

## Features

- +  $V_{\rm IN}$  Input Range from 7.5V to 36V
- Accumulative Cell Voltage Monitor
  - + 8-to-1 Analog Multiplexer with divided ratio accuracy:  $1/n \pm 0.5\%$
- Cell Charging Balance Switches
- + 5V/50mA internal Voltage Regulator with  $\pm 1\%$  accuracy
- Two Discharge N-type MOSFET Gate Drivers
- Single Charge N-type MOSFET Gate Driver
- Sleep Mode with  $0.1 \mu A$  ultra-low standby current
- Direct High Voltage Wake-up function
- I<sup>2</sup>C Bus Communication with Host MCU
- Operating Temperature Range: -40°C to +85°C
- Package Types: 24-pin SSOP-EP/QFN

# Applications

- Handheld vacuum cleaners
- Electric power tools

# **General Description**

The HT7Q1531 is a high voltage analog-front-end IC for 3 to 8 cell Li-ion rechargeable battery protection. It consists of an accumulative cell voltage monitor, a high accuracy voltage regulator, two discharge N-type MOSFET gate drivers and a charge N-type MOS-FET gate driver. The device is designed to monitor an accumulative voltage from 1 to N and outputs the divide-by-N voltage to the analog multiplexer with a  $\pm 0.5\%$  divided ratio accuracy. The device can directly drive external power N-type MOSFETs to control charge and discharge by charge and discharge gate drivers. The integrated battery balance circuitry provides a cell balance current without the need of external transistors. The anti-reverse current switch is implemented to prevent a backflow current even if VOUT is higher than  $V_{BATn}$ . Each divided accumulative cell voltage can be observed sequentially from VBAT1 to VBAT8 which benefits MCUs with a lower number of ADCs. An integrated regulator provides a 5V supply to the MCU with a 50mA driving current capability and which has  $\pm 1\%$  accuracy. The voltage regulator, cell voltage monitor and gate drivers are shut down with an ultra-low standby current of 0.1µA when the device is in the Sleep mode. When the HVWK pin is triggered by a voltage greater than its threshold, the device will return to the standby state.



# **Functional Block Diagram**



# **Pin Assignment**





# **Pin Description**

| Pin No    | ).    | N     | <b>.</b> | Die Description                                                                                              |
|-----------|-------|-------|----------|--------------------------------------------------------------------------------------------------------------|
| 24SSOP-EP | 24QFN | Name  | туре     | Pin Description                                                                                              |
| 1         | 5     | DGN0  | 0        | Gate driver output 0 for driving discharge N-type MOSFET. Recommended for applying on primary loading path   |
| 2         | 6     | VIN   | Р        | Input supply voltage. Connect to the top VBATn                                                               |
| 3         | 7     | VREG  | 0        | Regulator 5V/50mA output. Connect a 4.7µF capacitor typically                                                |
| 4         | 8     | DCN   | I        | Gate driver DGCN control input *                                                                             |
| 5         | 9     | DN1   | I        | Gate driver DGN1 control input *                                                                             |
| 6         | 10    | SCL   | I/O      | I <sup>2</sup> C serial clock line                                                                           |
| 7         | 11    | SDA   | I/O      | I <sup>2</sup> C serial data line                                                                            |
| 8         | 12    | DN0   | I        | Gate driver DGN0 control input *                                                                             |
| 9         | 13    | VOUT  | 0        | Voltage monitor output                                                                                       |
| 10        | 14    | VBAT1 | I        | Battery cell 1 positive terminal and battery cell 2 negative terminal                                        |
| 11        | 15    | VBAT2 | I        | Battery cell 2 positive terminal and battery cell 3 negative terminal                                        |
| 12        | 16    | VBAT3 | Ι        | Battery cell 3 positive terminal and battery cell 4 negative terminal                                        |
| 13        | 17    | VBAT4 | I        | Battery cell 4 positive terminal and battery cell 5 negative terminal                                        |
| 14        | 18    | VBAT5 | Ι        | Battery cell 5 positive terminal and battery cell 6 negative terminal                                        |
| 15        | 19    | VBAT6 | I        | Battery cell 6 positive terminal and battery cell 7 negative terminal                                        |
| 16        | 20    | VBAT7 | I        | Battery cell 7 positive terminal and battery cell 8 negative terminal                                        |
| 17        | 21    | VBAT8 | Ι        | Battery cell 8 positive terminal                                                                             |
| 18        | 22    | HVWK  | I        | High voltage wake-up function sense and trigger pin                                                          |
| 19        | 23    | DSCN  | I        | Charge pump reference voltage input. Connect to charge N-type MOSFET source pin                              |
| 20        | 24    | DGCN  | 0        | Gate driver output for driving charge N-type MOSFET with 12V clamped from DGCN to DSCN                       |
| 21        | 1     | GND   | G        | Ground terminal                                                                                              |
| 22        | 2     | C1    | 0        | Charge pump capacitor for DGCN. Connect an capacitor between C1 and C2                                       |
| 23        | 3     | C2    | 0        | Charge pump capacitor for DGCN. Connect an capacitor between C1 and C2                                       |
| 24        | 4     | DGN1  | 0        | Gate driver output 1 for driving discharge N-type MOSFET. Recommended for applying on secondary loading path |
| EP        | EP    | GND   | G        | Connect to GND                                                                                               |

Note: I: Input; O: Output; P: Power; G: Ground;

\*: Internal pull down with  $430k\Omega$ .



# **Absolute Maximum Ratings**

| Pin / Parameter                                       | Value            | Unit         |      |
|-------------------------------------------------------|------------------|--------------|------|
| VIN, DSCN, HVWK, C2                                   |                  | -0.3 to +48  | V    |
| DGCN, C1                                              |                  | -0.3 to +60  | V    |
| VREG, VOUT                                            |                  | -0.3 to +5.5 | V    |
| DGN0, DGN1                                            |                  | -0.3 to 18   | V    |
| SCL, SDA, DN0, DN1, DCN                               | -0.3 to +5.5     | V            |      |
| Δ[V <sub>BATi</sub> ~V <sub>BAT(i-1)</sub> ], i=2~8   |                  | -0.3 to +5.5 | V    |
| Operating Temperature Range                           |                  | -40 to +85   | °C   |
| Maximum Junction Temperature                          |                  | +125         | °C   |
| Storage Temperature Range                             |                  | -60 to +150  | °C   |
| Lead Temperature (Soldering 10sec)                    |                  | +260         | °C   |
|                                                       | Human Body Model | ±2000        | V    |
|                                                       | Machine Model    | ±200         | V    |
| Junction-to-Ambient Thermal Resistance, $\theta_{JA}$ | 24SSOP-EP/QFN    | 40           | °C/W |

Note: Absolute Maximum Ratings indicate limitations beyond which damage to the device may occur.

# **Recommended Operating Ratings**

| Pin / Parameter | Value       | Unit |
|-----------------|-------------|------|
| VIN             | 7.5 to 36.0 | V    |
| Та              | -40 to +85  | °C   |

Note: Recommended Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specified performance limits.

