register22

Address	Bit	7	6	5	4	3	2	1	0			
	Name		ENCODER_ADDRM[7:0]									
16h	R/W		R/W									
	Initial Value	0	0	0	0	0	0	0	0			

• CFG23: Configuration Control Register23

Address	Bit	7	6	5	4	3	2	1	0		
	Name		ENCODER_ADDRH[7:0]								
17h R/W						W					
	Initial Value	0	0	0	0	0	0	0	0		

CFG24: Configuration Control Register24

Address	Bit	7	6	5	4	3	2	1	0			
18h	Name		ENCODER_ADDRU[7:0]									
	R/W		R/W									
	Initial Value	0	0	0	0	0	0	0	0			

The CFG21~CFG24 define the encoder address.

CFG25: Configuration Control Register25

Address	Bit	7	6	5	4	3	2	1	0			
19h	Name		FRAME_CNTR[7:0]									
	R/W		R/W									
	Initial Value	0	0	0	0	0	0	0	0			

Bit 7~0 FRAME_CNTR[7:0]

:

The Frame Counter calculates the frame numbers using the following equation:

CNTR=FRAME_CNTR[7:0] + 1

0000: Transmit 1 complete frame

0001: Transmit 2 complete frames

0010: Transmit 3 complete frames

1111: Transmit 16 complete frames

CFG26: Configuration Control Register26

Address	Bit	7	6	5	4	3	2	1	0			
1Ah	Name		Reserved									
	R/W	R/W										
	Initial Value	0	0	0	0	0	1	1	1			

Bit 7~0 Reserved, must be [0b00000111]

• CFG27: Configuration Control Register27

Address	Bit	7	6	5	4	3	2	1	0			
	Name		Reserved									
1Bh	R/W		R/W									
	Initial Value	0	0	0	0	1	0	0	0			

Bit 7~0 Reserved, must be [0b00001000]

• CFG28 : Configuration Control Register28

Address	Bit	7	6	5	4	3	2	1	0
	Name	Reserved	TXD_INV	TXD_REV	LED_SWD	Reserved			
1Ch	R/W	R/W	R/W	R/W	R/W	R/W			
	Initial Value	0	0	0	0	0	0	0	0

Bit 7 Reserved, must be [0b0]

Bit 6 **TXD_INV**: data inverse

0: No inverse. If key trigger, data will be "1".

1: DATA "0" will be inversed as "1" and vice versa. If key trigger, data will be "0".

Bit 5 TXD_REV: Data MSB and LSB reverse control

0:	LSB	MSB				
	Internal Address (ENCODER_ADDR)	External Address(dipswitch)		Da	ata	
			D0	D1	D2	D3
1:	LSB	MSB				
	Internal Address (ENCODER_ADDR)	External Address(dipswitch)		Da	ata	
			D3	D2	D1	D0

Bit 4 LED_SWD: LED switch

0: LED follows the TX

1: LED follows the symbol high

Bit 3~0 Reserved, must be [0b0000]

• CFG30: Configuration Control Register30

Address	Bit	7	6	5	4	3	2	1	0				
1Eh	Name		MAX_FCNT[7:0]										
	R/W	R/W											
	Initial Value	0	0	0	0	0	0	0	0				

Bit 7~0 MAX_FCNT[7:0]

The TX will be disabled when the Frame Counter stops. However this bit field is used for the counted frames multiplication. This function is disabled when the bit field value is "0", otherwise the keys should be pressed and hold for a maximum waiting time to disable the TX, where the maximum waiting time = $(FRAME_CNTR[7:0]+1) \times MAX_FCNT[7:0]$

The TX will be disabled when the Frame Counter stops. This feature can be used to prevent battery exhaust due to continued transmission made by jammed button.

