

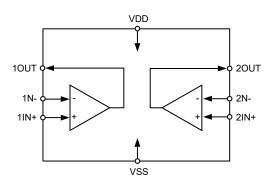
Features

- Low Voltage Operation
- Low Quiescent Current
- Unity Gain Stable
- Rail to Rail input and output operation
- Dual amplifiers per package
- The package types: 8-pin SOP

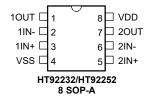
Applications

- Household Appliances
- Portable Equipment
- Photodiode Amplifiers
- Analog Active Filters
- Battery Powered Systems

General Description


The HT92232/HT92252 family of general purpose operational amplifiers offer the benefits of wide bandwidth along with low quiescent current. Both devices operate with a supply voltage down to 2.1V, and deliver full rail to rail input and output voltage range operation. Both have a -40°C to 85°C operating temperature range but differ in their bandwidth and quiescent current characteristics. The HT92232 device provides a 300kHz bandwidth with a 16 μ A (typ.) per amplifier quiescent current while the HT92252 provides 1MHz bandwidth with a 40 μ A (typ.) per amplifier quiescent current.

With their single supply operation and low power consumption features coupled with their low cost these operational amplifiers are suitable for use in a wide range of applications. With regard to packaging, both devices are supplied in 8-pin SOP package formats.


Selection Table

Device	Amplifiers	Operating Voltage	Gain Bandwidth (typ.)	Quiescent Current (typ.)	Slew Rate (typ.)	Packages
HT92232	2	2.1-5.5	300kHz	16µA	0.15 V/µs	8SOP
HT92252	2	2.1-5.5	1MHz	40µA	0.5 V/µs	8SOP

Block Diagram

Pin Assignment

Pin Description

Pin Name	Description		
10UT	Output – OPA1		
1IN-	verting Input – OPA1		
1IN+	Non-inverting Input – OPA1		
VSS	Negative Power Supply		
2IN+	Non-inverting Input – OPA2		
2IN-	Inverting Input – OPA2		
20UT	Output – OPA2		
VDD	Positive Power Supply		

Absolute Maximum Ratings

Supply Voltage	Vss-0.3V to 6.0V
Input Voltage	$V_{\text{SS}}\text{-}0.3V$ to $V_{\text{DD}}\text{+}0.3V$
I _{OL} Total	80mA
IOH Total	80mA

Storage Temperature50°C to 125°C
Operating Temperature40°C to 85°C
Total Power Dissipation 500mW

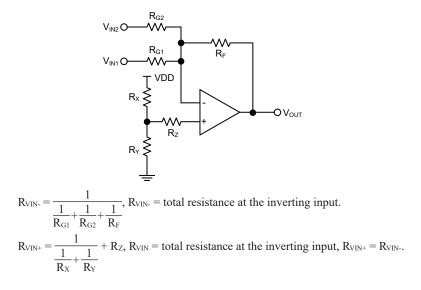
Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

Unless otherwise indicated, $V_{CM}=V_{DD}/2$, $V_L=V_{DD}/2$, $R_L=100k\Omega$ to V_L

HT92232

Question	Demonster	Test Conditions		Min	True	Maria	Units
Symbol	Parameter	VDD	Conditions	Min.	Тур.	Max.	Units
V _{DD}	Supply Voltage	—	Ta=25°C	2.1	—	5.5	V
VDD	Supply Voltage	—	Ta= -40°C~85°C	2.5	_	5.5	V
Vos	Input Offset Voltage	—	Ta=25°C	—	—	5	mV
ΔV _{os} /ΔTa	Drift with Temperature	—	Ta=25°C	_	3	6	µV/°C
los	Input Offset Current	—	Ta=25°C	_	20	120	pА
lΒ	Input Bias Current	_	Ta=25°C	_	10	60	pА
VCML	Input Common Mode Range Low	_	_	_	_	Vss-0.1	V
V _{CMH}	Input Common Mode Range High	—	_	V _{DD} +0.1	_	—	V
Vol	Minimum Output Voltage Swing		R _L =10kΩ to V _L , G=+2, 0.5V input overdrive	Vss	_	V _{ss} +50	mV
V _{он}	Maximum Output Voltage Swing		$R_L=10k\Omega$ to V_L , G=+2, 0.5V input overdrive	V _{DD} -50	_	V _{DD}	mV
		2.5~5.5V	Vout=0.3V~VDD-0.3V	88	_	_	dB
Aol	Large Signal DC Open Loop Gain		V _{OUT} =35mV~V _{DD} -35mV	70	—	—	ив
GBW	Gain Bandwidth Product	_	_	220	300	_	kHz
PM	Phase Margin	_	_	46	65	_	degrees
	Common Mode Rejection Ratio		V _{CM} = -0.1V~V _{DD} -1.2V Ta=25°C	70	85	_	40
CMRR		_	V _{CM} = -0.1V~V _{DD} -1.2V Ta= -40°C~85°C	65	80		dB

