
CAN BUS A/D Flash MCU

HT66F3370H

Revision: V1.00 Date: December 27, 2019

Rev. 1.00 2 December 27, 2019 Rev. 1.00 3 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Table of Contents
Features .. 7

CPU Features ..7
Peripheral Features ..7

General Description ... 8
Block Diagram .. 9
Pin Assignment .. 10
Pin Description .. 11
Absolute Maximum Ratings .. 17
D.C. Characteristics ... 17

Operating Voltage Characteristics ..17
Standby Current Characteristics ..18
Operating Current Characteristics ..19

A.C. Characteristics ... 20
High Speed Internal Oscillator – HIRC – Frequency Accuracy ..20
Low Speed Internal Oscillator Characteristics – LIRC ...21
Low Speed Crystal Oscillator Characteristics – LXT ..21
Operating Frequency Characteristic Curves ..21

Input/Output (without Multi-power) Characteristics 22
Input/Output (with Multi-power) Characteristics .. 23
Memory Characteristics .. 24
LVD/LVR Electrical Characteristics .. 25
A/D Converter Electrical Characteristics ... 26
Reference Voltage Characteristics ... 27
Comparator Characteristics ... 28
Software Controlled LCD Driver Electrical Characteristics 29
CAN Module Electrical Characteristics ... 29

D.C Characteristics ..29
A.C Characteristics ..29

Power-on Reset Characteristics ... 30
System Architecture .. 30

Clocking and Pipelining ..30
Program Counter ..31
Stack ..32
Arithmetic and Logic Unit – ALU ..32

Flash Program Memory ... 33
Structure ...33
Special Vectors ..33
Look-up Table ..33

Rev. 1.00 2 December 27, 2019 Rev. 1.00 3 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Table Program Example ...34
In Circuit Programming – ICP ..35
On-Chip Debug Support – OCDS ..36
In Application Programming – IAP ...36

Data Memory .. 52
Structure ...52
Data Memory Addressing ...53
General Purpose Data Memory ...53
Special Purpose Data Memory ..53

Special Function Register Description .. 55
Indirect Addressing Registers – IAR0, IAR1, IAR2 ..55
Memory Pointers – MP0, MP1L, MP1H, MP2L, MP2H ..55
Program Memory Bank Pointer – PBP ...57
Accumulator – ACC ...57
Program Counter Low Register – PCL ..57
Look-up Table Registers – TBLP, TBHP, TBLH ...57
Status Register – STATUS ..58

EEPROM Data Memory .. 60
EEPROM Data Memory Structure ...60
EEPROM Registers ...60
Reading Data from the EEPROM ..62
Writing Data to the EEPROM ...62
Write Protection ..62
EEPROM Interrupt ...62
Programming Considerations ...63

Oscillators .. 64
Oscillator Overview ..64
System Clock Configurations ..64
External Crystal/Ceramic Oscillator – HXT ..65
Internal RC Oscillator – HIRC ...66
External 32.768kHz Crystal Oscillator – LXT ...66
Internal 32kHz Oscillator – LIRC ..67

Operating Modes and System Clocks ... 67
System Clocks ...67
System Operation Modes ...68
Control Registers ...69
Operating Mode Switching ...71
Standby Current Considerations ..75
Wake-up ...75

Watchdog Timer ... 76
Watchdog Timer Clock Source ...76
Watchdog Timer Control Register ..76
Watchdog Timer Operation ..77

Rev. 1.00 4 December 27, 2019 Rev. 1.00 5 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Reset and Initialisation ... 78
Reset Functions ...78
Reset Initial Conditions ...82

Input/Output Ports ... 89
Pull-high Resistors ...90
Port A Wake-up ..90
I/O Port Control Registers ..90
I/O Port Source Current Control ...91
I/O Port Power Source Control ...93
Pin-shared Functions ...94
I/O Pin Structures ...102
READ PORT Function..102
Programming Considerations ..104

Timer Modules – TM .. 104
Introduction ..104
TM Operation ...105
TM Clock Source ..105
TM Interrupts ..105
TM External Pins ..105
Programming Considerations ...106

Standard Type TM – STM .. 107
Standard TM Operation ..107
Standard Type TM Register Description ..108
Standard Type TM Operation Modes ... 111

Periodic Type TM – PTM .. 121
Periodic TM Operation ...121
Periodic Type TM Register Description ..122
Periodic Type TM Operation Modes ...126

Analog to Digital Converter .. 135
A/D Overview ...135
Registers Descriptions ...136
A/D Converter Reference Voltage ..139
A/D Converter Input Signals ...139
A/D Operation ..140
Conversion Rate and Timing Diagram ...141
Summary of A/D Conversion Steps ..142
Programming Considerations ...143
A/D Transfer Function ..143
A/D Programming Examples ..143

Serial Interface Module – SIM ... 145
SPI Interface ..145
I2C Interface ...151

Rev. 1.00 4 December 27, 2019 Rev. 1.00 5 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Serial Interface – SPIA ... 160
SPIA Interface Operation ...160
SPIA Registers ...161
SPIA Communication ...163
SPIA Bus Enable/Disable ...165
SPIA Operation ..165
Error Detection ...167

UART Interface ... 167
UART External Pins ...168
UART Data Transfer Scheme...168
UART Status and Control Registers...169
Baud Rate Generator ...174
UART Setup and Control..175
UART Transmitter...176
UART Receiver ..177
Managing Receiver Errors ...179
UART Interrupt Structure..180
UART Power Down and Wake-up ..181

CAN Bus ... 182
CAN Bus Overview ..182
CAN Bus Pins ..183
CAN Bus Registers ..184
Message RAM and FIFO Buffer Configuration ...205
CAN Module Operating Modes ..207
CAN Application ...210
CAN Bus Interrupt Structure ..218

Comparators .. 220
Comparator Operation ...220
Comparator Registers ..220
Input Offset Calibration ..222
Comparator Interrupt ..222
Programming Considerations ...222

Software Controlled LCD Driver ... 222
LCD Operation ...222
LCD Bias Current Control ..223

16-bit Multiplication Division Unit – MDU .. 224
MDU Registers ...224
MDU Operation ..225

Cyclic Redundancy Check – CRC .. 227
CRC Registers ...227
CRC Operation ...228

Rev. 1.00 6 December 27, 2019 Rev. 1.00 7 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Interrupts .. 230
Interrupt Registers ..230
Interrupt Operation ...239
External Interrupts ..241
Comparator Interrupts ..241
Multi-function Interrupts ..241
A/D Converter Interrupt ..242
Time Base Interrupts ..242
Timer Module Interrupts ...244
LVD Interrupt ..244
EEPROM Interrupt ...244
Serial Interface Module Interrupt ..244
SPIA Interface Interrupt ..245
UART Interrupts ...245
CAN Interrupts ...245
Interrupt Wake-up Function ..246
Programming Considerations ...247

Low Voltage Detector – LVD ... 248
LVD Register ..248
LVD Operation ..249

Application Circuits ... 249
For CAN Application Reference ...249

Instruction Set .. 250
Introduction ..250
Instruction Timing ...250
Moving and Transferring Data ..250
Arithmetic Operations ...250
Logical and Rotate Operation ..251
Branches and Control Transfer ..251
Bit Operations ..251
Table Read Operations ..251
Other Operations ..251

Instruction Set Summary .. 252
Table Conventions ..252
Extended Instruction Set ..254

Instruction Definition ... 256
Extended Instruction Definition ..265

Package Information ... 272
48-pin LQFP (7mm×7mm) Outline Dimensions ...273
64-pin LQFP (7mm×7mm) Outline Dimensions ...274

Rev. 1.00 6 December 27, 2019 Rev. 1.00 7 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Features

CPU Features
• Operating Voltage

 ♦ fSYS=8MHz: 2.2V~5.5V
 ♦ fSYS=12MHz: 2.7V~5.5V
 ♦ fSYS=16MHz: 3.3V~5.5V

• Up to 0.25μs instruction cycle with 16MHz system clock at VDD=5V

• Power down and wake-up functions to reduce power consumption

• Oscillators
 ♦ External High Speed Crystal – HXT
 ♦ Internal High Speed 8/12/16MHz RC Oscillator – HIRC
 ♦ External Low Speed 32.768kHz Crystal – LXT
 ♦ Internal Low Speed 32kHz RC Oscillator– LIRC

• Fully integrated internal oscillators require no external components

• Multi-mode operation: FAST, SLOW, IDLE and SLEEP

• All instructions executed in 1~3 instruction cycles

• Table read instructions

• 115 powerful instructions

• 16-level subroutine nesting

• Bit manipulation instruction

Peripheral Features
• Flash Program Memory: 32K×16

• RAM Data Memory: 3072×8

• Ture EEPROM Memory: 1024×8

• In Application Programming function – IAP

• Watchdog Timer function

• Up to 58 bidirectional I/O lines

• Programmable I/O source current

• Software controlled 4-SCOM lines LCD driver with 1/2 bias

• Four external interrupt lines shared with I/O pins

• Multiple Timer Modules for time measurement, input capture, compare match output, PWM
output function or single pulse output function

• Serial interfaces module – SPI or I2C

• Single serial SPI interface – SPIA

• Multiple UART Interfaces for full duplex asynchronous communication

• Single CAN Bus interface

Rev. 1.00 8 December 27, 2019 Rev. 1.00 9 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• CAN Module licensed from Bosch
 ♦ Conforms to ISO11898-1, 2003
 ♦ 32 Message Objects
 ♦ Each Message Object has its own identifier mask
 ♦ Programmable FIFO mode - concatenation of Message Objects
 ♦ Maskable interrupt
 ♦ Programmable loop-back mode for self-test operation
 ♦ Support CAN Bus SOF (Start of Frame)

• Dual comparator functions

• Dual Time-Base functions for generation of fixed time interrupt signals

• Up to 16 external channels 12-bit resolution A/D converter with internal reference voltage VR

• Integrated 16-bit Multiplier/Divider Unit – MDU

• Integrated 16-bit Cyclic Redundancy Check function – CRC

• Low voltage reset function – LVR

• Low voltage detect function – LVD

• Package types: 48/64-pin LQFP

• The OCDS EV, named HT66V3370H, AC/DC characteristics are guaranteed only at a temperature
of 25˚C

General Description
The HT66F3370H is a Flash Memory CAN Bus A/D 8-bit high performance RISC architecture
microcontroller. Offering users the convenience of Flash Memory multi-programming features, the
device also includes a wide range of functions and features. Other memory includes an area of RAM
Data Memory as well as an area of true EEPROM memory for storage of non-volatile data such as
serial numbers, calibration data etc.

Analog features include a multi-channel 12-bit A/D converter and dual comparator functions.
Multiple and extremely flexible Timer Modules provide timing, pulse generation and PWM
generation functions. Communication with the outside world includes a fully integrated CAN Bus,
as well as SPI, I2C and UART interface functions, popular interfaces which provide designers with
a means of easy communication with external peripheral hardware. Protective features such as an
internal Watchdog Timer, Low Voltage Reset and Low Voltage Detector coupled with excellent
noise immunity and ESD protection ensure that reliable operation is maintained in hostile electrical
environments.

A full choice of external and internal low and high oscillator functions are provided including
fully integrated system oscillators which require no external components for their implementation.
The ability to operate and switch dynamically between a range of operating modes using different
clock sources gives users the ability to optimise microcontroller operation and minimise power
consumption.

The inclusion of flexible I/O programming features, Time-Base functions along with many other
features ensure that the device will find excellent use in a wide range of applications however the
inclusion of a CAN bus especially opens up a wide range of automotive related applications.