# **Electrical Characteristics**

 $V_{IN}$ =36V,  $C_{VREG}$ =4.7µF,  $C_{VOUT}$ =2.2nF, Ta=25°C, unless otherwise specified

| Symbol                                                               | Parameter                                           | rameter Test Condition                                                                                                                              |      |      | Max. | Unit   |
|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|--------|
| Supply and Input                                                     | ·                                                   | ^<br>                                                                                                                                               |      |      |      |        |
| Vin                                                                  | Supply Voltage                                      | —                                                                                                                                                   | 7.5  | —    | 36.0 | V      |
| IIN(VM_ACT)                                                          | Supply Current When<br>Voltage Monitor is Activated | EN_S=1                                                                                                                                              | 6    | 11   | 16   | μA     |
| I <sub>IN(STB)</sub>                                                 | Supply Current – Standby                            | B2=B1=B0=EN_S=0,<br>V <sub>DN0</sub> =V <sub>DN1</sub> =V <sub>DCN</sub> =0V                                                                        | _    | 3.5  | 6.0  | μA     |
| IN(STB_DSG)                                                          | VIN Supply Current When<br>DGN0 is Activated        | B2=B1=B0=EN_S=0,<br>V <sub>DN0</sub> =5V, V <sub>DN1</sub> =V <sub>DCN</sub> =0V                                                                    | _    | 35   | 42   | μA     |
| Islp                                                                 | Standby Current in SLEEP<br>Mode                    | V <sub>SLP</sub> =5V, V <sub>HVWK</sub> =0V                                                                                                         | _    | 0.1  | 0.2  | μA     |
| Voltage Regulator                                                    | r                                                   |                                                                                                                                                     |      |      |      |        |
| Vreg                                                                 | Regulator Output Voltage                            | I <sub>LOAD</sub> =10mA                                                                                                                             | 4.95 | 5.00 | 5.05 | V      |
| I <sub>REG</sub>                                                     | Regulator Maximum Output<br>Current                 | V <sub>IN</sub> =7.5V, Ta=-40°C~85°C                                                                                                                | 50   | _    | _    | mA     |
| $\Delta V_{REG}$                                                     | Load Regulation                                     | I <sub>LOAD</sub> =0mA~50mA                                                                                                                         | —    | 30   | 80   | mV     |
| $\Delta V_{\text{REG}}/(V_{\text{REG}} \times \Delta V_{\text{IN}})$ | Line Regulation                                     | V <sub>IN</sub> =7.5V~36V, I <sub>LOAD</sub> =10mA                                                                                                  | —    | 0.02 | —    | %/V    |
| $\Delta V_{\text{REG}}/(V_{\text{REG}} \times \Delta Ta)$            | Temperature Coefficient                             | I <sub>LOAD</sub> =1mA, Ta=-40°C~85°C                                                                                                               | —    | ±100 |      | ppm/°C |
| R <sub>DIS</sub>                                                     | VREG Discharge<br>Resistance                        | $ \begin{array}{l} SLP=1, \ V_{REG}=1V, \ I_{REG1} \ denotes \\ VREG \ input \ current \ at \ V_{REG}=1V, \\ R_{DIS}=V_{REG}/I_{REG1} \end{array} $ | _    | 85   | _    | Ω      |



| Symbol                   | Parameter                                                                                 | Test Condition                                                                 | Min.  | Тур. | Max.  | Unit |
|--------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|------|-------|------|
| Cell Balancer            |                                                                                           | l                                                                              |       |      |       |      |
| P                        | Charge Palance Resistance                                                                 | $V_{Bi}$ =4.5V (i=1~8), VBATn series resistors=0 $\Omega$                      | 55    | 85   | 115   | Ω    |
|                          | Charge Balance Resistance                                                                 | $V_{Bi}$ =2.5V (i=1~8), VBATn series resistors=0 $\Omega$                      | 80    | 120  | 160   | Ω    |
| Input/Output Log         | ic                                                                                        |                                                                                |       |      |       |      |
| VIL                      | DN0, DN1, DCN Input Logic<br>Low Voltage                                                  | _                                                                              | _     | _    | 0.8   | V    |
| VIH                      | DN0, DN1, DCN Input Logic<br>High Voltage                                                 | _                                                                              | 2.5   | _    | _     | V    |
| R <sub>PD</sub>          | DN0, DN1, DCN Pull-Down<br>Resistance                                                     | _                                                                              | _     | 430  | _     | kΩ   |
| High Voltage Wal         | ke-Up                                                                                     |                                                                                |       |      |       |      |
| Vwkth                    | HVWK Trigger Threshold<br>Voltage                                                         | —                                                                              | 4.5   | 5.5  | 6.5   | V    |
| t <sub>wkdb1</sub>       | HVWK Trigger Debounce<br>Time                                                             | —                                                                              | 1     | _    |       | ms   |
| Іwк                      | HVWK Input Current                                                                        | V <sub>HVWK</sub> =36V                                                         | —     | 50   | —     | μA   |
| Accumulative Ce          | II Voltage Monitor                                                                        |                                                                                |       |      |       |      |
| V <sub>Bi</sub>          | Cell Voltage                                                                              | i=1~8                                                                          | 2.5   | —    | 4.5   | V    |
| V <sub>B(MIN)</sub>      | Input Voltage between<br>VBATi and VBAT(i-1) for<br>Charge Balance and Voltage<br>Monitor | _                                                                              | 1.5   |      | _     | V    |
| I <sub>Bi(PWR)</sub>     | Cell Input Leakage Current<br>When V <sub>IN</sub> is Powered                             | V <sub>BATI</sub> =5V×i, EN_S=0, V <sub>IN</sub> =V <sub>BAT8</sub> ,<br>i=1~8 | -0.1  |      | 0.1   | μA   |
| I <sub>Bi(ACT)</sub>     | Cell Input Current When<br>Voltage Monitoring                                             | V <sub>Bi</sub> =4.5V, EN_S=1, V <sub>IN</sub> =36V, i=1~8                     | 19    | 24   | 35    | μA   |
| R                        | Divided Resistance                                                                        | —                                                                              | 140   | 200  | 260   | kΩ   |
|                          | VBAT8 Accumulative Cell                                                                   | V <sub>BAT8</sub> =20V~36V, B2~B0=0b111                                        | 0.995 | 1    | 1.005 | V/V  |
| Ratio8 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT8</sub> =20V~36V, B2~B0=0b111,<br>Ta=-40°C~85°C                      | 0.99  | 1    | 1.01  | V/V  |
|                          | VBAT7 Accumulative Cell                                                                   | V <sub>BAT7</sub> =17.5V~31.5V, B2~B0=0b110                                    | 0.995 | 1    | 1.005 | V/V  |
| Ratio7 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT7</sub> =17.5V~31.5V, B2~B0=0b110,<br>Ta=-40°C~85°C                  | 0.99  | 1    | 1.01  | V/V  |
|                          | VBAT6 Accumulative Cell                                                                   | V <sub>BAT6</sub> =15V~27V, B2~B0=0b101                                        | 0.995 | 1    | 1.005 | V/V  |
| Ratio6 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT6</sub> =15V~27V, B2~B0=0b101,<br>Ta=-40°C~85°C                      | 0.99  | 1    | 1.01  | V/V  |
|                          | VBAT5 Accumulative Cell                                                                   | V <sub>BAT5</sub> =12.5V~22.5V, B2~B0=0b100                                    | 0.995 | 1    | 1.005 | V/V  |
| Ratio5 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT5</sub> =12.5V~22.5V, B2~B0=0b100,<br>Ta=-40°C~85°C                  | 0.99  | 1    | 1.01  | V/V  |
|                          | VBAT4 Accumulative Cell                                                                   | V <sub>BAT4</sub> =10V~18V, B2~B0=0b011                                        | 0.995 | 1    | 1.005 | V/V  |
| Ratio4 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT4</sub> =10V~18V, B2~B0=0b011,<br>Ta=-40°C~85°C                      | 0.99  | 1    | 1.01  | V/V  |
|                          | VBAT3 Accumulative Cell                                                                   | V <sub>BAT3</sub> =7.5V~13.5V, B2~B0=0b010                                     | 0.995 | 1    | 1.005 | V/V  |
| Ratio3 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT3</sub> =7.5V~13.5V, B2~B0=0b010,<br>Ta=-40°C~85°C                   | 0.99  | 1    | 1.01  | V/V  |
|                          | VBAT2 Accumulative Cell                                                                   | V <sub>BAT2</sub> =5V~9V, B2~B0=0b001                                          | 0.995 | 1    | 1.005 | V/V  |
| Ratio2 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT2</sub> =5V~9V, B2~B0=0b001,<br>Ta=-40°C~85°C                        | 0.99  | 1    | 1.01  | V/V  |
|                          | VBAT1 Accumulative Cell                                                                   | V <sub>BAT1</sub> =2.5V~4.5V, B2~B0=0b000                                      | 0.995 | 1    | 1.005 | V/V  |
| Ratio1 <sub>(NORM)</sub> | Voltage Divided Ratio<br>(Normalized)                                                     | V <sub>BAT1</sub> =2.5V~4.5V, B2~B0=0b000,<br>Ta=-40°C~85°C                    | 0.99  | 1    | 1.01  | V/V  |