BC2161 Frame (HT6P20B packet format)

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4-bit)
D:4 f			

Bit format:

 $1\lambda \log + 2\lambda \operatorname{high} \rightarrow \operatorname{Data} = \operatorname{Zero}$

 $2\lambda \text{ low} + 1\lambda \text{ high} \rightarrow \text{Data} = \text{One}$

Data Rate: 1kbps
1λ Time: $1 \text{ms}/3 = 0.3333 \text{ms}$
Numbers of λ in a frame $\rightarrow 28$ -bit $\times 3\lambda + 24\lambda = 108\lambda$
1 Frame time $\rightarrow 108\lambda \times 0.3333$ ms = 35.9964ms
Example 1:
$FRAME_CNTR[7:0] = 03b \rightarrow Frame 1 / Frame 2 / Frame 3 / Frame 4$
$MAX_FCNT[7:0] = 00b$
Key Trigger Key Release
Key State
Tx Packet Frame 1 Frame 2 Frame 3 Frame 4 Frame 1 Frame 2 Frame 3 Frame 4 Enter Stand-by
Key Trigger
Key State
Tx Packet Frame 1 Frame 2 Frame 3 Frame 4 Frame 1 Frame 2 Frame 3 Frame 4 Frame 4 Frame 2 Frame 3 Frame 4 Frame 1 Frame 7 Fram
Key de-bounce
Example 2:
$FRAME_CNTR[7:0]=00b \rightarrow Frame 1$
$MAX_FCNT[7:0] = 04b$
When stuck key occurs, the power consumption caused by Tx continuous transmission can be avoide by setting the MAX_FCNT[7:0] bits.
Total Frame Numbers = (FRAME_CNTR[7:0]+1) × MAX_FCNT[7:0]
Key Trigger
Key State
Tx Packet Frame 1 Frame 1 Frame 1 Enter Deep Sleep
S Key de-bounce

CFG31: Configuration Control Register31

Address	Bit	7	6	5	4	3	2	1	0			
1Fh	Name		EFCRC_L[7:0]									
	R/W	R/W										
	Initial Value	0	0	0	0	0	0	0	0			

CFG32: Configuration Control Register32

Address	Bit	7	6	5	4	3	2	1	0			
20h	Name		EFCRC_H[7:0]									
	R/W	R/W										
	Initial Value	0	0	0	0	0	0	0	0			

EFCRC field: for FUSE CRC calculation

The address range of the CRC calculation is from 00h to 1Eh, which contains 31 bytes in total. The input order is LSB first, the CRC polynomial is $X^{16} + X^{15} + X^2 + 1$. The CRC on-line calculator can be accessed by the following website: <u>http://www.sunshine2k.de/coding/javascript/crc/crc_js.html</u>

For example:

Data filled in the address range of 00h~1Eh are listed below:

0x4F 0x03 0x99 0x48 0xAB 0xCD 0xEF 0x7B 0x33 0x44 0xAB 0xCD 0xEF 0x93 0xFA 0x00 0x45 0xA9 0xB8 0xC7 0xD6 0xE5 0xF4 0x03 0x12 0x03 0x03 0x08 0xB6 0x00 0x00

The online calculator should be setup with the following configuration:

- 1. CRC width: select "CRC-16"
- 2. CRC parametrization: select "Custom"
- 3. CRC detailed parameters: select "Input reflected"
- 4. Polynomial: 0x8005
- 5. Initial Value: 0xFFFF
- 6. Final Xor Value: 0x0
- 7. CRC Input Data: select "Bytes" and fill in the data
- 8. Click on "Calculate CRC!"
- 9. Result CRC Value: 0x768C

As the following on-line calculator web interface screenshot shows:

CRC width
RadioButton: O CRC-8 CRC-16 CRC-32
CRC parametrization
○ Predefined CRC16_CCIT_ZER0 ✓
CRC detailed parameters
Input reflected: 🗹 Result reflected: 🗆
Polynomial: 0x8005
Initial Value: 0xFFFF
Final Xor Value: 0x0
CRC Input Data
○ String ● Bytes
0x4F 0x03 0x99 0x48 0xAB 0xCD 0xEF 0x7B 0x33 0x44 0xAB 0xCD 0xEF 0x93 0xFA 0x00 0x45 0xA9 0xB8 0xC7 0xD6 0xE5 0xE4 0x02 0x12 0x02 0x02 0x08 0xB6 0x00
Show reflected lookup table: 🗌 (This option does not affect the CRC calculation, only the displayed lookup table)

Calculate CRC!