Rev. 1.00 8 December 27, 2019 Rev. 1.00 9 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Block Diagram

Interrupt
Controller

Bu
s

M
U

X

Reset
Circuit

Stack
16-level

RAM
3072 × 8

ROM
32K × 16

EEPROM
1024 × 8

Watchdog
Timer

HIRC
8/12/16MHz

LIRC
32kHz

Pin-Shared
Function

INT0~
INT3

Pin-Shared
With Port A&D&C

Time
Bases

HXT

LXT

Pin-Shared
With Port B&F

XT1

XT2

OSC1

OSC2

Pin-Shared
With Port B

: Pin-Shared Node

VDD

RES

VDD

VSS VSS

VDDIO

LVD/LVR

SIM

SPIA

CAN Bus

I/O

Timers

: SIM including SPI & I2C

IAP

SCOM

Port A Driver PA0~PA7

PB0~PB7Port B Driver

PC0~PC7Port C Driver

PD0~PD6Port D Driver

PE0~PE4Port E Driver

PF0~PF7Port F Driver

PG0~PG7Port G Driver

PH0~PH5Port H Driver

AVDD AVDD

AVSS AVSS

12-bit
ADC

Analog to Digital
Converter

M
U
X

VREF

AN0~ AN15

Pin-Shared With
Port C&D&H

AVDD

PGA
VREFI

1.2V

AVDD
AVDD/2
AVDD/4
VR
VR/2
VR/4

Pin-Shared With
Port B&D&F

MDU

CRC

+

-

+

-

CMP0

CMP1

C0+

C0-

C0X

C1+

C1-

C1X

VDDIO

Pin-Shared
With Port E

Comparators

Analog Peripherals

Digital Peripherals

SYSCLK

HT8 MCU Core

Clock System

Rev. 1.00 10 December 27, 2019 Rev. 1.00 11 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pin Assignment

PB2/CANRX
PB1/CANTX

PB4/C1X/TX2
PB3/PTP2I/PTP2/RX2

PB7/STCK1/OSC2
PB6/STP1I/STP1/OSC1

PA5/INT3/SCK/SCL

PA
3/IN

T1/SD
O

PA
4/IN

T2/SD
I/S

D
A

PA
0/IC

P
D

A
/O

C
D

SD
A

PA
6/IN

T0/R
X

0
PA

7/IN
T1/TX0

PE
1/S

TP
0I/S

TP
0/SD

O
A

PE
2/P

TC
K1/SD

IA
PE

3/P
TP

1I/P
TP

1/SC
K

A
PE

4/V
D

D
IO

PF1/SD
O

/S
C

O
M

1
PF2/SDI/SDA/SCOM2
PF3/SCK/SCL/SCOM3
AVDD
PF4/PTCK0/XT2
PF5/PTP0I/PTP0/XT1
AVSS

PC2/PTP0I/PTP0/AN2
PC3/PTCK0/AN3
PC4/PTP1I/PTP1/AN4

PC
6/S

TP
0I/S

TP
0/AN

6

P
D

0/IN
T2/S

TP
1I/S

TP
1/AN

8

PF7/STP2I/STP2/TX1/C
0+

PF6/S
TC

K2/R
X

1/C
0-

PA2/ICPCK/OCDSCK

PC1/C0X/VREF/AN1

PC5/PTCK1/AN5

VDD
VSS

PE
0/S

TC
K0/SC

S
A

PF0/SC
S

/SC
O

M
0

PC0/VREFI/AN0

P
C

7/IN
T3/S

TC
K

0/AN
7

P
D

1/STC
K

1/R
X

1/AN
9

P
D

2/PTP2I/PTP2/TX1/AN
10

P
D

3/P
TC

K2/AN
11

P
D

4/P
TP3I/PTP3/R

X
0/C

1-
P

D
5/PTC

K3/TX0/C
1+

PD
6/S

TP
2I/S

TP
2/C

1X

PB
0/S

TC
K

2/C
0X

PA1/INT0/SCS

PB5/RES
HT66F3370H/HT66V3370H

48 LQFP-A

1
2
3
4
5
6
7
8
9
10
11
12

13 14 15 16 17 18 19 20 21 22 23 24
25
26
27
28
29
30
31
32
33
34
35
36

45464748 3738394041424344

PB2/CANRX
PB1/CANTX

PB4/C1X/TX2
PB3/PTP2I/PTP2/RX2

PB7/STCK1/OSC2
PB6/STP1I/STP1/OSC1

PA5/INT3/SCK/SCL

P
A3/IN

T1/S
D

O
P

A4/IN
T2/S

D
I/SD

A
P

A0/IC
P

D
A/O

C
D

S
D

A
P

A6/IN
T0/R

X0
P

A7/IN
T1/TX

0

P
E1/STP0I/S

TP
0/S

D
O

A
P

E2/PTC
K

1/S
D

IA
P

E3/PTP1I/P
TP

1/S
C

KA
P

E4/VD
D

IO

P
F1/S

D
O

/SC
O

M
1

PF2/SDI/SDA/SCOM2
PF3/SCK/SCL/SCOM3

AVDD
PF4/PTCK0/XT2
PF5/PTP0I/PTP0/XT1
AVSS

PC2/PTP0I/PTP0/AN2
PC3/PTCK0/AN3
PC4/PTP1I/PTP1/AN4

P
C

6/S
TP

0I/S
TP

0/AN
6

P
D

0/IN
T2/S

TP
1I/S

TP
1/AN

8

PF7/STP2I/STP2/TX1/C
0+

PF6/S
TC

K2/R
X

1/C
0-

PA2/ICPCK/OCDSCK

PC1/C0X/VREF/AN1

PC5/PTCK1/AN5

VDD
VSS

P
E0/STC

K
0/S

C
SA

P
F0/S

C
S/S

C
O

M
0

PC0/VREFI/AN0

P
C

7/IN
T3/S

TC
K

0/AN
7

P
D

1/STC
K

1/R
X

1/AN
9

P
D

2/PTP2I/PTP2/TX1/AN
10

P
D

3/P
TC

K2/AN
11

P
D

4/PTP3I/PTP3/R
X

0/C
1-

P
D

5/PTC
K3/TX0/C

1+
P

D
6/S

TP
2I/S

TP
2/C

1X

PB
0/S

TC
K

2/C
0X

PA1/INT0/SCS

PG4/PTCK3
PG5/PTP3I/PTP3/PTCK2

PG6
PG7

V
D

D
V

SS
P

H
0

P
H

1

PG0/RX2
PG1/TX2
PG2
PG3

P
H

2/AN
12

P
H

3/AN
13

P
H

4/AN
14

P
H

5/AN
15

PB5/RES

1
2
3
4
5
6
7
8
9
10
11
12
13

20 21 22 23 24 25 26 27 28

6061626364

29 30 31 32

5253545556575859

14
15
16

43
44
45
46
47
48

36
37
38
39
40
41
42

33
34
35

17 18 19

495051

HT66F3370H/HT66V3370H
64 LQFP-A

Note: 1. If the pin-shared pin functions have multiple outputs, the desired pin-shared function is determined by the
corresponding software control bits.

2. The OCDSDA and OCDSCK pins are supplied as OCDS dedicated pins and as such only available for the
HT66V3370H device which is the OCDS EV chip for the HT66F3370H device.

3. For the less pin count package type there will be unbounded pins which should be properly configured
to avoid unwanted power consumption resulting from floating input conditions. Refer to the “Standby
Current Considerations” and “Input/Output Ports” sections.

Rev. 1.00 10 December 27, 2019 Rev. 1.00 11 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pin Description
With the exception of the power pins and some relavant transformer control pins, all pins on the
device can be referenced by their Port names, e.g. PA0, PA1 etc, which refer to the digital I/O function
of the pins. However these Port pins are also shared with other function such as the Analog to Digital
Converter, Timer Module pins etc. The function of each pin is listed in the following table, however
the details behind how each pin is configured is contained in other sections of the datasheet. Note that
where more than one package type exists the table will reflect the situation for the larger package type.

Pad Name Function OPT I/T O/T Description

PA0/ICPDA/OCDSDA
PA0 PAWU

PAPU ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

ICPDA — ST CMOS ICP Data/Address pin
OCDSDA — ST CMOS OCDS Data/Address pin, for EV chip only.

PA1/INT0/SCS

PA1
PAWU
PAPU
PAS0

ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

INT0

PAS0
INTEG
INTC0
IFS2

ST — External Interrupt 0

SCS PAS0
IFS2 ST CMOS SPI slave select

PA2/ICPCK/OCDSCK
PA2 PAWU

PAPU ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

ICPCK — ST CMOS ICP Clock pin
OCDSCK — ST — OCDS Clock pin, for EV chip only.

PA3/INT1/SDO

PA3
PAWU
PAPU
PAS0

ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

INT1

PAS0
INTEG
INTC0
IFS2

ST — External Interrupt 1

SDO PAS0 — CMOS SPI data output

PA4/INT2/SDI/SDA

PA4
PAWU
PAPU
PAS1

ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

INT2

PAS1
INTEG
INTC3
IFS2

ST — External Interrupt 2

SDI PAS1
IFS2 ST — SPI data input

SDA PAS1
IFS2 ST NMOS I2C data line

PA5/INT3/SCK/SCL

PA5
PAWU
PAPU
PAS1

ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

INT3

PAS1
INTEG
INTC3
IFS2

ST — External Interrupt 3

SCK PAS1
IFS2 ST CMOS SPI serial clock

SCL PAS1
IFS2 ST NMOS I2C clock line

Rev. 1.00 12 December 27, 2019 Rev. 1.00 13 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pad Name Function OPT I/T O/T Description

PA6/INT0/RX0

PA6
PAWU
PAPU
PAS1

ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

INT0

PAS1
INTEG
INTC0
IFS2

ST — External Interrupt 0

RX0 PAS1
IFS3 ST — UART0 RX serial data input

PA7/INT1/TX0

PA7
PAWU
PAPU
PAS1

ST CMOS General purpose I/O. Register enabled pull-up
and wake-up.

INT1

PAS1
INTEG
INTC0
IFS2

ST — External Interrupt 1

TX0 PAS1 — CMOS UART0 TX serial data output

PB0/STCK2/C0X

PB0 PBPU
PBS0 ST CMOS General purpose I/O. Register enabled pull-up.

STCK2 PBS0
IFS0 ST — STM2 clock input

C0X PBS0 — CMOS Comparator 0 output

PB1/CANTX
PB1 PBPU

PBS0 ST CMOS General purpose I/O. Register enabled pull-up.

CANTX PBS0 — CMOS CAN TX data output

PB2/CANRX
PB2 PBPU

PBS0 ST CMOS General purpose I/O. Register enabled pull-up.

CANRX PBS0 ST — CAN RX data input

PB3/PTP2I/PTP2/RX2

PB3 PBPU
PBS0 ST CMOS General purpose I/O. Register enabled pull-up.

PTP2I PBS0
IFS1 ST — PTM2 capture input

PTP2 PBS0 — CMOS PTM2 output

RX2 PBS0
IFS3 ST — UART2 RX serial data input

PB4/C1X/TX2
PB4 PBPU

PBS1 ST CMOS General purpose I/O. Register enabled pull-up.

C1X PBS1 — CMOS Comparator 1 output
TX2 PBS1 — CMOS UART2 TX serial data output

PB5/RES
PB5 PBPU

RSTC ST CMOS General purpose I/O. Register enabled pull-up.

RES RSTC ST — External reset input

PB6/STP1I/STP1/OSC1

PB6 PBPU
PBS1 ST CMOS General purpose I/O. Register enabled pull-up.

STP1I PBS1
IFS1 ST — STM1 capture input

STP1 PBS1 — CMOS STM1 output
OSC1 PBS1 HXT — HXT oscillator pin

PB7/STCK1/OSC2

PB7 PBPU
PBS1 ST CMOS General purpose I/O. Register enabled pull-up.

STCK1 PBS1
IFS0 ST — STM1 clock input

OSC2 PBS1 — HXT HXT oscillator pin

Rev. 1.00 12 December 27, 2019 Rev. 1.00 13 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pad Name Function OPT I/T O/T Description

PC0/VREFI/AN0
PC0 PCPU

PCS0 ST CMOS General purpose I/O. Register enabled pull-up.

VREFI PCS0 AN — A/D Converter OPA input
AN0 PCS0 AN — A/D Converter analog input

PC1/C0X/VREF/AN1

PC1 PCPU
PCS0 ST CMOS General purpose I/O. Register enabled pull-up.

C0X PCS0 — CMOS Comparator 0 output
VREF PCS0 AN — A/D Converter reference voltage input
AN1 PCS0 AN — A/D Converter analog input

PC2/PTP0I/PTP0/AN2

PC2 PCPU
PCS0 ST CMOS General purpose I/O. Register enabled pull-up.

PTP0I PCS0
IFS1 ST — PTM0 capture input

PTP0 PCS0 — CMOS PTM0 output
AN2 PCS0 AN — A/D Converter analog input

PC3/PTCK0/AN3

PC3 PCPU
PCS0 ST CMOS General purpose I/O. Register enabled pull-up.

PTCK0 PCS0
IFS0 ST — PTM0 clock input

AN3 PCS0 AN — A/D Converter analog input

PC4/PTP1I/PTP1/AN4

PC4 PCPU
PCS1 ST CMOS General purpose I/O. Register enabled pull-up.

PTP1I PCS1
IFS1 ST — PTM1 capture input

PTP1 PCS1 — CMOS PTM1 output
AN4 PCS1 AN — A/D Converter analog input

PC5/PTCK1/AN5

PC5 PCPU
PCS1 ST CMOS General purpose I/O. Register enabled pull-up.

PTCK1 PCS1
IFS0 ST — PTM1 clock input

AN5 PCS1 AN — A/D Converter analog input

PC6/STP0I/STP0/AN6

PC6 PCPU
PCS1 ST CMOS General purpose I/O. Register enabled pull-up.

STP0I PCS1
IFS1 ST — STM0 capture input

STP0 PCS1 — CMOS STM0 output
AN6 PCS1 AN — A/D Converter analog input

PC7/INT3/STCK0/AN7

PC7 PCPU
PCS1 ST CMOS General purpose I/O. Register enabled pull-up.

INT3

PCS1
INTEG
INTC3
IFS2

ST — External Interrupt 3

STCK0 PCS1
IFS0 ST — STM0 clock input

AN7 PCS1 AN — A/D Converter analog input

Rev. 1.00 14 December 27, 2019 Rev. 1.00 15 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pad Name Function OPT I/T O/T Description

PD0/INT2/STP1I/STP1/
AN8

PD0 PDPU
PDS0 ST CMOS General purpose I/O. Register enabled pull-up.

INT2

PDS0
INTEG
INTC3
IFS2

ST — External Interrupt 2

STP1I PDS0
IFS1 ST — STM1 capture input

STP1 PDS0 — CMOS STM1 output
AN8 PDS0 AN — A/D Converter analog input

PD1/STCK1/RX1/AN9

PD1 PDPU
PDS0 ST CMOS General purpose I/O. Register enabled pull-up.

STCK1 PDS0
IFS0 ST — STM1 clock input

RX1 PDS0
IFS3 ST — UART1 RX serial data input

AN9 PDS0 AN — A/D Converter analog input

PD2/PTP2I/PTP2/TX1/
AN10

PD2 PDPU
PDS0 ST CMOS General purpose I/O. Register enabled pull-up.