| Symbol                 | Parameter                                                          | Test Condition                                                                       |    | Тур.                     | Max. | Unit |
|------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|----|--------------------------|------|------|
| f <sub>MAX</sub>       | Voltage Monitor Channel to<br>Channel Scan Frequency               | C <sub>VOUT</sub> =2.2nF                                                             | _  | _                        | 100  | Hz   |
| Gate Drivers           |                                                                    |                                                                                      |    |                          |      |      |
|                        |                                                                    | V <sub>DN0</sub> =V <sub>DN1</sub> =5V, V <sub>IN</sub> >13V                         | 10 | 12                       | 16   | V    |
| N/                     | DGNx Clamp Voltage                                                 | V <sub>DN0</sub> =V <sub>DN1</sub> =5V, V <sub>IN</sub> ≤13V                         | _  | V <sub>IN</sub> -<br>0.7 | _    | V    |
| VZ                     |                                                                    | V <sub>DCN</sub> =5V, V <sub>IN</sub> >15V                                           | 10 | 12                       | 16   | V    |
|                        | Voltage                                                            | V <sub>DCN</sub> =5V, V <sub>IN</sub> ≤15V                                           | _  | V <sub>IN</sub> -<br>3.2 | _    | V    |
| t <sub>r0</sub>        | DGN0 Rising Time                                                   | C <sub>DGN0</sub> =15nF                                                              | _  | 0.5                      | 1.0  | μs   |
| t <sub>f0</sub>        | DGN0 Falling Time                                                  | C <sub>DGN0</sub> =15nF                                                              | —  | 0.5                      | 1.0  | μs   |
| t <sub>PD_HL0</sub>    | DGN0 Falling Propagation<br>Delay Time                             | C <sub>DGN0</sub> =15nF                                                              | _  | 0.5                      | 1.0  | μs   |
| t <sub>ммо</sub>       | DGN0 Delay Time Mismatch                                           | CDGN0=15nF, tMM0= tPD_LH0-tPD_HL0                                                    | —  | 0.5                      | 1.0  | μs   |
| ISOURCEO               | DGN0 Source Current                                                | $C_{DGN0}=1\mu F$ , peak current at DN0 rising edge (0 $\rightarrow$ 1)              | _  | 850                      | _    | mA   |
| Isinko                 | DGN0 Sink Current                                                  | $C_{DGN0}$ =1µF, peak current at DN0 falling edge (1→0)                              |    | 400                      | _    | mA   |
| f <sub>PWM0</sub>      | DGN0 PWM Frequency                                                 | C <sub>DGN0</sub> =15nF                                                              |    | _                        | 10   | kHz  |
| t <sub>r1</sub>        | DGN1 Rising Time                                                   | C <sub>DGN1</sub> =15nF                                                              |    | 1.2                      | 2.5  | μs   |
| t <sub>f1</sub>        | DGN1 Falling Time                                                  | C <sub>DGN1</sub> =15nF                                                              | —  | 1.2                      | 2.5  | μs   |
| t <sub>PD_HL1</sub>    | DGN1 Falling Propagation<br>Delay Time                             | C <sub>DGN1</sub> =15nF                                                              | _  | 1.2                      | 2.5  | μs   |
| t <sub>MM1</sub>       | DGN1 Delay Time Mismatch                                           | C <sub>DGN1</sub> =15nF, t <sub>MM1</sub> = t <sub>PD_LH1</sub> -t <sub>PD_HL1</sub> |    | 1.2                      | 2.5  | μs   |
| ISOURCE1               | DGN1 Source Current                                                | $C_{DGN1}=1\mu F$ , peak current at DN1 rising edge (0 $\rightarrow$ 1)              | _  | 350                      | _    | mA   |
| I <sub>SINK1</sub>     | DGN1 Sink Current                                                  | $C_{DGN1}=1\mu F$ , peak current at DN1 falling edge (1 $\rightarrow$ 0)             | _  | 180                      | _    | mA   |
| f <sub>PWM1</sub>      | DGN1 PWM Frequency                                                 | C <sub>DGN1</sub> =15nF                                                              |    |                          | 2    | kHz  |
| f <sub>CP</sub>        | Charge Pump Switching<br>Frequency                                 | External capacitor is 22nF between C1 and C2                                         | _  | 150                      | _    | kHz  |
| t <sub>rc</sub>        | Rising Time of The Voltage<br>Difference between DGCN<br>and DSCN  | C <sub>DGCN-DSCN</sub> =15nF, V <sub>IN</sub> =36V                                   | _  | 500                      | _    | μs   |
| t <sub>rc</sub>        | Falling Time of The Voltage<br>Difference between DGCN<br>and DSCN | C <sub>DGCN-DSCN</sub> =15nF, V <sub>IN</sub> =36V                                   |    | 5                        | 10   | μs   |
| R <sub>PL_SLP_G</sub>  | DGCN Pull-Low Resistance<br>in Sleep Mode                          | SLP=1, resistance between DGCN and GND                                               | _  | 830                      | _    | Ω    |
| R <sub>PL_SLP_S</sub>  | DSCN Pull-Low Resistance<br>in Sleep Mode                          | SLP=1, resistance between DSCN and GND                                               | _  | 830                      | _    | Ω    |
| R <sub>PL_SLP_GS</sub> | DGCN to DSCN Pull-Low<br>Resistance in Sleep Mode                  | SLP=1, resistance between DGCN and DSCN                                              | _  | 1.65                     | _    | kΩ   |
| R <sub>PL_STB_G</sub>  | DGCN Pull-Low Resistance<br>in Standby Mode                        | SLP=0, V <sub>DCN</sub> =0V, resistance<br>between DGCN and GND                      | _  | 50                       | _    | Ω    |
| R <sub>PL_STB_S</sub>  | DSCN Pull-Low Resistance<br>in Standby Mode                        | SLP=0, V <sub>DCN</sub> =0V, resistance<br>between DSCN and GND                      | _  | 50                       | _    | Ω    |
| R <sub>PL_STB_GS</sub> | DGCN to DSCN Pull-Low<br>Resistance in Standby Mode                | SLP=0, V <sub>DCN</sub> =0V, resistance<br>between DGCN and DSCN                     | _  | 90                       |      | Ω    |
| R <sub>PL_S_0</sub>    | DGN0 Pull-Low Resistance in Sleep and Standby Mode                 | V <sub>DN0</sub> =0V, SLP=0 or 1, resistance<br>between DGN0 and GND                 | _  | 5                        | _    | Ω    |
| R <sub>PL_S_1</sub>    | DGN1 Pull-Low Resistance<br>in Sleep and Standby Mode              | V <sub>DN1</sub> =0V, SLP=0 or 1, resistance between DGN1 and GND                    | _  | 8.5                      | _    | Ω    |



