APPROVAL SHEET

RoHS Compliant
Lead free
Lead-free soldering

用户名称 CUSTOMER:

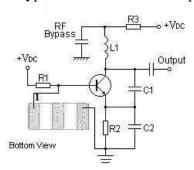
产品描述 DESCRIPTION:

SAW RESONATOR 433.92MHz

1. Scope

Ideal for 433.92MHZ Remote-control and Wireless Security Transmitters


Very Low Series Resistance


Quartz Stability

Rugged, Hermetic, Low-Profile

Typical Low-Power Transmitter Application

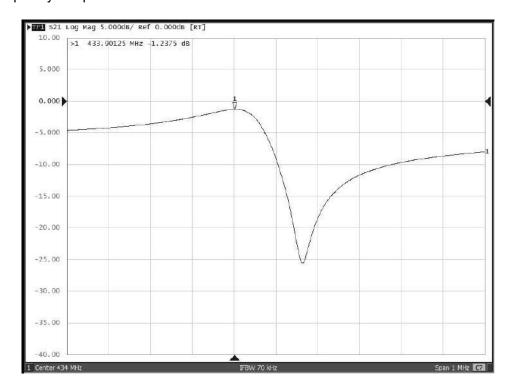
Typical Local Oscillator Application

2. Electrical Specification

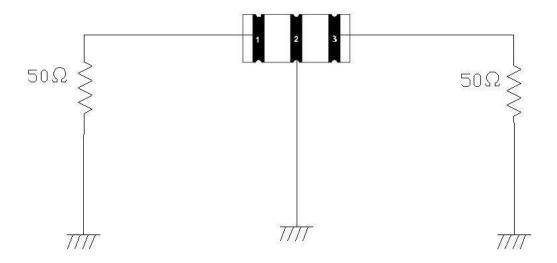
2.1 Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage between Any Two Pins	±10	V
Case Temperature	-40 to +85	$^{\circ}$

SAW RESONATOR


2.2 Electronic Characteristics
Test Temperature: $25^{\circ}C \pm 2^{\circ}C$

Terminating source impedance: 50Ω Terminating load impedance: 50Ω


	ltem:		Minimum	Typical	Maximum	Unit
Center	Absolute Frequency	fc	433.845	433.92	433.995	MHz
Frequency	Tolerance from 433.92MHz	△fc		±75		kHz
Insertion Loss(min)		IL		1.2	2.5	dB
Quality Factor	Unloaded Q	Qυ		11000		
Quality Factor	50Ω Loaded Q	Q_L		2000		
	Turnover Temperature	T ₀		39		$^{\circ}$
Temperature Stability	Turnover Frequency	f ₀		f _c +8.4		kHz
Clabinty	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging	Absolute Value during the First Year	f _A			10	ppm/yr
DC Insulation R	esistance between Any Two Pins		1.0			$M \Omega$
RF	Motional Resistance	R _M		18	26	Ω
Equivalent	Motional Inductance	L _M		86		μΗ
RLC Model	Motional Capacitance	См		1.56		fF
	Static Capacitance	C ₀	1.7	2.0	2.3	pF

SAW RESONATOR

2.3 Frequency Response

3. TEST CIRCUIT

4. DIMENSION

7.5x3.5mm

Pin No.	Function*							
1	Input / output							
2	Ground	6	A . A	a)		ŭ.	В	
3.	Output / input					<u> [</u>		
	Dimension		Ĭ		T	ĬČ		
A	2.50	1	2	3	c			
В	7.50	1.0			"			
С	3.50				↓		_	
D	1.00	NI - 171.3039	D				38/00	
E	1.35		2	+ +				
F	0.65							
Unit: mr	n				1			
Toleran	ce: ±0.3mm				E			

5. Environment Characteristic

5-1 High temperature exposure

Subject the device to +85 °C for 16 hours. Then release the filter into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2-2.

5-2 Low temperature exposure

Subject the device to -40° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2-2.

5-3 Temperature cycling

Subject the device to a low temperature of -40 $^{\circ}$ C for 30 minutes. Following by a high temperature of +85 $^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2-2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$ for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2-2.

5-5 Solderability

Subject the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2-2.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in 2-2.

5-7 Vibration

Subject the device to the vibration for 1 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2-2.