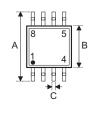

Symbol	Parameter	Test Conditions		Min.	Turn	Max	Units
Symbol	Farameter	VDD	Conditions	IVIIII.	Тур.	Max.	Units
		2.5~5.5V	V _{CM} = V _{SS} , Ta=25°C	70	85		
PSRR	Power Supply Rejection Ratio	2.5~5.5V	V _{CM} =V _{SS} Ta= -40°C~85°C	60	83	_	dB
	Quiescent Current/Amplifier	_	louт=0, Ta=25°С	_	16	22	μA
lα			l _{о∪т} =0, Ta= -40°C~85°C	_	30	35	
SR	Slew Rate	—	C _L =60pF	0.1	0.15	_	V/µs
ISOURCE	Output Short Circuit Source Current	5V	$R_L=10\Omega$ to V_L	15	_		mA
Isink	Output Short Circuit Sink Current	5V	$R_L=10\Omega$ to V_L	15	—		mA
Eni	Input Noise Voltage	_	Ta=25°C, 0.1Hz to 10Hz		6	8	μV _{P-P}
eni	Input Noise Voltage Density	_	Ta=25°C, 1kHz	_	50	67	nV/√Hz

HT92252

0	Banamatan	Test Conditions			_		
Symbol	Parameter	VDD	Conditions	Min.	Тур.	Max.	Units
V _{DD}	Supply Voltage	—	Ta=25°C	2.1	—	5.5	V
Vdd	Supply Voltage	_	Ta= -40°C~85°C	2.5	_	5.5	V
Vos	Input Offset Voltage		Ta=25°C		_	5	mV
ΔV _{os} /ΔTa	Drift with Temperature	_	Ta=25°C	_	3	6	µV/°C
los	Input Offset Current	_	Ta=25°C	_	20	120	pА
IB	Input Bias Current	_	Ta=25°C	_	10	60	pА
VCML	Input Common Mode Range Low	_	_	_		Vss-0.1	V
V _{CMH}	Input Common Mode Range High	_	_	V _{DD} +0.1	_		V
Vol	Minimum Output Voltage Swing	_	R∟=10kΩ to V∟, G=+2, 0.5V input overdrive	Vss	_	V _{ss} +40	mV
V _{OH}	Maximum Output Voltage Swing		R _L =10kΩ to V _L , G=+2, 0.5V input overdrive	V _{DD} -40		V _{DD}	mV
•	Large Signal DC Open Loop Gain	2.5~5.5V	Vout=0.3V~Vdd-0.3V	88			dB
Aol			V _{OUT} =35mV~V _{DD} -35mV	70			
GBW	Gain Bandwidth Product	_	_	730	1000		kHz
PM	Phase Margin	_	_	46	65		degrees
CMDD	Common Mode Rejection Ratio		V _{CM} = -0.1V~V _{DD} -1.2V Ta=25°C	65	80		JD
CMRR		_	V _{CM} = -0.1V~V _{DD} -1.2V Ta= -40°C~85°C	60	78		dB
		2.5~5.5V	V _{см} =V _{ss,} Ta=25°С	70	80		
PSRR	Power Supply Rejection Ratio	2.5~5.5V	V _{см} =V _{ss,} Та= -40°С~85°С	60	80		dB
			lо∪т=0, Та=25°С	_	40	50	<u> </u>
lα	Quiescent Current/Amplifier	_	lо∪т=0, Та= -40°C~85°С	_	40	78	μA
SR	Slew Rate	_	CL=60pF	0.35	0.5		V/µs
ISOURCE	Output Short Circuit Source Current	5V	$R_L=10\Omega$ to V_L	15	_		mA
I _{SINK}	Output Short Circuit Sink Current	5V	$R_L=10\Omega$ to V_L	15	_		mA
Eni	Input Noise Voltage	_	Ta=25°C, 0.1Hz to 10Hz	_	6	8	μV _{P-P}
eni	Input Noise Voltage Density	_	Ta=25°C, 1kHz	_	28	37.3	nV/√Hz

Application Circuits

Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>package</u> information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

8-pin SOP (150mil) Outline Dimensions

Symbol	Dimensions in inch						
Symbol	Min.	Nom.	Max.				
A	_	0.236 BSC	_				
В	—	0.154 BSC	—				
С	0.012	—	0.020				
C'	—	0.193 BSC	—				
D	—	—	0.069				
E	—	0.050 BSC	_				
F	0.004	—	0.010				
G	0.016	—	0.050				
Н	0.004	—	0.010				
α	0°	_	8°				

Symbol	Dimensions in mm						
Symbol	Min.	Nom.	Max.				
A	_	6.00 BSC	_				
В	—	3.90 BSC	—				
С	C 0.31		0.51				
C'	—	4.90 BSC	—				
D	_	_	1.75				
E	—	1.27 BSC	_				
F	0.10	_	0.25				
G	0.40	_	1.27				
Н	0.10	_	0.25				
α	0°	—	8°				

Copyright[©] 2021 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.