PTP2I PDS0
IFS1 ST — PTM2 capture input

PTP2 PDS0 — CMOS PTM2 output
TX1 PDS0 — CMOS UART1 TX serial data output

AN10 PDS0 AN — A/D Converter analog input

PD3/PTCK2/AN11

PD3 PDPU
PDS0 ST CMOS General purpose I/O. Register enabled pull-up.

PTCK2 PDS0
IFS0 ST — PTM2 clock input

AN11 PDS0 AN — A/D Converter analog input

PD4/PTP3I/PTP3/RX0/C1-

PD4 PDPU
PDS1 ST CMOS General purpose I/O. Register enabled pull-up.

PTP3I PDS1
IFS1 ST — PTM3 capture input

PTP3 PDS1 — CMOS PTM3 output

RX0 PDS1
IFS3 ST — UART0 RX serial data input

C1- PDS1 AN — Comparator 1 negative input

PD5/PTCK3/TX0/C1+

PD5 PDPU
PDS1 ST CMOS General purpose I/O. Register enabled pull-up.

PTCK3 PDS1
IFS0 ST — PTM3 clock input

TX0 PDS1 — CMOS UART0 TX serial data output
C1+ PDS1 AN — Comparator 1 positive input

PD6/STP2I/STP2/
C1X

PD6 PDPU
PDS1 ST CMOS General purpose I/O. Register enabled pull-up.

STP2I PDS1
IFS1 ST — STM2 capture input

STP2 PDS1 — CMOS STM2 output
C1X PDS1 — CMOS Comparator 1 output

PE0/STCK0/SCSA

PE0 PEPU
PES0 ST CMOS General purpose I/O. Register enabled pull-up.

STCK0 PES0
IFS0 ST — STM0 clock input

SCSA PES0 ST CMOS SPIA slave select

Rev. 1.00 14 December 27, 2019 Rev. 1.00 15 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pad Name Function OPT I/T O/T Description

PE1/STP0I/STP0/SDOA

PE1 PEPU
PES0 ST CMOS General purpose I/O. Register enabled pull-up.

STP0I PES0
IFS1 ST — STM0 capture input

STP0 PES0 — CMOS STM0 output
SDOA PES0 — CMOS SPIA data output

PE2/PTCK1/SDIA

PE2 PEPU
PES0 ST CMOS General purpose I/O. Register enabled pull-up.

PTCK1 PES0
IFS0 ST — PTM1 clock input

SDIA PES0 ST — SPIA data input

PE3/PTP1I/PTP1/SCKA

PE3 PEPU
PES0 ST CMOS General purpose I/O. Register enabled pull-up.

PTP1I PES0
IFS1 ST — PTM1 capture input

PTP1 PES0 — CMOS PTM1 output
SCKA PES0 ST CMOS SPIA serial clock

PE4/VDDIO
PE4 PEPU

PES1 ST CMOS General purpose I/O. Register enabled pull-up.

VDDIO PES1
PMPS PWR — PE0~PE3 pin power for level shift

PF0/SCS/SCOM0

PF0 PFPU
PFS0 ST CMOS General purpose I/O. Register enabled pull-up.

SCS PFS0
IFS2 ST CMOS SPI slave select

SCOM0 PFS0 — CMOS Software LCD COM output

PF1/SDO/SCOM1
PF1 PFPU

PFS0 ST CMOS General purpose I/O. Register enabled pull-up.

SDO PFS0 — CMOS SPI data output
SCOM1 PFS0 — CMOS Software LCD COM output

PF2/SDI/SDA/SCOM2

PF2 PFPU
PFS0 ST CMOS General purpose I/O. Register enabled pull-up.

SDI PFS0
IFS2 ST — SPI data input

SDA PFS0
IFS2 ST NMOS I2C data line

SCOM2 PFS0 — CMOS Software LCD COM output

PF3/SCK/SCL/SCOM3

PF3 PFPU
PFS0 ST CMOS General purpose I/O. Register enabled pull-up.

SCK PFS0
IFS2 ST CMOS SPI serial clock

SCL PFS0
IFS2 ST NMOS I2C clock line

SCOM3 PFS0 — CMOS Software LCD COM output

PF4/PTCK0/XT2

PF4 PFPU
PFS1 ST CMOS General purpose I/O. Register enabled pull-up.

PTCK0 PFS1
IFS0 ST — PTM0 clock input

XT2 PFS1 — LXT LXT oscillator pin

Rev. 1.00 16 December 27, 2019 Rev. 1.00 17 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pad Name Function OPT I/T O/T Description

PF5/PTP0I/PTP0/XT1

PF5 PFPU
PFS1 ST CMOS General purpose I/O. Register enabled pull-up.

PTP0I PFS1
IFS1 ST — PTM0 capture input

PTP0 PFS1 — CMOS PTM0 output
XT1 PFS1 LXT — LXT oscillator pin

PF6/STCK2/RX1/C0-

PF6 PFPU
PFS1 ST CMOS General purpose I/O. Register enabled pull-up.

STCK2 PFS1
IFS0 ST — STM2 clock input

RX1 PFS1
IFS3 ST — UART1 RX serial data input

C0- PFS1 AN — Comparator 0 negative input

PF7/STP2I/STP2/TX1/C0+

PF7 PFPU
PFS1 ST CMOS General purpose I/O. Register enabled pull-up.

STP2I PFS1
IFS1 ST — STM2 capture input

STP2 PFS1 — CMOS STM2 output
TX1 PFS1 — CMOS UART1 TX serial data output
C0+ PFS1 AN — Comparator 0 positive input

PG0/RX2
PG0 PGPU

PGS0 ST CMOS General purpose I/O. Register enabled pull-up.

RX2 PGS0
IFS3 ST — UART2 RX serial data input

PG1/TX2
PG1 PGPU

PGS0 ST CMOS General purpose I/O. Register enabled pull-up.

TX2 PGS0 — CMOS UART2 TX serial data output
PG2~PG3 PGn PGPU ST CMOS General purpose I/O. Register enabled pull-up.

PG4/PTCK3
PG4 PGPU ST CMOS General purpose I/O. Register enabled pull-up.

PTCK3 IFS0 ST — PTM3 clock input

PG5/PTP3I/PTP3/PTCK2

PG5 PGPU
PGS1 ST CMOS General purpose I/O. Register enabled pull-up.

PTP3I PGS1
IFS1 ST — PTM3 capture input

PTP3 PGS1 — CMOS PTM3 output

PTCK2 PGS1
IFS0 ST — PTM2 clock input

PG6 PG6 PGPU ST CMOS General purpose I/O. Register enabled pull-up.
PG7 PG7 PGPU ST CMOS General purpose I/O. Register enabled pull-up.

PH0~PH1 PHn PHPU
PHS0 ST CMOS General purpose I/O. Register enabled pull-up.

PH2/AN12
PH2 PHPU

PHS0 ST CMOS General purpose I/O. Register enabled pull-up.

AN12 PHS0 AN — A/D Converter analog input

PH3/AN13
PH3 PHPU

PHS0 ST CMOS General purpose I/O. Register enabled pull-up.

AN13 PHS0 AN — A/D Converter analog input

PH4/AN14
PH4 PHPU

PHS1 ST CMOS General purpose I/O. Register enabled pull-up.

AN14 PHS1 AN — A/D Converter analog input

PH5/AN15
PH5 PHPU

PHS1 ST CMOS General purpose I/O. Register enabled pull-up.

AN15 PHS1 AN — A/D Converter analog input

Rev. 1.00 16 December 27, 2019 Rev. 1.00 17 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pad Name Function OPT I/T O/T Description
VDD VDD — PWR — Positive power supply
VSS VSS — PWR — Negative power supply, ground.
AVDD AVDD — PWR — Analog positive power supply
AVSS AVSS — PWR — Analog negative power supply, ground.

Legend: I/T: Input type O/T: Output type
 OPT: Optional by register option ST: Schmitt Trigger input
 CMOS: CMOS output NMOS: NMOS output
 HXT: High frequency crystal oscillator LXT: Low frequency crystal oscillator
 AN: Analog signal PWR: Power

Absolute Maximum Ratings
Supply Voltage ...VSS-0.3V to VSS+6.0V

Input Voltage ... VSS-0.3V to VDD+0.3V

Storage Temperature ... -50°C to 125°C

Operating Temperature ... -40°C to 125°C

IOL Total ... 80mA

IOH Total .. -80mA

Total Power Dissipation ... 500mW

Note: These are stress ratings only. Stresses exceeding the range specified under “Absolute
Maximum Ratings” may cause substantial damage to the device. Functional operation of this
device at other conditions beyond those listed in the specification is not implied and prolonged
exposure to extreme conditions may affect device reliability.

D.C. Characteristics
For data in the following tables, note that factors such as oscillator type, operating voltage, operating
frequency, pin load conditions, temperature and program instruction type, etc., can all exert an
influence on the measured values.

Operating Voltage Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VDD

Operating Voltage – HXT

fSYS=8MHz, Ta=-40°C~85°C 2.2 — 5.5

V
fSYS=8MHz 2.3 — 5.5
fSYS=12MHz 2.7 — 5.5
fSYS=16MHz, Ta=-40°C~105°C 3.3 — 5.5
fSYS=16MHz 3.7 — 5.5

Operating Voltage – HIRC
fSYS=8MHz 2.2 — 5.5

VfSYS=12MHz 2.7 — 5.5
fSYS=16MHz 3.3 — 5.5

Operating Voltage – LXT fSYS=32768Hz 2.2 — 5.5 V
Operating Voltage – LIRC fSYS=32kHz 2.2 — 5.5 V

Rev. 1.00 18 December 27, 2019 Rev. 1.00 19 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Standby Current Characteristics
Ta=25°C, unless otherwise specified.

Symbol Standby Mode
Test Conditions

Min. Typ. Max. Max.
85°C

Max.
105°C

Max.
125°C Unit

VDD Conditions

ISTB

SLEEP Mode

2.2V
WDT off

— 0.13 0.18 3.30 7.20 15.30

μA

3V — 0.14 0.19 3.50 7.90 15.30
5V — 0.21 0.50 4.50 9.50 20.00

2.2V
WDT on

— 1.2 2.4 3.3 6.7 17.5
3V — 1.5 3.0 4.2 8.7 18.6
5V — 3.0 5.0 6.5 11.8 21.6

IDLE0 Mode – LIRC
2.2V

fSUB on
— 2.4 4.0 4.6 8.0 18.0

μA3V — 3.0 5.0 5.7 10.0 20.0
5V — 5 10 11 16 26

IDLE0 Mode – LXT
2.2V

fSUB on
— 2.4 4.0 4.6 8.0 18.0

μA3V — 3.0 5.0 5.7 10.0 20.0
5V — 5 10 11 16 26

IDLE1 Mode – HIRC

2.2V
fSUB on, fSYS=8MHz

— 0.3 0.6 0.8 0.8 1.2

mA

3V — 0.5 0.8 1.2 1.2 1.6
5V — 1.0 1.6 1.8 1.8 2.2

2.7V
fSUB on, fSYS=12MHz

— 0.4 0.6 0.8 0.8 1.0
3V — 0.6 0.8 1.0 1.0 1.4
5V — 1.00 1.20 1.44 1.44 1.80

3.3V
fSUB on, fSYS=16MHz

— 1.2 1.5 2.0 2.0 2.4
5V — 1.5 3.0 3.5 3.5 4.0

IDLE1 Mode – HXT

2.2V fSUB on, fSYS=8MHz
Ta=-40°C~85°C — 0.3 0.4 0.5 — —

mA

3V
fSUB on, fSYS=8MHz

— 0.4 0.8 1.2 1.2 1.6
5V — 1.0 2.0 2.2 2.2 2.4

2.7V
fSUB on, fSYS=12MHz

— 0.4 0.8 1.0 1.2 1.6
3V — 0.6 1.2 1.4 1.4 1.8
5V — 1.0 1.8 2.0 2.0 2.2

3.3V
fSUB on, fSYS=16MHz

— 1.2 1.6 1.9 1.9 2.4
5V — 1.6 2.2 2.6 2.6 4.0

Note: When using the characteristic table data, the following notes should be taken into consideration:
1. Any digital inputs are setup in a non-floating condition.
2. All measurements are taken under conditions of no load and with all peripherals in an off state.
3. There are no DC current paths.
4. All Standby Current values are taken after a HALT instruction execution thus stopping all instruction

execution.

Rev. 1.00 18 December 27, 2019 Rev. 1.00 19 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Operating Current Characteristics
Ta=-40°C~125°C

Symbol Operating Mode
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

IDD

SLOW Mode – LIRC
2.2V

fSYS=32kHz
— 15 45

μA3V — 16 55
5V — 24 65

SLOW Mode – LXT
2.2V

fSYS=32768Hz
— 15.5 45.5

μA3V — 17 56
5V — 25 67

FAST Mode – HIRC

2.2V
fSYS=8MHz

— 0.5 1.2
mA3V — 1.0 2.0

5V — 2.0 3.0
2.7V

fSYS=12MHz
— 1.2 2.2

mA3V — 1.50 2.75
5V — 3.0 4.5

3.3V
fSYS=16MHz

— 3.2 4.8
mA

5V — 4.5 7.0

FAST Mode – HXT

2.2V fSYS=8MHz,
Ta=-40°C~85°C — 0.5 1.2

mA3V
fSYS=8MHz

— 1.0 2.0
5V — 2.0 3.0

2.7V
fSYS=12MHz

— 1.2 2.2
mA3V — 1.50 2.75

5V — 3.0 4.5
3.3V

fSYS=16MHz
— 3.2 4.8

mA
5V — 4.5 7.0

Note: When using the characteristic table data, the following notes should be taken into consideration:
1. Any digital inputs are setup in a non-floating condition.
2. All measurements are taken under conditions of no load and with all peripherals in an off state.
3. There are no DC current paths.
4. All Operating Current values are measured using a continuous NOP instruction program loop.