# I<sup>2</sup>C Interface Characteristics

## **D.C. Characteristics**

V<sub>IN</sub>=36V, Ta=25°C, unless otherwise specified

| Symbol  | Parameter                    | Test Condition | Min. | Тур. | Max. | Unit |
|---------|------------------------------|----------------|------|------|------|------|
| VIH_I2C | Input High Threshold Voltage | —              | 2.5  | —    | _    | V    |
| VIL_I2C | Input Low Threshold Voltage  |                |      |      | 0.8  | V    |

## A.C. Characteristics

V<sub>IN</sub>=36V, Ta=25°C, unless otherwise specified

| Symbol              | Parameter                  | Test Condition                                        | Min. | Тур. | Max. | Unit |
|---------------------|----------------------------|-------------------------------------------------------|------|------|------|------|
| f <sub>SCL</sub>    | Clock Frequency            |                                                       | _    | —    | 400  | kHz  |
| t <sub>BMF</sub>    | Bus Free Time              | Bus free time between STOP and START                  | 1.3  |      | _    | μs   |
| t <sub>HD:STA</sub> | START Hold Time            | After this period, the first clock pulse is generated | 0.6  | _    | _    | μs   |
| t <sub>LOW</sub>    | SCL Low Time               |                                                       | 1.3  |      | _    | μs   |
| t <sub>HIGH</sub>   | SCL High Time              |                                                       | 0.6  |      |      | μs   |
| t <sub>su:sta</sub> | START Setup Time           | Only relevant for Repeated START                      | 0.6  |      | —    | μs   |
| t <sub>HD:DAT</sub> | Data Hold Time             | _                                                     | 0    | —    | _    | ns   |
| t <sub>SU:DAT</sub> | Data Setup Time            | —                                                     | 100  | —    | —    | ns   |
| t <sub>R_I2C</sub>  | Rising Time                | SDA and SCL (Note)                                    |      |      | 0.3  | μs   |
| t <sub>F_I2C</sub>  | Falling Time               | SDA and SCL (Note)                                    |      |      | 0.3  | μs   |
| t <sub>su:sto</sub> | STOP Setup Time            |                                                       | 0.6  |      | _    | μs   |
| t <sub>AA</sub>     | Output Valid from Clock    |                                                       |      |      | 0.9  | μs   |
| t <sub>SP</sub>     | Input Filter Time Constant | SDA and SCL noise suppression time                    |      |      | 20   | ns   |
|                     | 12C Time Out               | Trimming selection 1 (default setting)                | _    | 32   | _    | ms   |
| LOUT                |                            | Trimming selection 2                                  |      | 64   |      | ms   |

Note: These parameters are periodically sampled but not 100% tested.





5.050

5.040

5.030

5.020 5.010

4.980

4.970

4.960

4.950

5

 $\widehat{\geq}$  5.000

 $V_{\text{REG}}$ 4.990

## **Typical Performance Characteristics**





-40°C

-25°C

90°C







VREG VS. VIN (VREG output current=1mA)

V<sub>IN</sub> (V)

10 15 20 25 30 35 40 45 50









Cell Voltage Divided Ratio vs. Ambient Temperature (V<sub>Bn</sub>=4.5V)



VREG vs. VREG Output Current (VIN=36V)



Cell Voltage Divided Ratio vs. Ambient Temperature (V<sub>Bn</sub>=2.5V)





Wafer Level VOUT Voltage Statistics Distribution  $(V_{\text{Bn}}\text{=}4.5\text{V})$ 



DGN0 Output Voltage vs. VIN



Voltage Difference between DGCN and DSCN vs. VIN



Wafer Level VOUT Voltage Statistics Distribution  $(V_{Bn}=2.5V)$ 



DGN1 Output Voltage vs. VIN



Balance Current vs. VBATn Series Resistance



# **Functional Description**

#### I<sup>2</sup>C Serial Interface

The device includes an I<sup>2</sup>C serial interface. The I<sup>2</sup>C bus is used for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line, SDA, and a serial clock line, SCL. Both lines are open-drain structure and two external pull-high resistors are required. When the bus is free, both lines are high. The output stages of devices connected to the bus must have an open-drain or open-collector to implement the Wired-AND function. Data transfer is initiated only when the bus is not busy.

#### **Data Validity**

The data on the SDA line must be stable during the clock high period. The high or low state of the data line can only change when the clock signal on the SCL line is low.



#### **START and STOP Conditions**

- A high to low transition on the SDA line while SCL is high defines a START (S).
- A low to high transition on the SDA line while SCL is high defines a STOP (P).
- START and STOP are always generated by the master. The bus is considered to be busy after the START. The bus is considered to be free again a certain time after the STOP.
- The bus remains busy if a Repeated START (Sr) is generated instead of a STOP. In the respect, the START and Repeated START are functionally identical.



#### **Byte Format**

Every byte placed on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.





#### Acknowledge

- Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level placed on the bus by the receiver, the master generates an extra acknowledge related clock pulse.
- A slave receiver which is addressed must generate an acknowledge (ACK) after the reception of each byte.
- The device that provides an acknowledge must pull down the SDA line during the acknowledge clock pulse so that it remains at a stable low level during the high period of this clock pulse.
- A master receiver must signal an end of data to the slave by generating a not-acknowledge (NACK) bit on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9<sup>th</sup> pulse so as to not acknowledge. The master will generate a STOP or a Repeated START.



#### I<sup>2</sup>C Time-out Control

In order to reduce the  $I^2C$  lockup problem due to reception of erroneous clock sources, a time-out function is provided. The  $I^2C$  time-out function starts timing for the specified  $I^2C$  time-out period ( $t_{OUT}$ ) when receiving START (S) from  $I^2C$  bus. The timer is reset by every falling edge of SCL and gets interrupted when receiving STOP (P). If the next falling edge of SCL or STOP (P) does not appear throughout the  $I^2C$  time-out period ( $t_{OUT}$ ), the SDA and SCL are set to their default states at the end of timing and meanwhile the registers remains unchanged. The  $I^2C$  time-out period can be specified to 32ms or 64ms by Trim-fuse selection.

#### Write Operation

An I<sup>2</sup>C write operation combines a START bit, a Slave address with a Write bit, a Register command byte, a Data byte and a STOP bit.



#### **Read Sequence**

The complete read mode consists of two stages. For the 1<sup>st</sup> stage, write the Register Address Byte to the device. For the 2<sup>nd</sup> stage, reads out the Data Byte from the device. The following diagram shows the complete read format.





#### **Slave Address**

- The slave address byte is the first byte received following the START condition from the master device. The first seven bits of the first byte make up the slave address. The eighth bit defines whether a read or write operation is to be performed. When the R/W bit is "1", then a read operation is selected. When the R/W bit is "0", it selects a write operation.
- The slave address of the device is "1011100". When an address byte is sent, the device compares the first seven bits after the START condition. If matched, the device outputs an Acknowledge on the SDA line.