Result CRC value: 0x768C

• CFG33: Configuration Control Register33

Address	Bit	7	6	5	4	3	2	1	0		
21h	Name		Reserved								
	R/W	R/W									
	Initial Value	0	0	0	0	0	0	0	1		

Bit 7~1 Reserved, must be [0b000000]

Bit 0 TX_FLAG: Transmission flag

0: Transmission is in progress, LED on

1: No transmission, LED off

• CFG40: Configuration Control Register 40

Address	Bit	7	6	5	4	3	2	1	0			
28h	Name				I ² C_D	ATA[7:0]						
	R/W		R/W									
	Initial Value	0	0	0	0	0	0	0	1			

Bit 7~0 $I^2C_DATA[7:0]$: Data and address to be transmitted in the I^2C mode

As the I²C state machine shows, the TX transmission will only be initiated after the I²C_DATA[7:0] field has been written and the I²C stop is executed. The relationship between this bit field and the KEY_SEL field in the CFG16 is described as below:

- 1. If KEY_SEL selects 2 Keys, the I²C will only transmit the data of bit 0 and bit 1, namely 2-bit data.
- 2. If KEY SEL selects 4 Keys, the I²C will only transmit the data of bit 0~bit 3, namely 4-bit data.
- 3. If KEY_SEL selects 4 Dipswitches + 4 Keys, the I²C will transmit the data of bit 0~bit 7, so the 4-bit External Address (Bit 4~Bit 7) and 4-bit data (Bit 0~Bit 3).
- 4. If KEY SEL selects 8 Keys, the I²C will transmit the data of bit 0~bit 7, namely 8-bit data.
- It should be noted that in the I²C mode, D0~D7 have no trigger function, the data is all determined by the I²C_DATA bit field while the bit number is controlled by the KEY_SEL bit field.

Application Circuits

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

8-pin SOP-EP (150mil) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	_	0.236 BSC	_
В	—	0.154 BSC	—
С	0.012	—	0.020
C'	—	0.193 BSC	—
D	—	—	0.069
D1	0.076	—	0.090
E	—	0.050 BSC	—
E2	0.076	—	0.090
F	0.000	—	0.006
G	0.016	_	0.050
Н	0.004	—	0.010
α	0°	_	8°

A A

НН

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	_	6.00 BSC	—
В	—	3.90 BSC	—
С	0.31	—	0.51
C'	—	4.90 BSC	_
D	—	—	1.75
D1	1.94	_	2.29
E	—	1.27 BSC	—
E2	1.94	_	2.29
F	0.00	—	0.15
G	0.40		1.27
Н	0.10	—	0.25
α	0°	_	8°

Note: For this package type, refer to the package information provided here, which will not be updated by the Holtek website.

16-pin NSOP-EP (150mil) Outline Dimension

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	_	0.236 BSC	—
В	—	0.154 BSC	—
С	0.012	_	0.020
C'	—	0.390 BSC	_
D	—	—	0.069
E	_	0.050 BSC	—
D1	0.152	—	0.186
E2	0.066	_	0.101
F	0.000	—	0.006
G	0.016	_	0.050
Н	0.004		0.010
α	0°	_	8°

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	_	6.00 BSC	—
В	—	3.90 BSC	—
С	0.31	—	0.51
C'	—	9.90 BSC	—
D	_	_	1.75
E	_	1.27 BSC	—
D1	3.86	—	4.72
E2	1.68	—	2.56
F	0.00	—	0.15
G	0.40	—	1.27
Н	0.10		0.25
α	0°		8°

SAW Type 16-pin QFN (3mm×3mm for FP0.25mm) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	0.028	0.030	0.031
A1	0.000	0.001	0.002
A3	_	0.008 REF	—
b	0.007	0.010	0.012
D	_	0.118 BSC	—
E	_	0.118 BSC	_
е	_	0.020 BSC	—
D2	0.063	—	0.069
E2	0.063		0.069
L	0.008	0.010	0.012
K	0.008		_

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	—	0.203 REF	—
b	0.18	0.25	0.30
D	—	3.00 BSC	—
E	_	3.00 BSC	_
е	—	0.50 BSC	—
D2	1.60	_	1.75
E2	1.60	—	1.75
L	0.20	0.25	0.30
К	0.20	_	_

Copyright[©] 2023 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any third-party's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.