Rev. 1.00 20 December 27, 2019 Rev. 1.00 21 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

A.C. Characteristics
For data in the following tables, note that factors such as oscillator type, operating voltage, operating
frequency and temperature etc., can all exert an influence on the measured values.

High Speed Internal Oscillator – HIRC – Frequency Accuracy
During the program writing operation the writer will trim the HIRC oscillator at a user selected
HIRC frequency and user selected voltage of either 3V or 5V.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Temp.

fHIRC

8MHz Writer Trimmed HIRC
Frequency

3V/5V

25°C -1% 8 +1%

MHz

-40°C~85°C -2% 8 +2%
-40°C~105°C -4% 8 +4%
-40°C~125°C -5% 8 +5%

2.2V~5.5V

25°C -2.5% 8 +2.5%
-40°C~85°C -3% 8 +3%
-40°C~105°C -5% 8 +5%
-40°C~125°C -5% 8 +5%

12MHz Writer Trimmed HIRC
Frequency

3V/5V

25°C -1% 12 +1%

MHz

-40°C~85°C -2% 12 +2%
-40°C~105°C -4% 12 +4%
-40°C~125°C -5% 12 +5%

2.7V~5.5V

25°C -2.5% 12 +2.5%
-40°C~85°C -3% 12 +3%
-40°C~105°C -5% 12 +5%
-40°C~125°C -5% 12 +5%

16MHz Writer Trimmed HIRC
Frequency

5V

25°C -1% 16 +1%

MHz

-40°C~85°C -2% 16 +2%
-40°C~105°C -4% 16 +4%
-40°C~125°C -5% 16 +5%

3.3V~5.5V

25°C -2.5% 16 +2.5%
-40°C~85°C -3% 16 +3%
-40°C~105°C -5% 16 +5%
-40°C~125°C -5% 16 +5%

Note: 1. The 3V/5V values for VDD are provided as these are the two selectable fixed voltages at which the HIRC
frequency is trimmed by the writer.

2. The row below the 3V/5V trim voltage row is provided to show the values for the full VDD range operating
voltage. It is recommended that the trim voltage is fixed at 3V for application voltage ranges from 2.2V to
3.6V and fixed at 5V for application voltage ranges from 3.3V to 5.5V.

3. The minimum and maximum tolerance values provided in the table are only for the frequency at which
the writer trims the HIRC oscillator. After trimming at this chosen specific frequency any change in
HIRC oscillator frequency using the oscillator register control bits by the application program will give a
frequency tolerance to within ±20%.

Rev. 1.00 20 December 27, 2019 Rev. 1.00 21 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Low Speed Internal Oscillator Characteristics – LIRC
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Temp.

fLIRC LIRC Frequency 2.2V~5.5V

25°C -5% 32 +5%

kHz
-40°C~85°C -10% 32 +10%
-40°C~105°C -12% 32 +12%
-40°C~125°C -13% 32 +13%

tSTART LIRC Start Up Time — — — — 100 μs

Low Speed Crystal Oscillator Characteristics – LXT
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fLXT Oscillator Frequency 2.2V~5.5V — — 32768 — Hz
Duty Cycle Duty Cycle — — 40 — 60 %
tSTART Start Up Time — — — — 1000 ms
RNEG Negative Resistance 2.2V — 3×ESR — — Ω

*: C1, C2 and RP are external components. C1=C2=10pF. RP=10MΩ. CL=7pF, ESR=30kΩ.

Operating Frequency Characteristic Curves

System Operating Frequency

Operating Voltage

12MHz

2.2V 2.7V 5.5V

~~

8MHz

16MHz

3.3V

~~

System Start Up Time Characteristics
Ta=-40°C~125°C

Symbol Parameter Test Conditions Min. Typ. Max. Unit

tSST

System Start-up Time
Wake-up from Condition where fSYS is Off

fSYS=fH~fH/64, fH=fHXT — 128 — tHXT

fSYS=fH~fH/64, fH=fHIRC — 16 — tHIRC

fSYS=fSUB=fLXT — 1024 — tLXT

fSYS=fSUB=fLIRC — 2 — tLIRC

System Start-up Time
Wake-up from Condition where fSYS is On

fSYS=fH~fH/64, fH=fHXT or fHIRC — 2 — tH
fSYS=fSUB=fLXT or fLIRC — 2 — tSUB

System Speed Switch Time
FAST to SLOW Mode or
SLOW to FAST Mode

fHXT switches from off → on — 1024 — tHXT

fHIRC switches from off → on — 16 — tHIRC

fLXT switches from off → on — 1024 — tLXT

Rev. 1.00 22 December 27, 2019 Rev. 1.00 23 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Symbol Parameter Test Conditions Min. Typ. Max. Unit

tRSTD

System Reset Delay Time
Reset Source from Power-on Reset or
LVR Hardware Reset

RRPOR=5V/ms
42 48 54 ms

System Reset Delay Time
LVRC/WDTC/RSTC Software Reset —

System Reset Delay Time
Reset Source from WDT Overflow or
Reset pin Reset

— 14 16 18 ms

tSRESET
Minimum Software Reset Pulse Width to
Reset — 45 90 120 μs

Notes: 1. For the System Start-up time values, whether fSYS is on or off depends upon the mode type and the chosen
fSYS system oscillator. Details are provided in the System Operating Modes section.

2. The time units, shown by the symbols tHIRC. are the inverse of the corresponding frequency values as
provided in the frequency tables. For example tHIRC=1/fHIRC, tSYS=1/fSYS etc.

3. If the LIRC is used as the system clock and if it is off when in the SLEEP Mode, then an additional
LIRC start up time, tSTART, as provided in the LIRC frequency table, must be added to the tSST time in the
table above.

4. The System Speed Switch Time is effectively the time taken for the newly activated oscillator to start up.

Input/Output (without Multi-power) Characteristics
Ta = -40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VIL

Input Low Voltage for I/O Ports
(Except PE0~PE3 & RES Pin)

5V — 0 — 1.5

V— — 0 — 0.2VDD

Input Low Voltage for External
Reset Pin — — 0 — 0.3VDD

VIH

Input High Voltage for I/O Ports
(Except PE0~PE3 & RES Pin)

5V — 3.5 — 5.0

V— — 0.8VDD — VDD

Input High Voltage for External
Reset Pin — — 0.9VDD — VDD

IOL
Sink Current for I/O Pins
(Except PE0~PE3 pins)

3V
VOL=0.1VDD

16 32 —
mA

5V 32 65 —

IOH
Source Current for I/O Pins
(Except PE0~PE3 pins)

3V VOH=0.9VDD,
SLEDCn[m+1:m]=00,
n=0, 1, 2 or 3; m=0, 2, 4 or 6

-0.7 -1.5 —

mA

5V -1.5 -2.9 —

3V VOH=0.9VDD,
SLEDCn[m+1:m]=01,
n=0, 1, 2 or 3, m=0, 2, 4 or 6

-1.3 -2.5 —

5V -2.5 -5.1 —

3V VOH=0.9VDD,
SLEDCn[m+1:m]=10,
n=0, 1, 2 or 3, m=0, 2, 4 or 6

-1.8 -3.6 —

5V -3.6 -7.3 —

3V VOH=0.9VDD,
SLEDCn[m+1:m]=11,
n=0, 1, 2 or 3, m=0, 2, 4 or 6

-4 -8 —

5V -8 -16 —

RPH
Pull-high Resistance for I/O Ports
(Note)

3V
Ta=-40°C~105°C

20 60 100

kΩ
5V 10 30 50
3V

—
20 60 120

5V 10 30 60
ILEAK Input Leakage Current 5V VIN=VDD or VIN=VSS — — ±1 μA

Rev. 1.00 22 December 27, 2019 Rev. 1.00 23 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

tTPI
TM Capture Input Minimum Pulse
Width — — 0.3 — — μs

tTCK
TM Clock Input Minimum Pulse
Width — — 0.3 — — μs

tINT
Interrupt Input Pin Minimum Pulse
Width — — 10 — — μs

tRES
External Reset Pin Minimum
Pulse Width — — 10 — — μs

Note: The RPH internal pull-high resistance value is calculated by connecting to ground and enabling the input pin
with a pull-high resistor and then measuring the pin current at the specified supply voltage level. Dividing
the voltage by this measured current provides the RPH value.

Input/Output (with Multi-power) Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD0
VDD Power Supply for PE0~PE3
Pins — — 2.2 5.0 5.5 V

VDDIO
VDDIO Power Supply for
PE0~PE3 Pins — — 2.2 — VDD V

VIL
Input Low Voltage for PE0~PE3
pins

5V Pin power=VDD or VDDIO,
VDDIO=VDD

0 — 1.5
V

— Pin power=VDD or VDDIO 0 — 0.2
(VDD/VDDIO)

VIH
Input High Voltage for
PE0~PE3 pins

5V Pin power=VDD or VDDIO,
VDDIO=VDD

3.5 — 5.0
V

— Pin power=VDD or VDDIO
0.8

(VDD/VDDIO) — VDD/VDDIO

IOL Sink Current for PE0~PE3 pins

3V VOL=0.1(VDD/VDDIO)
VDDIO=VDD

16 32 — mA

5V
VOL=0.1(VDD/VDDIO)
VDDIO=VDD

32 65 — mA

VOL=0.1VDDIO, VDDIO=3V 20 40 — mA

IOH
Source Current for PE0~PE3
pins

3V
VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=00B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-0.7 -1.5 — mA

5V

VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=00B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-1.5 -2.9 — mA

VOH=0.9VDDIO, VDDIO=3V,
SLEDCn[m+1, m]=00B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-0.40 -0.85 — mA

3V
VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=01B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-1.3 -2.5 — mA

5V

VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=01B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-2.5 -5.1 — mA

VOH=0.9VDDIO, VDDIO=3V,
SLEDCn[m+1, m]=01B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-0.70 -1.35 — mA

Rev. 1.00 24 December 27, 2019 Rev. 1.00 25 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

IOH
Source Current for PE0~PE3
pins

3V
VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=10B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-1.8 -3.6 — mA

5V

VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=10B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-3.6 -7.3 — mA

VOH=0.9VDDIO, VDDIO=3V,
SLEDCn[m+1, m]=10B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-0.95 -1.90 — mA

3V
VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=11B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-4 -8 — mA

5V

VOH=0.9(VDD/VDDIO), VDDIO=VDD,
SLEDCn[m+1, m]=11B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-8 -16 — mA

VOH=0.9VDDIO, VDDIO=3V,
SLEDCn[m+1, m]=11B
(n=0, 1, 2, 3; m=0, 2, 4, 6)

-2.5 -5.0 — mA

RPH
Pull-high Resistance for
PE0~PE3 Pins (Note)

3V Pin power = VDD or VDDIO

VDDIO=VDD, Ta=-40°C~105°C 20 60 100 kΩ

5V
Pin power = VDD or VDDIO

VDDIO=VDD, Ta=-40°C~105°C 10 30 50 kΩ

VDDIO=3V, Ta=-40°C~105°C 36 110 180 kΩ

3V Pin power = VDD or VDDIO

VDDIO=VDD
20 60 110 kΩ

5V
Pin power = VDD or VDDIO

VDDIO=VDD
10 30 60 kΩ

VDDIO=3V 36 110 180 kΩ

ILEAK
Input Leakage Current for
PE0~PE3 Pins 5V VIN=VSS or VIN=VDD or VDDIO — — ±1 μA

Note: The RPH internal pull-high resistance value is calculated by connecting to ground and enabling the input pin
with a pull-high resistor and then measuring the pin current at the specified supply voltage level. Dividing
the voltage by this measured current provides the RPH value.