#### I<sup>2</sup>C Register Map

The I<sup>2</sup>C register map is listed below.

| Address | Acronym | Access Type | Value after POR | Register Description      |
|---------|---------|-------------|-----------------|---------------------------|
| 00H     | REG00   | R/W         | 0000 0000       | Sleep and Voltage monitor |
| 01H     | REG01   | R/W         | 0000 0000       | Charge balance            |

#### Sleep and Voltage Monitor Register

| Bit  | 7   | 6      | 5    | 4        | 3        | 2   | 1   | 0   |
|------|-----|--------|------|----------|----------|-----|-----|-----|
| Name | SLP | EXT_WK | EN_S | Reserved | Reserved | B2  | B1  | B0  |
| R/W  | R/W | R/W    | R/W  | R/W      | R/W      | R/W | R/W | R/W |
| POR  | 0   | 0      | 0    | 0        | 0        | 0   | 0   | 0   |

#### Bit 7 SLP: Sleep mode enable control

0: Stay in normal operation

1: Start Sleep procedure

At the state of EXT\_WK="1", SLP is reset to "0" and keep the "0" state until EXT\_WK is cleared to "0". The Sleep command from I<sup>2</sup>C master is ignored during the state of EXT\_WK="1".

#### Bit 6 **EXT\_WK**: External wake-up event status

- 0: Denotes that external wake-up event does not exist
- 1: Denotes that external wake-up event exists or is written by MCU
- (1) When the voltage applied on HVWK pin remains higher than  $V_{WKTH}$  over 10µs, the EXT\_WK will be set to "1" and the SLP will be reset to "0". The EXT\_WK is cleared to "0" immediately when the voltage applied on HVWK pin is less than 1.5V.
- (2) The EXT\_WK can be written as "1" by MCU for the purpose of sending a wake-up signal. The EXT\_WK and SLP have to be written as "0" through the I<sup>2</sup>C interface after the EXT\_WK is set to "1" by MCU, otherwise the external wake-up event on HVWK pin cannot be recognized and the follow-up Sleep command will be failed.
- (3) Writing both EXT\_WK and SLP as "1" is not permitted for avoiding unpredictable status.
- (4) Reading EXT\_WK reveals the external wake-up even status of the HVWK pin only.
- Bit 5 EN\_S: Voltage monitor function enable control

0: Voltage monitor function is disabled,  $V_{OUT}=0V$ 

- 1: Voltage monitor function is enabled,  $V_{\text{OUT}} = V_{\text{BATn}}/n$
- Bit 4~3 Reserved bits



Bit 2~0 **B2~B0**: 8-to-1 analog multiplexer selection bits (MSB: B2, LSB: B0)

Control B2~B0 to select which accumulative cell voltage to be output to VOUT.

| EN_S | B2 | B1 | B0 | <b>V</b> out <b>(V)</b> |
|------|----|----|----|-------------------------|
| 0    | —  |    |    | 0                       |
| 1    | 0  | 0  | 0  | V <sub>BAT1</sub> × 1/1 |
| 1    | 0  | 0  | 1  | V <sub>BAT2</sub> × 1/2 |
| 1    | 0  | 1  | 0  | V <sub>BAT3</sub> × 1/3 |
| 1    | 0  | 1  | 1  | V <sub>BAT4</sub> × 1/4 |
| 1    | 1  | 0  | 0  | V <sub>BAT5</sub> × 1/5 |
| 1    | 1  | 0  | 1  | V <sub>BAT6</sub> × 1/6 |
| 1    | 1  | 1  | 0  | V <sub>BAT7</sub> × 1/7 |
| 1    | 1  | 1  | 1  | V <sub>BAT8</sub> × 1/8 |

## Charge Balance Register

| Bit     | 7                                                                                                                                                                        | 6                                       | 5            | 4             | 3          | 2                      | 1   | 0   |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|---------------|------------|------------------------|-----|-----|--|
| Name    | CB8                                                                                                                                                                      | CB7                                     | CB6          | CB5           | CB4        | CB3                    | CB2 | CB1 |  |
| R/W     | R/W                                                                                                                                                                      | R/W                                     | R/W          | R/W           | R/W        | R/W                    | R/W | R/W |  |
| POR     | 0                                                                                                                                                                        | 0                                       | 0            | 0             | 0          | 0                      | 0   | 0   |  |
| Bit 7 C | Bit 7 <b>CB8</b> : Enable control of the charge balance switch between VBAT8 and VBAT7<br>0: Balance switch OFF<br>1: Balance switch ON                                  |                                         |              |               |            |                        |     |     |  |
| Bit 6 C | C <b>B7</b> : Enable c<br>0: Balance sv<br>1: Balance sv                                                                                                                 | ontrol of the<br>witch OFF<br>witch ON  | charge balan | ace switch be | tween VBAT | 7 and VBAT             | 6   |     |  |
| Bit 5 C | C <b>B6</b> : Enable c<br>0: Balance sv<br>1: Balance sv                                                                                                                 | ontrol of the<br>witch OFF<br>witch ON  | charge balan | ice switch be | tween VBAT | 6 and VBAT             | 5   |     |  |
| Bit 4 ( | C <b>B5</b> : Enable c<br>0: Balance sv<br>1: Balance sv                                                                                                                 | ontrol of the<br>witch OFF<br>witch ON  | charge balan | ice switch be | tween VBAT | 75 and VBAT            | 4   |     |  |
| Bit 3 C | C <b>B4</b> : Enable c<br>0: Balance sv<br>1: Balance sv                                                                                                                 | ontrol of the<br>witch OFF<br>witch ON  | charge balan | ice switch be | tween VBAT | 4 and VBAT             | 3   |     |  |
| Bit 2 ( | C <b>B3</b> : Enable c<br>0: Balance sv<br>1: Balance sv                                                                                                                 | ontrol of the<br>witch OFF<br>witch ON  | charge balan | ice switch be | tween VBAT | <sup>73</sup> and VBAT | 2   |     |  |
| Bit 1 ( | 3it 1       CB2: Enable control of the charge balance switch between VBAT2 and VBAT1       0: Balance switch OFF         1: Balance switch ON       1: Balance switch ON |                                         |              |               |            |                        |     |     |  |
| Bit 0 C | C <b>B1</b> : Enable c<br>0: Balance sv<br>1: Balance sv                                                                                                                 | control of the<br>witch OFF<br>witch ON | charge balan | ice switch be | tween VBAT | 1 and GND              |     |     |  |



#### Accumulative Cell Voltage Monitor

The accumulative cell voltage monitor consists of high voltage switches, voltage dividers and an 8-to-1 analog multiplexer as shown in the following diagram. The high voltage switches are implemented using an anti-reverse current topology which provides isolation between the output voltage and the unselected VBATn. EN\_S, B2, B1 and B0 are four control bits from I<sup>2</sup>C interface and are used to control the P-type MOSFET S1~S8 only if EN\_S="1". The control truth table is shown below. This produces an accumulative cell voltage, VBATn, divided by "n" on VOUT. This accurate  $\pm 0.5\%$  voltage divided ratio is designed to minimize any mismatch errors.

| EN_S | B2 | B1 | B0 | <b>S</b> 8 | <b>S</b> 7 | S6 | S5 | S4 | S3 | S2 | S1 | <b>V</b> оит <b>(V)</b> |
|------|----|----|----|------------|------------|----|----|----|----|----|----|-------------------------|
| 0    | Х  | Х  | X  | 1          | 1          | 1  | 1  | 1  | 1  | 1  | 1  | 0                       |
| 1    | 0  | 0  | 0  | 1          | 1          | 1  | 1  | 1  | 1  | 1  | 0  | V <sub>BAT1</sub> × 1/1 |
| 1    | 0  | 0  | 1  | 1          | 1          | 1  | 1  | 1  | 1  | 0  | 1  | V <sub>BAT2</sub> × 1/2 |
| 1    | 0  | 1  | 0  | 1          | 1          | 1  | 1  | 1  | 0  | 1  | 1  | V <sub>BAT3</sub> × 1/3 |
| 1    | 0  | 1  | 1  | 1          | 1          | 1  | 1  | 0  | 1  | 1  | 1  | V <sub>BAT4</sub> × 1/4 |
| 1    | 1  | 0  | 0  | 1          | 1          | 1  | 0  | 1  | 1  | 1  | 1  | V <sub>BAT5</sub> × 1/5 |
| 1    | 1  | 0  | 1  | 1          | 1          | 0  | 1  | 1  | 1  | 1  | 1  | V <sub>BAT6</sub> × 1/6 |
| 1    | 1  | 1  | 0  | 1          | 0          | 1  | 1  | 1  | 1  | 1  | 1  | V <sub>BAT7</sub> × 1/7 |
| 1    | 1  | 1  | 1  | 0          | 1          | 1  | 1  | 1  | 1  | 1  | 1  | V <sub>BAT8</sub> × 1/8 |



Accumulative Cell Voltage Monitor Truth Table

Accumulative Cell Voltage Monitor Functional Block



#### **Charge Balance**

Multiple channels of charge balance switch can be turned on by host MCU via I<sup>2</sup>C interface. The register address of charge balance function is 01H, and the Bit  $7 \sim$  Bit 0 of Data byte correspond to the charge balance switch of each channel from CB8 to CB1, respectively. More than one switch can be turned on at the same time, but side-by-side cell balancing switches are recommended not to be turned on simultaneously to ensure equal balance current between each channel. After receiving a turn on command, the charge balance switch remains turned on until it is turned off by a "0" data or getting a command of SLP bit="1". The typical charge balance current is 10mA when the battery cell voltage is 4.2V and the external series resistance is  $100\Omega$ , and the balance current can be adjusted by series resistors R1~R8. Note that for the reason of keeping voltage monitor accuracy, do not proceed voltage monitor while charge balance is activated.



| CB1 | CB2 | CB3 | CB4 | CB5 | CB6 | CB7 | CB8 | Balance Switch ON/OFF |
|-----|-----|-----|-----|-----|-----|-----|-----|-----------------------|
| 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | SW1 ON, others OFF    |
| 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | SW2 ON, others OFF    |
| 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | SW3 ON, others OFF    |
| 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | SW4 ON, others OFF    |
| 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | SW5 ON, others OFF    |
| 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | SW6 ON, others OFF    |
| 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | SW7 ON, others OFF    |
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | SW8 ON, others OFF    |

Note: More than one switch can be turned on in the same time.



#### **Discharge N-type MOSFET Gate Driver**

Two discharge NMOS gate drivers DGN0 and DGN1 are fabricated in the chip as discharge switch controllers. The output voltage of DGN0 and DGN1 are both clamped at 12V. A 430k $\Omega$  pull-down resistor is integrated in the discharge gate control input pins DN0 and DN1. The gate driver capability of DGN0 is better than that of DGN1, therefore it is recommended to apply DGN0 on primary loading path and DGN1 on secondary loading path. While operating in the Standby or Sleep mode, the DGN0 and DGN1 are pulled down by 5 $\Omega$  and 8.5 $\Omega$  respectively. The control logic and output status of DGN0 and DGN1 in each state are listed in the following table.

| SLP                                                 | DN0                                   | V(DGN0, GND)                      | Note                                                    |  |
|-----------------------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------------------------|--|
| 0                                                   | Floating                              | 0                                 | Dullad low to CND by 50                                 |  |
| 0                                                   | 0                                     | 0                                 | Fulled low to GND by 512.                               |  |
| 0                                                   | 1                                     | Vz                                | Normal operation.                                       |  |
| 1                                                   | Floating                              | 0                                 | Bulled low to CND by 50                                 |  |
| 1                                                   | 0                                     | 0                                 |                                                         |  |
|                                                     |                                       |                                   |                                                         |  |
| SLP                                                 | DN1                                   | V(DGN1, GND)                      | Note                                                    |  |
| <b>SLP</b><br>0                                     | DN1<br>Floating                       | <b>V(DGN1, GND)</b><br>0          | Note                                                    |  |
| <b>SLP</b> 0 0                                      | DN1<br>Floating<br>0                  | <b>V(DGN1, GND)</b><br>0<br>0     | Note<br>Pulled low to GND by 8.5Ω.                      |  |
| <b>SLP</b> 0 0 0 0                                  | DN1<br>Floating<br>0<br>1             | V(DGN1, GND)<br>0<br>0<br>Vz      | Note<br>Pulled low to GND by 8.5Ω.<br>Normal operation. |  |
| SLP           0           0           0           1 | DN1<br>Floating<br>0<br>1<br>Floating | V(DGN1, GND)<br>0<br>0<br>Vz<br>0 | Note<br>Pulled low to GND by 8.5Ω.<br>Normal operation. |  |

#### Charge N-type MOSFET Gate Driver

A charge NMOS gate driver DGCN is provided as a charge switch controller. A charge pump circuit is fabricated to provide 12V between the gate and source node of external charge NMOS. A  $430k\Omega$  pull-down resistor is integrated in the control input pin DCN. The control logic of DCN and output status of DGCN and DSCN in each state are listed in the following table.

| SLP | DCN      | V(DGCN, DSCN) | Note                                                         |
|-----|----------|---------------|--------------------------------------------------------------|
| 0   | Floating | 0             | DGCN and DSCN pulled low to GND by 50 $\Omega$ respectively. |
| 0   | 0        | 0             | DGCN pulled low to DSCN by $90\Omega$ .                      |
| 0   | 1        | Vz            | Normal operation.                                            |
| 1   | Floating | 0             | DGCN and DSCN pulled low to GND by $830\Omega$ respectively. |
| 1   | 0        | 0             | DGCN pulled low to DSCN by $1.65k\Omega$ .                   |

#### Sleep Mode

EXT\_WK represents the external wake-up event status. EXT\_WK="0" means that high voltage applied on the HVWK pin is not detected, on the contrary EXT\_WK="1" denotes that wake-up event is happening such as charger connecting or power switch on. When receiving a sleep command from I<sup>2</sup>C master at EXT\_WK="0", the SLP bit is set to "1" and the chip enters the Sleep mode. During the Sleep mode, all outputs are shut down and the capacitor of VREG is discharged through internal discharge resistor. The pre-regulator and high voltage wake-up circuit are the only blocks that are still working in the Sleep mode and operate with an ultra-low standby current of  $0.1 \mu A$  (typical).