Memory Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VRW VDD for Read/Write — — VDDmin — VDDmax V
Flash Program Memory/Data EEPROM Memory

tDEW

Erase/Write Cycle Time – Flash Program
Memory — — — 2 3

ms
Write Cycle Time – Data EEPROM Memory — — — 4 6

IDDPGM Programming/Erase Current on VDD — — — — 5 mA

EP
Cell Endurance – Flash Program Memory — — 10K — — E/W
Cell Endurance – Data EEPROM Memory — — 100K — — E/W

tRETD ROM Data Retention Time — Ta=25°C — 40 — Year
RAM Data Memory
VDR RAM Data Retention Voltage — Device in SLEEP Mode 1 — — V

Rev. 1.00 24 December 27, 2019 Rev. 1.00 25 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LVD/LVR Electrical Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VLVR Low Voltage Reset Voltage —

LVR enable, voltage select 2.1V
Ta=-40°C~85°C - 5% 2.1 + 5%

V

LVR enable, voltage select 2.1V
Ta=-40°C~105°C - 6% 2.1 + 6%

LVR enable, voltage select 2.1V - 7% 2.1 + 7%
LVR enable, voltage select 2.55V
Ta=-40°C~85°C - 5% 2.55 + 5%

LVR enable, voltage select 2.55V
Ta=-40°C~105°C - 6% 2.55 + 6%

LVR enable, voltage select 2.55V - 7% 2.55 + 7%
LVR enable, voltage select 3.15V
Ta=-40°C~85°C - 5% 3.15 + 5%

LVR enable, voltage select 3.15V
Ta=-40°C~105°C - 6% 3.15 + 6%

LVR enable, voltage select 3.15V - 7% 3.15 + 7%
LVR enable, voltage select 3.8V
Ta=-40°C~85°C - 5% 3.8 + 5%

LVR enable, voltage select 3.8V
Ta=-40°C~105°C - 6% 3.8 + 6%

LVR enable, voltage select 3.8V - 7% 3.8 + 7%

VLVD Low Voltage Detection Voltage —

LVD enable, voltage select 2.0V
Ta=-40°C~85°C - 5% 2.0 + 5%

V

LVD enable, voltage select 2.0V
Ta=-40°C~105°C - 6% 2.0 + 6%

LVD enable, voltage select 2.0V - 7% 2.0 + 7%
LVD enable, voltage select 2.2V
Ta=-40°C~85°C - 5% 2.2 - 5%

LVD enable, voltage select 2.2V
Ta=-40°C~105°C - 6% 2.2 + 6%

LVD enable, voltage select 2.2V - 7% 2.2 + 7%
LVD enable, voltage select 2.4V
Ta=-40°C~85°C - 5% 2.4 + 5%

LVD enable, voltage select 2.4V
Ta=-40°C~105°C - 6% 2.4 + 6%

LVD enable, voltage select 2.4V - 7% 2.4 + 7%
LVD enable, voltage select 2.7V
Ta=-40°C~85°C - 5% 2.7 + 5%

LVD enable, voltage select 2.7V
Ta=-40°C~105°C - 6% 2.7 + 6%

LVD enable, voltage select 2.7V - 7% 2.7 + 7%
LVD enable, voltage select 3.0V
Ta=-40°C~85°C - 5% 3.0 + 5%

LVD enable, voltage select 3.0V
Ta=-40°C~105°C - 6% 3.0 + 6%

LVD enable, voltage select 3.0V - 7% 3.0 + 7%
LVD enable, voltage select 3.3V
Ta=-40°C~85°C - 5% 3.3 + 5%

LVD enable, voltage select 3.3V
Ta=-40°C~105°C - 6% 3.3 + 6%

LVD enable, voltage select 3.3V - 7% 3.3 + 7%

Rev. 1.00 26 December 27, 2019 Rev. 1.00 27 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VLVD Low Voltage Detection Voltage —

LVD enable, voltage select 3.6V
Ta=-40°C~85°C - 5% 3.6 + 5%

V

LVD enable, voltage select 3.6V
Ta=-40°C~105°C - 6% 3.6 + 6%

LVD enable, voltage select 3.6V - 7% 3.6 + 7%
LVD enable, voltage select 4.0V
Ta=-40°C~85°C - 5% 4.0 + 5%

LVD enable, voltage select 4.0V
Ta=-40°C~105°C - 6% 4.0 + 6%

LVD enable, voltage select 4.0V - 7% 4.0 + 7%

ILVRLVDBG Operating Current

3V LVD enable, LVR enable,
VBGEN=0 — — 20

μA
5V LVD enable, LVR enable,

VBGEN=0 — 20 25

3V LVD enable, LVR enable,
VBGEN=1 — — 25

5V LVD enable, LVR enable,
VBGEN=1 — 25 30

tLVDS LVDO Stable Time —

For LVR enable, VBGEN=0,
LVD off → on, Ta=-40°C~85°C — — 18

μsFor LVR enable, VBGEN=0,
LVD off → on, Ta=-40°C~105°C — — 20

For LVR enable, VBGEN=0,
LVD off → on — — 25

tLVR
Minimum Low Voltage Width to
Reset — — 120 240 480 μs

tLVD
Minimum Low Voltage Width to
Interrupt — — 60 120 240 μs

ILVR Additional Current for LVR Enable — LVD disable, VBGEN=0 — — 24 μA

A/D Converter Electrical Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

AVDD Operating Voltage — — 2.2 — 5.5 V
VADI Input Voltage — — 0 — VREF V
VREF Reference Voltage — — 2 — AVDD V
NR Resolution — — — — 12 Bit

DNL Differential Non-linearity —

tADCK=0.5μs, VREF=AVDD,
Ta=-40°C~85°C -3 — 3

LSBtADCK=0.5μs, VREF=AVDD,
Ta=-40°C~105°C -4 — 4

tADCK=0.5μs, VREF=AVDD -5 — 5

INL Integral Non-linearity —

tADCK=0.5μs, VREF=AVDD,
Ta=-40°C~85°C -4 — 4

LSBtADCK=0.5μs, VREF=AVDD,
Ta=-40°C~105°C -5 — 5

tADCK=0.5μs, VREF=AVDD -11 — 11

Rev. 1.00 26 December 27, 2019 Rev. 1.00 27 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

IADC Additional Current for ADC Enable
2.2V No load (tADCK=0.5μs) — 300 420 μA
3V No load (tADCK=0.5μs) — 340 500 μA
5V No load (tADCK=0.5μs) — 500 700 μA

tADCK Clock Period — — 0.5 — 10 μs
tON2ST ADC On-to-Start Time — — 4 — — μs
tADS Sampling Time — — — 4 — tADCK

tADC
Conversion Time (Include ADC
Sample and Hold Time) — — — 16 — tADCK

GERR A/D Conversion Gain Error — VREF=AVDD -4 — 4 LSB
OSRR A/D Conversion Offset Error — VREF=AVDD -4 — 4 LSB

IPGA Additional Current for PGA Enable
3V No load — 300 450 μA
5V No load — 400 550 μA

VCM
PGA Common Mode Voltage
Range

3V
—

VSS+0.1 — VDD-1.4
V

5V VSS+0.1 — VDD-1.4

VIR PGA Input Voltage Range
3V Gain=1, PGAIS=0, Relative

gain, gain error < ±5%
VSS+0.1 — VDD-1.4

V
5V VSS+0.1 — VDD-1.4

VOR
PGA Maximum Output Voltage
Range

3V — VSS+0.1 — VDD-0.1 V
5V — VSS+0.1 — VDD-0.1 V

VVR Fix Voltage Output of PGA

2.7V~
5.5V VRI=VBGREF (PGAIS=1) -1.5% 2 +1.5% V

3.2V~
5.5V

Ta=-40°C~105°C,
VRI=VBGREF (PGAIS=1) -1.5% 3 +1.5% V

4.2V~
5.5V

Ta=-40°C~105°C,
VRI=VBGREF (PGAIS=1) -1.5% 4 +1.5% V

Reference Voltage Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VBGREF Bandgap Reference Voltage —

Ta=25°C -1% 1.2 +1%

V
Ta=-40°C~85°C -2% 1.2 +2%
Ta=-40°C~105°C -2% 1.2 +2%

— -2% 1.2 +2%

IBGREF Operating Current 5.5V
Ta=-40°C~85°C — 25 40

μATa=-40°C~105°C — 25 40
— — 25 50

PSRR Power Supply Rejection Ratio — Ta=25°C, VRIPPLE=1VP-P,
fRIPPLE=100Hz 75 — — dB

En Output Noise — Ta=25°C, no load current,
f=0.1Hz~10Hz — 300 — μVRMS

IDRV Buffer Driving Capacity — ∆VBGREF=-1% 1 — — mA
ISD Shutdown Current — VBGREN=0 — — 0.1 μA
tSTART Startup Time 2.2V~5.5V Ta=25°C — — 400 μs

Note: 1. All the above parameters are measured under no load conditions unless otherwise described.
2. A 0.1μF ceramic capacitor should be connected between VDD and GND.
3. The VBGREF voltage is used as the A/D converter PGA input.

Rev. 1.00 28 December 27, 2019 Rev. 1.00 29 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Comparator Characteristics
Ta=-40°C~125°C, unless otherwise specified.

All measurement is under CMPn positive input voltage = (VDD-1.4)/2 and remain constant

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage — — 2.2 — 5.5 V

ICMP
Additional Current for
Comparator Enable

3V
CNVTn[1:0]=00B, Ta=-40°C~85°C — 1 5

μA

CNVTn[1:0]=00B, Ta=-40°C~105°C — 1 5
CNVTn[1:0]=00B — 1 7

5V
CNVTn[1:0]=00B, Ta=-40°C~85°C — 1 5
CNVTn[1:0]=00B, Ta=-40°C~105°C — 1 5
CNVTn[1:0]=00B — 1 9

3V
CNVTn[1:0]=01B

— — 30
5V — 14 30
3V

CNVTn[1:0]=10B
— — 65

5V — 36 65
3V

CNVTn[1:0]=11B
— — 110

5V — 58 110

VOS Input Offset Voltage

3V Without calibration,
(CnOF[4:0]=10000B),
CNVTn[1:0]=00B

-10 — 10
mV5V

3V
With calibration, CNVTn[1:0]=00B -4 — 4

5V

VCM Common Mode Voltage Range

3V
CNVTn[1:0]=00B

0.21 — VDD-1.0
V

5V 0.23 — VDD-1.0
3V

CNVTn[1:0]=01B
0.38 — VDD-1.0

V
5V 0.43 — VDD-1.0
3V

CNVTn[1:0]=10B
0.55 — VDD-1.0

V
5V 0.63 — VDD-1.0
3V

CNVTn[1:0]=11B
0.70 — VDD-1.0

V
5V 0.80 — VDD-1.0

AOL Open Loop Gain
3V CNVTn[1:0]=00B 60 — —

dB
5V CNVTn[1:0]=00B 60 80 —

VHYS Hysteresis
3V CNVTn[1:0]=00B 10 — 30

mV
5V CNVTn[1:0]=00B 10 24 30

tRP Response Time (Note2)

3V/5V

With 10mV overdrive,
CNVTn[1:0]=00B — 25 40

μs

With 100mV overdrive,
CNVTn[1:0]=00B — 20 40

3V/5V

With 10mV overdrive,
CNVTn[1:0]=01B — 1.5 4.0

With 100mV overdrive,
CNVTn[1:0]=01B — 1.2 3.0

3V/5V

With 10mV overdrive,
CNVTn[1:0]=10B — 0.8 2.0

With 100mV overdrive,
CNVTn[1:0]=10B — 0.5 1.5

3V/5V

With 10mV overdrive,
CNVTn[1:0]=11B — 0.7 1.5

With 100mV overdrive,
CNVTn[1:0]=11B — 0.3 1.0

Rev. 1.00 28 December 27, 2019 Rev. 1.00 29 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Note: 1. The input offset voltage should first be calibrated when the comparator operates with the compared threshold
voltage level lower than 250mV. Otherwise, the input offset voltage will be out of specification.

2. Load Condition: CLOAD=50pF

Pin
CLOAD

VSS

Load Condition

Software Controlled LCD Driver Electrical Characteristics
Ta=-40°C~125°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

IBIAS VDD/2 Bias Current for LCD

3V
ISEL[1:0] = 00B

10.5 15.0 50.0

μA

5V 17.5 25.0 60.0
3V

ISEL[1:0] = 01B
21 30 70

5V 35 50 85
3V

ISEL[1:0] = 10B
42 60 100

5V 70 100 150
3V

ISEL[1:0] = 11B
82.6 118.0 153.4

5V 140 200 260
VSCOM VDD/2 Voltage for LCD SCOM Port 2.2V~5.5V No load 0.475VDD 0.500VDD 0.525VDD V

CAN Module Electrical Characteristics

D.C Characteristics
Ta=-40°C~125°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage (Crystal OSC)
— fCAN=8MHz 2.2 — 5.5

V
— fCAN=16MHz 3.3 — 5.5

A.C Characteristics
Ta=-40°C~125°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fCAN System Clock (Crystal OSC)
2.2V~5.5V

—
— 8 —

MHz
3.3V~5.5V — 16 —

fMCLK Memory Clock(Crystal OSC)
2.2V~5.5V

—
— 8 —

MHz
3.3V~5.5V — 16 —

Rev. 1.00 30 December 27, 2019 Rev. 1.00 31 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Power-on Reset Characteristics
Ta=-40°C~125°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VPOR VDD Start Voltage to Ensure Power-on Reset — — — — 100 mV
RRPOR VDD Rising Rate to Ensure Power-on Reset — — 0.035 — — V/ms

tPOR
Minimum Time for VDD Stays at VPOR to
Ensure Power-on Reset — — 1 — — ms

VDD

tPOR RRPOR

VPOR

Time

System Architecture
A key factor in the high-performance features of the range of microcontrollers is attributed to their
internal system architecture. The device takes advantage of the usual features found within RISC
microcontrollers providing increased speed of operation and enhanced performance. The pipelining
scheme is implemented in such a way that instruction fetching and instruction execution are
overlapped, hence instructions are effectively executed in one or two cycles for most of the standard
or extended instructions respectively. The exceptions to this are branch or call instructions which
need one more cycle. An 8-bit wide ALU is used in practically all instruction set operations, which
carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions,
etc. The internal data path is simplified by moving data through the Accumulator and the ALU.
Certain internal registers are implemented in the Data Memory and can be directly or indirectly
addressed. The simple addressing methods of these registers along with additional architectural
features ensure that a minimum of external components is required to provide a functional I/O and
A/D control system with maximum reliability and flexibility. This makes the device suitable for low-
cost, high-volume production for controller applications.

Clocking and Pipelining
The main system clock, derived from either a HXT, LXT, HIRC or LIRC oscillator is subdivided
into four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented
at the beginning of the T1 clock during which time a new instruction is fetched. The remaining
T2~T4 clocks carry out the decoding and execution functions. In this way, one T1~T4 clock
cycle forms one instruction cycle. Although the fetching and execution of instructions takes place
in consecutive instruction cycles, the pipelining structure of the microcontroller ensures that
instructions are effectively executed in one instruction cycle. The exception to this are instructions
where the contents of the Program Counter are changed, such as subroutine calls or jumps, in which
case the instruction will take one more instruction cycle to execute.

For instructions involving branches, such as jump or call instructions, two machine cycles are
required to complete instruction execution. An extra cycle is required as the program takes one
cycle to first obtain the actual jump or call address and then another cycle to actually execute the
branch. The requirement for this extra cycle should be taken into account by programmers in timing
sensitive applications.

Rev. 1.00 30 December 27, 2019 Rev. 1.00 31 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Fetch Inst. (PC)

(System Clock)
fSYS

Phase Clock T1

Phase Clock T2

Phase Clock T3

Phase Clock T4

Program Counter PC PC+1 PC+2

Pipelining
Execute Inst. (PC-1) Fetch Inst. (PC+1)

Execute Inst. (PC) Fetch Inst. (PC+2)

Execute Inst. (PC+1)

System Clocking and Pipelining

Fetch Inst. 11 MOV A,[12H]
2 CALL DELAY
3 CPL [12H]
4 :
5 :
6 DELAY: NOP

Execute Inst. 1
Fetch Inst. 2 Execute Inst. 2

Fetch Inst. 3 Flush Pipeline
Fetch Inst. 6 Execute Inst. 6

Fetch Inst. 7

Instruction Fetching

Program Counter
During program execution, the Program Counter is used to keep track of the address of the
next instruction to be executed. It is automatically incremented by one each time an instruction
is executed except for instructions, such as “JMP” or “CALL” that demands a jump to a non-
consecutive Program Memory address. For the device whose memory capacity is greater than 8K
words the Program Memory address may be located in a certain program memory bank which
is selected by the program memory bank pointer bits, PBPn. Only the lower 8 bits, known as the
Program Counter Low Register, are directly addressable by the application program.

When executing instructions requiring jumps to non-consecutive addresses such as a jump
instruction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control
by loading the required address into the Program Counter. For conditional skip instructions, once
the condition has been met, the next instruction, which has already been fetched during the present
instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is
obtained.

Program Counter
Program Counter High Byte PCL Register

PBP1~PBP0, PC12~PC8 PCL7~PCL0

Program Counter

The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is
available for program control and is a readable and writeable register. By transferring data directly
into this register, a short program jump can be executed directly. However, as only this low byte
is available for manipulation, the jumps are limited to the present page of memory, that is 256
locations. When such program jumps are executed it should also be noted that a dummy cycle
will be inserted. Manipulating the PCL register may cause program branching, so an extra cycle is
needed to pre-fetch.

Rev. 1.00 32 December 27, 2019 Rev. 1.00 33 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Stack
This is a special part of the memory which is used to save the contents of the Program Counter only.
The stack is organised into 16 levels and is neither part of the data nor part of the program space,
and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is
neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of
the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine,
signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value
from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded
but the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or
RETI, the interrupt will be serviced. This feature prevents stack overflow allowing the programmer
to use the structure more easily. However, when the stack is full, a CALL subroutine instruction can
still be executed which will result in a stack overflow. Precautions should be taken to avoid such
cases which might cause unpredictable program branching. If the stack is overflow, the first Program
Counter save in the stack will be lost.

Stack
Pointer

Stack Level 2

Stack Level 1

Stack Level 3

:
:
:

Stack Level 16

Program Memory

Program Counter

Bottom of Stack

Top of Stack

Arithmetic and Logic Unit – ALU
The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic
and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU
receives related instruction codes and performs the required arithmetic or logical operations after
which the result will be placed in the specified register. As these ALU calculation or operations may
result in carry, borrow or other status changes, the status register will be correspondingly updated to
reflect these changes. The ALU supports the following functions:

• Arithmetic operations:
ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA,
LADD, LADDM, LADC, LADCM, LSUB, LSUBM, LSBC, LSBCM, LDAA

• Logic operations:
AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA,
LAND, LANDM, LOR, LORM, LXOR, LXORM, LCPL, LCPLA

• Rotation:
RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC,
LRR, LRRA, LRRCA, LRRC, LRLA, LRL, LRLCA, LRLC

• Increment and Decrement:
INCA, INC, DECA, DEC,
LINCA, LINC, LDECA, LDEC

• Branch decision:
JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI,
LSNZ, LSZ, LSZA, LSIZ, LSIZA, LSDZ, LSDZA

Rev. 1.00 32 December 27, 2019 Rev. 1.00 33 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Flash Program Memory
The Program Memory is the location where the user code or program is stored. For this device the
Program Memory is Flash type, which means it can be programmed and re-programmed a large
number of times, allowing the user the convenience of code modification on the same device. By
using the appropriate programming tools, the Flash device offer users the flexibility to conveniently
debug and develop their applications while also offering a means of field programming and
updating.

Structure
The Program Memory has a capacity of 32K×16 bits. The Program Memory is addressed by the
Program Counter and also contains data, table information and interrupt entries. Table data, which can
be setup in any location within the Program Memory, is addressed by a separate table pointer register.

Reset0000H

0004H

003CH
Interrupt Vectors

Bank 1
3FFFH

2000H

16 bits

Look-up Table
n00H
nFFH

Bank 2
5FFFH

4000H

Bank 3
7FFFH

6000H

Program Memory Structure

Special Vectors
Within the Program Memory, certain locations are reserved for the reset and interrupts. The location
000H is reserved for use by the device reset for program initialisation. After a device reset is
initiated, the program will jump to this location and begin execution.

Look-up Table
Any location within the Program Memory can be defined as a look-up table where programmers can
store fixed data. To use the look-up table, the table pointer must first be setup by placing the address
of the look up data to be retrieved in the table pointer register, TBLP and TBHP. These registers
define the total address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the Program Memory using the
corresponding table read instruction such as “TABRD [m]” or “TABRDL [m]” respectively when
the memory [m] is located in sector 0. If the memory [m] is located in other sectors, the data can be
retrieved from the program memory using the corresponding extended table read instruction such as
“LTABRD [m]” or “LTABRDL [m]” respectively. When the instruction is executed, the lower order
table byte from the Program Memory will be transferred to the user defined Data Memory register [m]
as specified in the instruction. The higher order table data byte from the Program Memory will be
transferred to the TBLH special register.

Rev. 1.00 34 December 27, 2019 Rev. 1.00 35 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The accompanying diagram illustrates the addressing data flow of the look-up table.

Last Page or
TBHP Register

Address

TBLP Register

Data
16 bits

Program Memory

Register TBLH User Selected
Register

High Byte Low Byte

Table Program Example
The following example shows how the table pointer and table data is defined and retrieved from the
microcontroller. This example uses raw table data located in the Program Memory which is stored
there using the ORG statement. The value at this ORG statement is “1F00H” which is located in
ROM Bank 3 and refers to the start address of the last page within the 32K words Program Memory
of the device. The table pointer low byte register is setup here to have an initial value of “06H”. This
will ensure that the first data read from the data table will be at the Program Memory address “7F06H”
or 6 locations after the start of the last page. Note that the value for the table pointer is referenced to
the first address specified by TBLP and TBHP if the “TABRD [m]” or “LTABRD [m]” instruction is
being used. The high byte of the table data which in this case is equal to zero will be transferred to
the TBLH register automatically when the “TABRD [m]” or “LTABRD [m]” instruction is executed.

Because the TBLH register is a read/write register and can be restored, care should be taken
to ensure its protection if both the main routine and Interrupt Service Routine use table read
instructions. If using the table read instructions, the Interrupt Service Routines may change the
value of the TBLH and subsequently cause errors if used again by the main routine. As a rule it is
recommended that simultaneous use of the table read instructions should be avoided. However, in
situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the
execution of any main routine table-read instructions. Note that all table related instructions require
two instruction cycles to complete their operation.

Table Read Program Example
rombank3 code3
ds .section ‘data’
tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2
:
:
code0 .section ‘code’
mov a,06h ; initialise low table pointer - note that this address is referenced
mov tblp,a ; to the last page or the page that tbhp pointed
mov a,7Fh ; initialise high table pointer
mov tbhp,a ; It is not necessary to set tbhp register if executing “tabrdl”
 ; instruction
:
:
tabrd tempreg1 ; transfers value in table referenced by table pointer data at program
 ; memory address “ 7F06H” transferred to tempreg1 and TBLH
dec tblp ; reduce value of table pointer by one
tabrd tempreg2 ; transfers value in table referenced by table pointer
 ; data at program memory address “7F05H” transferred to

Rev. 1.00 34 December 27, 2019 Rev. 1.00 35 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

 ; tempreg2 and TBLH in this example the data “1AH” is
 ; transferred to tempreg1 and data “0FH” to register tempreg2
:
:
code3 .section ‘code’
org 1F00h ; sets initial address of program memory
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:

In Circuit Programming – ICP
The provision of Flash type Program Memory provides the user with a means of convenient and easy
upgrades and modifications to their programs on the same device. As an additional convenience,
a means of programming the microcontroller in-circuit has provided using a 4-pin interface. This
provides manufacturers with the possibility of manufacturing their circuit boards complete with a
programmed or un-programmed microcontroller, and then programming or upgrading the program
at a later stage. This enables product manufacturers to easily keep their manufactured products
supplied with the latest program releases without removal and re-insertion of the device.

The Flash MCU to Writer Programming Pin correspondence table is as follows:

Writer Pins MCU Programming Pins Pin Description
ICPDA PA0 Programming serial data/address
ICPCK PA2 Programming clock
VDD VDD Power supply
VSS VSS Ground

The Program Memory can be programmed serially in-circuit using this 4-wire interface. Data
is downloaded and uploaded serially on a single pin with an additional line for the clock. Two
additional lines are required for the power supply. The technical details regarding the in-circuit
programming of the device are beyond the scope of this document and will be supplied in
supplementary literature.

During the programming process, taking control of the ICPDA and ICPCK pins for data and clock
programming purposes. The user must there take care to ensure that no other outputs are connected
to these two pins.

* *

Writer_VDD

ICPDA

ICPCK

Writer_VSS

To other Circuit

VDD

PA0

PA2

VSS

Writer Connector
Signals

MCU Programming
Pins

Note: * may be resistor or capacitor. The resistance of * must be greater than 1kΩ or the capacitance
of * must be less than 1nF.

Rev. 1.00 36 December 27, 2019 Rev. 1.00 37 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

On-Chip Debug Support – OCDS
An EV chip exists for the purposes of device emulation. This EV chip device also provides an “On-
Chip Debug” function to debug the device during the development process. The EV chip and the
actual MCU device are almost functionally compatible except for the “On-Chip Debug” function.
Users can use the EV chip device to emulate the real chip device behavior by connecting the
OCDSDA and OCDSCK pins to the HT-IDE development tools. The OCDSDA pin is the OCDS
Data/Address input/output pin while the OCDSCK pin is the OCDS clock input pin. When users use
the EV chip for debugging, other functions which are shared with the OCDSDA and OCDSCK pins
in the actual MCU device will have no effect in the EV chip. However, the two OCDS pins which
are pin-shared with the ICP programming pins are still used as the Flash Memory programming pins
for ICP. For a more detailed OCDS description, refer to the corresponding document.

e-Link Pins EV Chip Pins Pin Description
OCDSDA OCDSDA On-chip debug support data/address input/output
OCDSCK OCDSCK On-chip debug support clock input

VDD VDD Power supply
VSS VSS Ground

In Application Programming – IAP
Flash type Program Memory provides the user with a means of convenient and easy upgrades and
modifications to their programs on the same device. The provision of IAP function offers users the
convenience of Flash Memory multi-programming features. The convenience of the IAP function is
that it can execute the updated program procedure using its internal firmware, without requiring an
external Program Writer or PC. In addition, the IAP interface can also be any type of communication
protocol, such as UART, using I/O pins. Regarding the internal firmware, the user can select versions
provided by Holtek or create their own. The following section illustrates the procedures regarding
how to implement the IAP firmware.

Flash Memory Read/Write Size
The flash memory Erase and Write operations are carried out in a page format while the Read
operation is carried out in a word format. The page size and write buffer size are both assigned with
a capacity of 64 words. Note that the Erase operation should be executed before the Write operation
is executed.

When the Flash Memory Erase/Write Function is successfully enabled, the CFWEN bit will be set
high. When the CFWEN bit is set high, the data can be written into the write buffer. The FWT bit is
used to initiate the write process and then indicate the write operation status. This bit is set high by
application programs to initiate a write process and will be cleared by hardware if the write process
is finished.

The Read operation can be carried out by executing a specific read procedure. The FRDEN bit is
used to enable the read function and the FRD bit is used to initiate the read process by application
programs and then indicate the read operation status. When the read process is finished, this bit will
be cleared by hardware.

Operations Format
Erase 64 words/page
Write 64 words/time
Read 1 word/time

Note: Page size = Write buffer size = 64 words.