When EXT\_WK="1", the SLP will be cleared to "0" and the sleep command from  $I^2C$  master will be abandoned until EXT\_WK is cleared to "0".

| EXT_WK Status | SLP Status                                                      |  |
|---------------|-----------------------------------------------------------------|--|
| 0             | According to I <sup>2</sup> C master command<br>or POR default. |  |
| 1             | 0                                                               |  |



#### Wake up from Sleep Mode

The HVWK pin can be used for detecting charger plugged-in, switch turned on, or load connected events. When the device is under the Sleep mode, if the HVWK pin is triggered by a pulse with requiring at least 5.5V voltage and 1ms width, the output of VREG will resume and the whole chip is ready for normal operation. The reference timing diagram of entering the Sleep mode and waked up is listed below.





## **Application Information**

#### **Charge NMOS Switch Configuration**

Due to the internal pull down MOS switch between DSCN and GND, the recommended Charge NMOS switch configuration is back-to-back or single NMOS in series with a diode in order to avoid the DSCN pin draining current from battery.



#### **VIN, VREG, VOUT Capacitors**

The VIN input capacitor C1 and VREG output capacitor C2 are  $4.7\mu$ F for better input noise filtering and output load transient behavior. A recommended 2.2nF noise filtering capacitor should be connected between VOUT and GND terminals. Note that higher noise capacitance value of C3 will lower the acceptable scan frequency.



#### **VIN Filter Recommendation**

The input capacitor C1 for VIN is used for lowering the input voltage ripple while the battery is supplying a highly inductive load in PWM mode. The recommanded value of VIN input capacitor C1 is  $4.7\mu$ F. The input resistor R9 of VIN is able to reduce the inrush current during battery assembly, and also it shares the heat on chip while VREG outputs a large current in normal operation mode. The recommanded value for VIN input resistor R9 differs from different battery cell number applications. The recommended resistance values of VIN input resistor R9 with different battery cell numbers and the corresponding VREG maximum output current are listed in the following table.

| Battery Cell<br>Number | VIN Recommended<br>Resistor (R9) | VREG Maximum<br>Output Current |
|------------------------|----------------------------------|--------------------------------|
| 3S                     | 15Ω                              | 50mA                           |
| 4S                     | 43Ω                              | 50mA                           |
| 5S                     | 110Ω                             | 40mA                           |
| 6S                     | 220Ω                             | 35mA                           |
| 7S                     | 330Ω                             | 30mA                           |
| 8S                     | 430Ω                             | 30mA                           |



It is necessary to select an appropriate package for VIN filter resistor (R9) in order to prevent it being damaged from overheated. The maximum power on R9 is easily calculated by:

$$P_{R9.MAX} = (I_{REG})^2 \times R9$$

where  $I_{REG}$  is the maximum VREG output current, R9 is the resistance value of VIN filter resistor (R9)

It is recommended to choose the resistor package that its maximum rated power is greater than twice the  $P_{R9,MAX}$ .

#### VBATn Protection and Balance Resistor Selection

The VBATn series resistors R1~R8 not only suppress inrush and noise spikes applied to I/O pins, they affect charge balance current as well. Larger resistance of R1~R8 provide better protection to VBATn and other I/O pins, but they lower the charge balance current instead. The charge balance current of each channel is configured by internal balance resistance and external series resistors. Because the balance current of Cell 1 flows out through the GND pin, the balance current of Cell 1 is greater than that of other cells. Considering inrush spike protection to I/O pins and noise reduction of voltage monitor, the recommended typical values of resistor R1~R8 are 100Ω, and the charge balancing current is 11mA while the voltage of battery cell is 4.2V. If larger balancing current is needed, the recommended minimum values of the R1~R8 resistors are 30Ω which



provide 25mA while the voltage of battery cell is 4.2V. To ensure the internal balance circuit works properly, the minimum battery cell voltage to start the balance function is 3V. The recommended VBATn series resistances and their related charge balancing current are listed in the following table.

| Resistance<br>of R1~R8 | Typical Balancing<br>Current (@ V <sub>Bn</sub> =4.2V) | Note                                |
|------------------------|--------------------------------------------------------|-------------------------------------|
| 30Ω                    | 25mA                                                   | Minimum value of<br>resistors R1~R8 |
| 51Ω                    | 18mA                                                   |                                     |
| 100Ω                   | 11mA                                                   | —                                   |
| 150Ω                   | 8.4mA                                                  |                                     |





# Charger and Switch Status Detection for MCU

The High-voltage wake-up (HVWK) function is capable of detecting charger plugged in or load switched on. The recommended HVWK external circuit is listed below. When a charger is plugged in or load switch is on, the voltage of HVWK is triggered to be larger than  $V_{WKTH}$  and set EXT\_WK bit as "1". After the charger or switch is removed or turned off, the EXT\_WK bit is reset to "0". An MCU can acquire the charger or switch status by reading the EXT\_WK bit through the I<sup>2</sup>C interface. Therefore, by the means of reading the EXT\_WK bit status, additional charger or switch detection circuit for MCU are not necessary. The circuit below is a typical application for high-voltage wake-up function, charger plugged-in detection and charger voltage detection.





#### Cell Voltage Monitor Scan Frequency

The VOUT pin outputs accumulative cell voltage to external MCU ADC for monitoring battery voltage status. The timing diagrams of cell voltage monitor scanning for 5S and 8S applications are shown below. The VOUT pin starts to charge the VOUT capacitor from 0V to the selected cell voltage while the EN\_S is set to "1". In order to ensure external MCU A/D conversion accuracy, the A/D conversion procedure has to wait before the VOUT capacitor is fully charged. The suggested minimum waiting time is 5ms after the EN\_S is set to "1" or cell voltage monitor channel switched. It is recommended that the maximum scan frequency for accumulative cell voltage monitoring is less than 100Hz and that EN S="0" when the voltage scanning procedure has finished for power saving purposes.





#### Acquiring Cell Voltage Monitor Output with External MCU ADC

The accumulative battery cell voltage is output through the VOUT pin to an external MCU for monitoring the battery voltage status. As shown in the following block diagram, the external MCU ADC samples the  $V_{OUT}$  voltage via an ADC sampling capacitor ( $C_{SAMPLE}$ ), which is typically 5pF to 50pF. Due to the charge sharing effect, the voltage on the VOUT capacitor ( $C_{OUT}$ ) drops while the ADC samples that with initially zero-voltage  $C_{SAMPLE}$ . A voltage-drop occurs on the  $C_{OUT}$  after the first ADC sampling, and then it needs a recharge time to recharge the  $C_{OUT}$ . Referring to the following timing diagram, a pre-charge procedure of  $C_{SAMPLE}$  during the VOUT recharge time is recommended to minimize the charge sharing effect by the means of performing several sampling without clearing the charges in the  $C_{SAMPLE}$ .





For the best conversion accuracy, the A/D conversion has to wait before  $C_{OUT}$  recharge is complete. The recommended minimum waiting time from the first sampling to A/D conversion beginning is listed in the following table.

| MCU ADC Sampling Capacitance (pF) | Recommended Minimum A/D Waiting Time (µs) |
|-----------------------------------|-------------------------------------------|
| 5                                 | 370                                       |
| 10                                | 660                                       |
| 20                                | 950                                       |
| 30                                | 1120                                      |
| 40                                | 1240                                      |
| 50                                | 1340                                      |

**ADC Recommended Waiting Time** 

#### Voltage Spike Suppression Method



Simplified Typical BMS System Discharge Path Diagram

Most battery-management systems would monitor charge and discharge current to prevent overcurrent damage. Due to the parasitic inductance on conducting wires and PCB layout connections, large voltage spike may occurs while the external MOS rapidly shuts down the charge or discharge current, and this spike may damage the device VBATn or VIN pins. Any voltage spike on the VBATn and VIN pins should not over the limitation in Absolute Maximum Ratings, which is 48V. Four recommended measures listed below would help to reduce the voltage spike.