IAP Read/Write Format

Rev. 1.00 36 December 27, 2019 Rev. 1.00 37 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Erase Page FARH FARL [7:6] FARL [5:0]
0 0000 0000 00 xx xxxx
1 0000 0000 01 xx xxxx
2 0000 0000 10 xx xxxx
3 0000 0000 11 xx xxxx
4 0000 0001 00 xx xxxx
:
:

:
:

:
:

:
:

510 0111 1111 10 xx xxxx
511 0111 1111 11 xx xxxx

“x”: don’t care
Erase Page Number and Selection

Flash Memory

Write Buffer

FD0H FD0L

CLWB

Flash Memory

FD0H FD0L

Read data word to FD0H/FD0L
Write page data to FD0L/FD0H

(64 words/page)

FARH/FARL
=A14~A0

FARH/FARL
=A14~A0

Write buffer addr.
=A5~A0

Word m
Page n

Note: “n” is specified by A14~A6

Note: “m” is specified by A14~A0

Page addr.
=A14~A6

111111b

000000b

Flash Memory IAP Read/Write Structure

Write Buffer
The write buffer is used to store the written data temporarily when executing the write operation.
The Write Buffer can be filled with written data after the Flash Memory Erase/Write Function has
been successfully enabled by executing the Flash Memory Erase/Write Function Enable procedure.
The write buffer can be cleared by configuring the CLWB bit in the FC2 register. The CLWB bit
can be set high to enable the Clear Write Buffer procedure. When the procedure is finished this bit
will be cleared to low by the hardware. It is recommended that the write buffer should be cleared by
setting the CLWB bit high before the write buffer is used for the first time or when the data in the
write buffer is updated.

The write buffer size is 64 words corresponding to a page. The write buffer address is mapped to a
specific flash memory page specified by the memory address bits, A14~A6. The data written into
the FD0L and FD0H registers will be loaded into the write buffer. When data is written into the high
byte data register, FD0H, it will result in the data stored in the high and low byte data registers both
being written into the write buffer. It will also cause the flash memory address to be incremented by
one, after which the new address will be loaded into the FARH and FARL address registers. When
the flash memory address reaches the page boundary, 111111b of a page with 64 words, the address
will now not be incremented but will stop at the last address of the page. At this point a new page
address should be specified for any other erase/write operations.

After a write process is finished, the write buffer will automatically be cleared by the hardware. Note
that the write buffer should be cleared manually by the application program when the data written
into the flash memory is incorrect in the data verification step. The data should again be written into
the write buffer after the write buffer has been cleared when the data is found to be incorrect during
the data verification step.

Rev. 1.00 38 December 27, 2019 Rev. 1.00 39 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

IAP Flash Program Memory Registers
There are two address registers, four 16-bit data registers and three control registers. The address
and data register pairs are located in Sector 0 while the control registers are located in Sector 1.
Read and Write operations to the Flash memory are carried out using 16-bit data operations using
the address and data registers and the control register. Several registers control the overall operation
of the internal Flash Program Memory. The address registers are named FARL and FARH, the data
registers are named FDnL and FDnH and the control registers are named FC0, FC1 and FC2. As
the address and data register pairs are located in Sector 0, they can be directly accessed in the same
way as any other Special Function Register. The control registers, being located in Sector 1, can be
addressed directly only using the corresponding extended instructions or can be read from or written
to indirectly using the MP1H/MP1L or MP2H/MP2L Memory Pointer pairs and Indirect Addressing
Register, IAR1 or IAR2.

Register
Name

Bit
7 6 5 4 3 2 1 0

FC0 CFWEN FMOD2 FMOD1 FMOD0 FWPEN FWT FRDEN FRD
FC1 D7 D6 D5 D4 D3 D2 D1 D0
FC2 — — — — — — — CLWB

FARL A7 A6 A5 A4 A3 A2 A1 A0
FARH — A14 A13 A12 A11 A10 A9 A8
FD0L D7 D6 D5 D4 D3 D2 D1 D0
FD0H D15 D14 D13 D12 D11 D10 D9 D8
FD1L D7 D6 D5 D4 D3 D2 D1 D0
FD1H D15 D14 D13 D12 D11 D10 D9 D8
FD2L D7 D6 D5 D4 D3 D2 D1 D0
FD2H D15 D14 D13 D12 D11 D10 D9 D8
FD3L D7 D6 D5 D4 D3 D2 D1 D0
FD3H D15 D14 D13 D12 D11 D10 D9 D8

IAP Registers List

• FARL Register
Bit 7 6 5 4 3 2 1 0

Name A7 A6 A5 A4 A3 A2 A1 A0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 Flash Memory Address bit 7 ~ bit 0

• FARH Register
Bit 7 6 5 4 3 2 1 0

Name — A14 A13 A12 A11 A10 A9 A8
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit 7 Unimplemented, read as “0”
Bit 6~0 Flash Memory Address bit 14 ~ bit 8

Rev. 1.00 38 December 27, 2019 Rev. 1.00 39 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• FD0L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The first Flash Memory data word bit 7 ~ bit 0
Note that data written into the low byte data register FD0L will only be stored in the
FD0L register and not loaded into the lower 8-bit write buffer.

• FD0H Register
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The first Flash Memory data word bit 15 ~ bit 8
Note that when 8-bit data is written into the high byte data register FD0H, the whole
16-bit of data stored in the FD0H and FD0L registers will simultaneously be loaded
into the 16-bit write buffer after which the contents of the Flash memory address
register pair, FARH and FARL, will be incremented by one.

• FD1L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The second Flash Memory data word bit 7 ~ bit 0

• FD1H Register
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The second Flash Memory data word bit 15 ~ bit 8

• FD2L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The third Flash Memory data word bit 7 ~ bit 0

• FD2H Register
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The third Flash Memory data word bit 15 ~ bit 8

Rev. 1.00 40 December 27, 2019 Rev. 1.00 41 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• FD3L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The fourth Flash Memory data word bit 7 ~ bit 0

• FD3H Register
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 The fourth Flash Memory data word bit 15 ~ bit 8

• FC0 Register
Bit 7 6 5 4 3 2 1 0

Name CFWEN FMOD2 FMOD1 FMOD0 FWPEN FWT FRDEN FRD
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 CFWEN: Flash Memory Erase/Write function enable control
0: Flash memory erase/write function is disabled
1: Flash memory erase/write function has been successfully enabled

When this bit is cleared to 0 by application program, the Flash memory erase/write
function is disabled. Note that this bit cannot be set high by application programs.
Writing “1” into this bit results in no action. This bit is used to indicate the Flash
memory erase/write function status. When this bit is set to 1 by the hardware, it means
that the Flash memory erase/write function is enabled successfully. Otherwise, the
Flash memory erase/write function is disabled if the bit is zero.

Bit 6~4 FMOD2~FMOD0: Flash memory Mode selection
000: Write Mode
001: Page erase Mode
010: Reserved
011: Read Mode
100: Reserved
101: Reserved
110: Flash memory Erase/Write function Enable Mode
111: Reserved

These bits are used to select the Flash Memory operation modes. Note that the “Flash
memory Erase/Write function Enable Mode” should first be successfully enabled
before the Erase or Write Flash memory operation is executed.

Bit 3 FWPEN: Flash memory Erase/Write function enable procedure Trigger
0: Erase/Write function enable procedure is not triggered or procedure timer times out
1: Erase/Write function enable procedure is triggered and procedure timer starts to count

This bit is used to activate the flash memory Erase/Write function enable procedure
and an internal timer. It is set by the application programs and then cleared by the
hardware when the internal timer times out. The correct patterns must be written into
the FD1L/FD1H, FD2L/FD2H and FD3L/FD3H register pairs respectively as soon as
possible after the FWPEN bit is set high.

Rev. 1.00 40 December 27, 2019 Rev. 1.00 41 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 2 FWT: Flash memory write initiate control
0: Do not initiate Flash memory write or indicating that a Flash memory write

process has completed
1: Initiate Flash memory write process

This bit is set by software and cleared by the hardware when the Flash memory write
process has completed.

Bit 1 FRDEN: Flash memory read enable control
0: Flash memory read disable
1: Flash memory read enable

This is the Flash memory Read Enable Bit which must be set high before any Flash
memory read operations are carried out. Clearing this bit to zero will inhibit Flash
memory read operations.

Bit 0 FRD: Flash memory read initiate control
0: Do not initiate Flash memory read or indicating that a Flash memory read process

has completed
1: Initiate Flash memory read process

This bit is set by software and cleared by the hardware when the Flash memory read
process has completed.

Note: 1. The FWT, FRDEN and FRD bits cannot be set to “1” at the same time with a single instruction.
2. Ensure that the fSUB clock is stable before executing the erase or write operation.

3. Note that the CPU will be stopped when a read, erase or write operation is successfully
activated.

4. Ensure that the read, erase or write operation is totally complete before executing other
operations.

• FC1 Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: Chip Reset Pattern
When a specific value of “55H” is written into this register, a reset signal will be
generated to reset the whole chip.

• FC2 Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — — CLWB
R/W — — — — — — — R/W
POR — — — — — — — 0

Bit 7~1 Unimplemented, read as “0”
Bit 0 CLWB: Flash memory Write Buffer Clear control

0: Do not initiate a Write Buffer Clear process or indicating that a Write Buffer Clear
process has completed.

1: Initiate Write Buffer Clear process
This bit is set by software and cleared by hardware when the Write Buffer Clear
process has completed.

Rev. 1.00 42 December 27, 2019 Rev. 1.00 43 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Flash Memory Erase/Write Flow
It is important to understand the Flash memory Erase/Write flow before the Flash memory contents
are updated. Users can refer to the corresponding operation procedures when developing their IAP
program to ensure that the flash memory contents are correctly updated.

Flash Memory Erase/Write Flow Descriptions:
1. Activate the “Flash Memory Erase/Write function enable procedure” first. When the Flash

Memory Erase/Write function is successfully enabled, the CFWEN bit in the FC0 register will
automatically be set high by hardware. After this, Erase or Write operations can be executed on
the Flash memory. Refer to the “Flash Memory Erase/Write Function Enable Procedure” for
details.

2. Configure the flash memory address to select the desired erase page and then erase this page.

3. Execute a Blank Check operation to ensure whether the page erase operation is successful or not.
The “TABRD” instruction should be executed to read the flash memory contents and to check if
the contents is 0000h or not. If the flash memory page erase operation fails, users should go back
to Step 2 and execute the page erase operation again.

4. Write data into the specific page. Refer to the “Flash Memory Write Procedure” for details.

5. Execute the “TABRD” instruction to read the flash memory contents and check if the written data
is correct or not. If the data read from the flash memory is different from the written data, it means
that the page write operation has failed. The CLWB bit should be set high to clear the write buffer
and then write the data into the specific page again if the write operation has failed.

6. Clear the CFWEN bit to disable the Flash Memory Erase/Write function enable mode if the
current page Erase and Write operations are complete if no more pages need to be erased or
written.

Rev. 1.00 42 December 27, 2019 Rev. 1.00 43 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Flash Memory
Erase/Write Flow

Clear CFWEN bit
Disable Flash Memory
Erase/Write Function

END

Blank Check
Page Data =0000h?

Yes

No

Verify
Page Data
Correct?

Yes

No

Flash Memory
(Page) Write Procedure(*)

Page Erase
Flash Memory

Flash Memory Erase/Write
Function Enable Procedure(*)

(CFWEN=1)

Set CLWB bit

Flash Memory Erase/Write Flow

Note: The Flash Memory Erase/Write Function Enable procedure and Flash Memory Write
procedure will be described in the following sections.

Rev. 1.00 44 December 27, 2019 Rev. 1.00 45 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Flash Memory Erase/Write Function Enable Procedure
The Flash Memory Erase/Write Function Enable Mode is specially designed to prevent the flash
memory contents from being wrongly modified. In order to allow users to change the Flash memory
data using the IAP control registers, users must first enable the Flash memory Erase/Write function.

Flash Memory Erase/Write Function Enable Procedure Description
1. Write data “110” to the FMOD [2:0] bits in the FC0 register to select the Flash Memory Erase/

Write Function Enable Mode.

2. Set the FWPEN bit in the FC0 register to “1” to activate the Flash Memory Erase/Write Function.
This will also activate an internal timer.

3. Write the correct data pattern into the Flash data registers, FD1L~FD3L and FD1H~FD3H, as
soon as possible after the BWT bit is set high. The enable Flash memory erase/write function
data pattern is 00H, 0DH, C3H, 04H, 09H and 40H corresponding to the FD1L~FD3L and
FD1H~FD3H registers respectively.

4. Once the timer has timed out, the BWT bit will automatically be cleared to 0 by hardware
regardless of the input data pattern.

5. If the written data pattern is incorrect, the Flash memory erase/write function will not be enabled
successfully and the above steps should be repeated. If the written data pattern is correct, the
Flash memory erase/write function will be enabled successfully.

6. Once the Flash memory erase/write function is enabled, the Flash memory contents can be
updated by executing the page erase and write operations using the IAP control registers.

To disable the Flash memory erase/write function, the CFWEN bit in the FC0 register can be
cleared. There is no need to execute the above procedure.

Rev. 1.00 44 December 27, 2019 Rev. 1.00 45 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Flash Memory
Erase/Write Function

Enable Procedure

FMOD[2:0]=110

Set FWPEN=1
Hardware start a timer

Wrtie the following pattern to Flash Data register
FD1L=00h, FD1H=04h
FD2L=0Dh, FD2H=09h
FD3L=C3h, FD3H=40h

Is pattern
correct?

CFWEN=0
Flash Memory Erase/Write

Function Disabled

No

CFWEN=1
Flash Memory Erase/Write

Function Enabled

Yes

END

Is timer
Time-out

FWPEN=0?

No

Yes

Flash Memory Erase/Write Function Enable Procedure

Rev. 1.00 46 December 27, 2019 Rev. 1.00 47 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Flash Memory Write Procedure
After the Flash memory erase/write function has been successfully enabled as the CFWEN bit is set
high, the data to be written into the flash memory can be loaded into the write buffer. The selected
flash memory page data should be erased by properly configuring the IAP control registers before
the data write procedure is executed.