- 1. Make the external conducting wire and PCB layout connections as short as possible where large charge or discharge current flows.
- 2. Adjust the slew rate of MOS switch with the gate resistor  $R_G$ . Turn off the MOS with slower slew rate for lower voltage spike, and the tradeoff is a slower protection response time.
- 3. Add a capacitor ( $C_{DS}$ ) between drain and source node of the MOS switch as shown above. The recommended capacitance is  $0.1\mu$ F to  $0.22\mu$ F.
- 4. Add a Zener diode between the highest voltage potential node of battery cells and GND.



#### PCB Layout Considerations

The following component placement and layout guidelines are suggested for the sake of noise reduction and voltage spike suppression.

- 1. The VIN filter capacitor must be close to VIN pin.
- 2. The VREG regulation and noise filter capacitor must be close to VREG pin.
- 3. The tracks where large current would flow through should be wide and short to suppress the voltage spike at the time when external NMOS switch change its ON/OFF state.
- 4. Minimize VBA©T1~VBAT8 signal trace length to reduce parasitic inductance and capacitance and improve measure accuracy.

# **Thermal Considerations**

The maximum power dissipation depends upon the thermal resistance of the IC package, PCB layout, rate of surrounding airflow and difference between the junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - Ta) / \theta_{JA} (W)$$

where  $T_{J(MAX)}$  is the maximum junction temperature, Ta is the ambient temperature and  $\theta_{JA}$  is the junction-to-ambient thermal resistance of IC package.

For maximum operating rating conditions, the maximum junction temperature is 125°C. However, it is recommended that the maximum junction temperature does not exceed 125°C during normal operation to maintain high reliability. The de-rating curve of the maximum power dissipation is show below:

 $P_{D(MAX)} = (125^{\circ}C-25^{\circ}C) / (40^{\circ}C/W) = 2.5W$ 

For a fixed  $T_{J(MAX)}$  of 125°C, the maximum power dissipation depends upon the operating ambient temperature and the package's thermal resistance,  $\theta_{JA}$ . The de-rating curve below shows the effect of rising ambient temperature on the maximum recommended power dissipation.





# **Application Circuits**

## HVWK Connected to Standalone Switch and Charger Input (5S)







### HVWK Connected to Standalone Switch and Charger Input (8S)

Charger plugged-in and charger voltage detection

- Note: 1. The resistance of R1~R8 can be adjusted to fit the desired balance current. The recommended resistance of R1~R8 are listed in the "VBATn Protection and Balancing Resistor Selection" section.
  - 2. If less than 8 serial batteries are used, connect the unused VBATn to the highest voltage potential. Do not leave any VBATn pin floating in order to prevent damage to the device.
  - 3. The VIN pin should not be floating to prevent abnormal operations.





#### HVWK Connected to Integrated Switch Control Unit and Charger Input

Charger plugged-in and charger voltage detection

- Note: 1. The resistance of R1~R8 can be adjusted to fit the desired balance current. The recommended resistance of R1~R8 are listed in the "VBATn Protection and Balancing Resistor Selection" section.
  - 2. If less than 8 serial batteries are used, connect the unused VBATn to the highest voltage potential. Do not leave any VBATn pin floating in order to prevent damage to the device.
  - 3. The VIN pin should not be floating to prevent abnormal operations.



# Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/</u> <u>Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information



## 24-pin SSOP-EP (150mil) Outline Dimensions







| Querrahad | Dimensions in inch |           |       |  |  |  |
|-----------|--------------------|-----------|-------|--|--|--|
| зутро     | Min.               | Nom.      | Max.  |  |  |  |
| A         | _                  | 0.236 BSC | _     |  |  |  |
| В         | —                  | 0.154 BSC | —     |  |  |  |
| С         | 0.008              | —         | 0.012 |  |  |  |
| C'        | —                  | 0.341 BSC | —     |  |  |  |
| D         | —                  | —         | 0.069 |  |  |  |
| D1        | 0.119              | —         | 0.146 |  |  |  |
| E         | —                  | 0.025 BSC | —     |  |  |  |
| E2        | 0.081              | —         | 0.102 |  |  |  |
| F         | 0.000              | _         | 0.004 |  |  |  |
| G         | 0.016              | _         | 0.050 |  |  |  |
| Н         | 0.004              |           | 0.010 |  |  |  |
| α         | 0°                 | —         | 8°    |  |  |  |

| Symbol | Dimensions mm |           |      |  |  |  |
|--------|---------------|-----------|------|--|--|--|
| Symbol | Min.          | Nom.      | Max. |  |  |  |
| A      |               | 6.00 BSC  |      |  |  |  |
| В      | —             | 3.90 BSC  | —    |  |  |  |
| С      | 0.20          | —         | 0.30 |  |  |  |
| C'     | —             | 8.66 BSC  | _    |  |  |  |
| D      | —             | —         | 1.75 |  |  |  |
| D1     | 3.02          | —         | 3.71 |  |  |  |
| E      | —             | 0.635 BSC | _    |  |  |  |
| E2     | 2.06          | —         | 2.59 |  |  |  |
| F      | 0.00          | —         | 0.10 |  |  |  |
| G      | 0.41          |           | 1.27 |  |  |  |
| Н      | 0.10          | _         | 0.25 |  |  |  |
| α      | 0°            | _         | 8°   |  |  |  |



## SAW Type 24-pin QFN (4mm×4mm×0.75mm) Outline Dimensions



| Symbol | Dimensions in inch |           |       |  |  |  |
|--------|--------------------|-----------|-------|--|--|--|
| Symbol | Min.               | Nom.      | Max.  |  |  |  |
| A      | 0.028              | 0.030     | 0.031 |  |  |  |
| A1     | 0.000              | 0.001     | 0.002 |  |  |  |
| A3     | _                  | 0.008 REF | —     |  |  |  |
| b      | 0.007              | 0.010     | 0.012 |  |  |  |
| D      | _                  | 0.157 BSC | —     |  |  |  |
| E      | _                  | 0.157 BSC | —     |  |  |  |
| е      | —                  | 0.020 BSC | —     |  |  |  |
| D2     | 0.100              | —         | 0.108 |  |  |  |
| E2     | 0.100              |           | 0.108 |  |  |  |
| L      | 0.014              | 0.016     | 0.018 |  |  |  |

| Symbol | Dimensions in mm |           |      |  |  |  |
|--------|------------------|-----------|------|--|--|--|
| Symbol | Min.             | Nom.      | Max. |  |  |  |
| A      | 0.70             | 0.75      | 0.80 |  |  |  |
| A1     | 0.00             | 0.02      | 0.05 |  |  |  |
| A3     | —                | 0.203 REF | —    |  |  |  |
| b      | 0.18             | 0.25      | 0.30 |  |  |  |
| D      | _                | 4.00 BSC  | —    |  |  |  |
| E      | —                | 4.00 BSC  | _    |  |  |  |
| e      | —                | 0.50 BSC  | —    |  |  |  |
| D2     | 2.55             | _         | 2.75 |  |  |  |
| E2     | 2.55             | —         | 2.75 |  |  |  |
| L      | 0.35             | 0.40      | 0.45 |  |  |  |



Copyright<sup>©</sup> 2023 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any third-party's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEKs' products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEKs' products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.