The write buffer size is 64 words, known as a page, whose address is mapped to a specific flash
memory page specified by the memory address bits, A14~A6. It is important to ensure that the page
where the write buffer data is located is the same one which the memory address bits, A14~A6,
specify.

Flash Memory Consecutive Write Description
The maximum amount of write data is 64 words for each write operation. The write buffer address
will be automatically incremented by one when consecutive write operations are executed. The start
address of a specific page should first be written into the FARL and FARH registers. Then the data
word should first be written into the FD0L register and then the FD0H register. At the same time the
write buffer address will be incremented by one and then the next data word can be written into the
FD0L and FD0H registers for the next address without modifying the address register pair, FARH
and FARL. When the write buffer address reaches the page boundary the address will not be further
incremented but will stop at the last address of the page.

1. Activate the “Flash Memory Erase/Write function enable procedure”. Check the CFWEN bit
value and then execute the erase/write operations if the CFWEN bit is set high. Refer to the “Flash
Memory Erase/Write function enable procedure” for more details.

2. Set the FMOD field to “001” to select the erase operation. Set the FWT bit high to erase the
desired page which is specified by the FARH and FARL registers. Wait until the FWT bit goes
low.

3. Execute a Blank Check operation using the table read instruction to ensure that the erase operation
has successfully completed.

Go to step 2 if the erase operation is not successful.

Go to step 4 if the erase operation is successful.

4. Set the FMOD field to “000” to select the write operation.

5. Setup the desired start address in the FARH and FARL registers. Write the desired data words
consecutively into the FD0L and FD0H registers within a page as specified by their consecutive
addresses. The maximum written data number is 64 words.

6. Set the FWT bit high to write the data words from the write buffer to the flash memory. Wait until
the FWT bit goes low.

7. Verify the data using the table read instruction to ensure that the write operation has successfully
completed.

If the write operation has not successfully completed, set the CLWB bit high to clear the write
buffer and then go to step 5.

Go to step 8 if the write operation is successful.

8. Clear the CFWEN bit low to disable the Flash memory erase/write function.

Rev. 1.00 46 December 27, 2019 Rev. 1.00 47 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Write Flash
Memory

Flash Memory Erase/Write
Function Enable Procedure

FWT = 1

Page Erase
FARH = xxH, FARL = xxH

FMOD[2:0] = 001
FWT = 1

FWT = 0 ?

Yes

No

Write
FMOD[2:0]= 000

Clear CFWEN bit

END

Write Finish ?

Yes

No

Write data to Write Buffer
FD0L = xxH, FD0H = xxH

Write to Buffer
Finish?

No

Write another Page

Write next data

Yes

FWT = 0 ?
No

Yes

Verify data with
Table Read instruction

DATA correct ?
No

Yes

Blank Check with Table
Read instruction

NoBlank Check
Page Data=0000h?

Set CLWB bit

Specify Flash Memory Address
FARH = xxH, FARL = xxH

Flash Memory Consecutive Write Procedure
Note: 1. When the erase or write operation is successfully activated, all CPU operations will temporarily cease.

2. It will take a typical time of 2.2ms for the FWT bit state changing from high to low.

Rev. 1.00 48 December 27, 2019 Rev. 1.00 49 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Flash Memory Non-Consecutive Write Description
The main difference between Flash Memory Consecutive and Non-Consecutive Write operations
is whether the data words to be written are located in consecutive addresses or not. If the data to be
written is not located in consecutive addresses the desired address should be re-assigned after a data
word is successfully written into the Flash Memory.

A two data word non-consecutive write operation is taken as an example here and described as
follows:

1. Activate the “Flash Memory Erase/Write function enable procedure”. Check the CFWEN bit
value and then execute the erase/write operation if the CFWEN bit is set high. Refer to the “Flash
Memory Erase/Write function enable procedure” for more details.

2. Set the FMOD field to “001” to select the erase operation. Set the FWT bit high to erase the
desired page which is specified by the FARH and FARL registers. Wait until the FWT bit goes
low.

3. Execute a Blank Check operation using the table read instruction to ensure that the erase operation
has successfully completed.

Go to step 2 if the erase operation is not successful.

Go to step 4 if the erase operation is successful.

4. Set the FMOD field to “000” to select the write operation.

5. Setup the desired address ADDR1 in the FARH and FRARL registers. Write the desired data word
DATA1 first into the FD0L register and then into the FD0H register.

6. Set the FWT bit high to transfer the data word from the write buffer to the flash memory. Wait
until the FWT bit goes low.

7. Verify the data using the table read instruction to ensure that the write operation has successfully
completed.

If the write operation has not successfully completed, set the CLWB bit high to clear the write
buffer and then go to step 5.

Go to step 8 if the write operation is successful.

8. Setup the desired address ADDR2 in the FARH and FRARL registers. Write the desired data word
DATA2 first into the FD0L register and then into the FD0H register.

9. Set the FWT bit high to transfer the data word from the write buffer to the flash memory. Wait
until the FWT bit goes low.

10. Verify the data using the table read instruction to ensure that the write operation has successfully
completed.

If the write operation has not successfully completed, set the CLWB bit high to clear the write
buffer and then go to step 8.

Go to step 11 if the write operation is successful.

11. Clear the CFWEN bit low to disable the Flash memory erase/write function.

Rev. 1.00 48 December 27, 2019 Rev. 1.00 49 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Write Flash
Memory

Flash Memory Erase/Write
Function Enable Procedure

FWT = 1

Page Erase
FARH = xxH, FARL = xxH

FMOD[2:0] = 001
FWT = 1

FWT = 0 ?

Yes

No

Write
FMOD[2:0]= 000

Clear CFWEN bit

END

Write Another
Data Word ?

Yes

No

Write data to Write Buffer
FD0L = xxH, FD0H = xxH

FWT = 0 ?
No

Yes

Verify data with
Table Read instruction

DATA correct ?
No

Yes

Blank Check with Table
Read instruction

NoBlank Check
Page Data=0000h?

Set CLWB bit

Specify Flash Memory Address
FARH = xxH, FARL = xxH

Write another word

Flash Memory Non-Consecutive Write Procedure
Note: 1. When the erase or write operation is successfully activated, all CPU operations will temporarily cease.

2. It will take a typical time of 2.2ms for the FWT bit state changing from high to low.

Rev. 1.00 50 December 27, 2019 Rev. 1.00 51 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Important Points to Note for Flash Memory Write Operations
1. The “Flash Memory Erase/Write Function Enable Procedure” must be successfully activated

before the Flash Memory erase/write operation is executed.

2. The Flash Memory erase operation is executed to erase a whole page.

3. The whole write buffer data will be written into the flash memory in a page format. The
corresponding address cannot exceed the page boundary.

4. After the data is written into the flash memory the flash memory contents must be read out using
the table read instruction, TABRD, and checked if it is correct or not. If the data written into the
flash memory is incorrect, the write buffer should be cleared by setting the CLWB bit high and
then writing the data again into the write buffer. Then activate a write operation on the same flash
memory page without erasing it. The data check, buffer clear and data re-write steps should be
repeatedly executed until the data written into the flash memory is correct.

5. The system frequency should be setup to the maximum application frequency when data write and
data check operations are executed using the IAP function.

Flash Memory Read Procedure
To activate the Flash Memory Read procedure, the FMOD field should be set to “011” to select
the flash memory read mode and the FRDEN bit should be set high to enable the read function.
The desired flash memory address should be written into the FARH and FARL registers and then
the FRD bit should be set high. After this the flash memory read operation will be activated. The
data stored in the specified address can be read from the data registers, FD0H and FD0L, when the
FRD bit goes low. There is no need to first activate the Flash Memory Erase/Write Function Enable
Procedure before the flash memory read operation is executed.

Rev. 1.00 50 December 27, 2019 Rev. 1.00 51 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Read Flash
Memory

FRDEN=0

END

Read Finish ?

yes

no

FMOD[2:0]=011
FRDEN=1

Flash address register:
FARH=xxh, FARL=xxh

FRD=0 ?

yes

no

Read value:
FD0L=xxh, FD0H=xxh

FRD=1

Flash Memory Read Procedure
Note: 1. When the read operation is successfully activated, all CPU operations will temporarily cease.

2. It will take a typical time of three instruction cycles for the FRD bit state changing from high to low.

Rev. 1.00 52 December 27, 2019 Rev. 1.00 53 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Data Memory
The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where
temporary information is stored.

Categorized into two types, the first of these is an area of RAM where special function registers are
located. These registers have fixed locations and are necessary for correct operation of the device.
Many of these registers can be read from and written to directly under program control, however,
some remain protected from user manipulation. The second area of Data Memory is reserved for
general purpose use. All locations within this area are read and write accessible under program
control.

Switching between the different Data Memory sectors is achieved by properly setting the Memory
Pointers to correct value.

Structure
The Data Memory is subdivided into several sectors, all of which are implemented in 8-bit wide
Memory. Each of the Data memoru sectors is categorized into two types, the Special Purpose Data
Memory and the General Purpose Data Memory.

The address range of the Special Purpose Data Memory for the device is from 00H to 7FH while the
General Purpose Data Memoru address range is from 80H to FFH.

Special Purpose Data Memory General Purpose Data Memory
Available Sectors Capacity Sector: Address

0, 1, 2, 3 3072×8

0: 80H~FFH
1: 80H~FFH

:
23: 80H~FFH

Data Memory Summary

00H

80H

FFH

Special Purpose
Data Memory
(Sector 0 ~ Sector 3)

General Purpose
Data Memory
(Sector 0 ~ Sector 23)

Sector 0
Sector 1

7FH

Sector 23

Data Memory Structure

Rev. 1.00 52 December 27, 2019 Rev. 1.00 53 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Data Memory Addressing
For device that supports the extended instructions, there is no Bank Pointer for Data Memory. The
Bank Pointer, PBP, is only available for Program Memory. For Data Memory the desired Sector is
pointed by the MP1H or MP2H register and the certain Data Memory address in the selected sector
is specified by the MP1L or MP2L register when using indirect addressing access.

Direct Addressing can be used in all sectors using the corresponding instruction which can address
all available data memory space. For the accessed data memory which is located in any data
memory sectors except sector 0, the extended instructions can be used to access the data memory
instead of using the indirect addressing access. The main difference between standard instructions
and extended instructions is that the data memory address “m” in the extended instructions can be
13 valid bits for the device, the high byte indicates a sector and the low byte indicates a specific
address.

General Purpose Data Memory
All microcontroller programs require an area of read/write memory where temporary data can be
stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose
Data Memory. This area of Data Memory is fully accessible by the user programing for both reading
and writing operations. By using the bit operation instructions individual bits can be set or reset
under program control giving the user a large range of flexibility for bit manipulation in the Data
Memory.

Special Purpose Data Memory
This area of Data Memory is where registers, necessary for the correct operation of the
microcontroller, are stored. Most of the registers are both readable and writeable but some are
protected and are readable only, the details of which are located under the relevant Special Function
Register section. Note that for locations that are unused, any read instruction to these addresses will
return the value “00H”.

Rev. 1.00 54 December 27, 2019 Rev. 1.00 55 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

00H IAR0
01H MP0
02H IAR1
03H MP1L
04H
05H ACC
06H PCL
07H TBLP
08H TBLH
09H TBHP
0AH STATUS
0BH
0CH
0DH
0EH
0FH
10H INTC0
11H
12H

19H

PAPU

18H
PAWU

1BH
1AH

1DH
1CH

1FH

PA
PAC

13H
14H
15H
16H
17H

: Unused, read as 00H

20H
21H
22H

29H
28H

2BH
2AH

2DH
2CH

2FH
2EH

23H
24H
25H
26H
27H

EEAL
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H

EED

1EH

EEC
Sector 0 Sector 0 Sector 1

55H
56H

60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH

6FH
70H30H

31H
32H

38H

3CH

33H
34H
35H
36H
37H

3BH

39H
3AH

71H
72H
73H
74H
75H
76H

7BH

PBC
PBPU

PB

3DH

3FH
3EH

7FH

MP1H

IAR2
MP2L
MP2H

PCC
PCPU

PC

57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH

FC0
FC1

FARL
FARH
FD0L
FD0H
FD1L
FD1H
FD2L
FD2H
FD3L
FD3H

Sector 1

RSTFC

INTC1
INTC2

PD
PDC

PDPU

77H
78H
79H
7AH

MFI0
MFI1
MFI2
MFI3
MFI4

IFS0

PAS0
PAS1
PBS0
PBS1
PCS0

PDS1
PES0
PES1

FC2

PCS1
PDS0

SADC2

SPIAC0
SPIAC1
SPIAD

7CH
7DH
7EH

BRG2

INTC3

PE
PEC

PEPU
PF

PFC
PFPU

LVDC

WDTC
LVRC

SCC

HXTC
LXTC

HIRCC

TB0C
PSC0R

TB1C

SIMTOC

SIMC0
SIMC1
SIMD

SIMA/SIMC2

SADOL

SADC0
SADOH

SADC1

PSC1R

STM0RP
STM0AH

SLEDC0

CP0C
CP1C

PTM1C0
PTM1C1
PTM1DL
PTM1DH
PTM1AL
PTM1AH

PTM1RPL
PTM1RPH

STM2C0
STM2C1
STM2DL
STM2DH
STM2AL
STM2AH
STM2RP

MDUWR0
MDUWR1
MDUWR2
MDUWR3
MDUWR4
MDUWR5

MDUWCTRL
CP0VOS
CP1VOS

6EH
6DH
6CH

U0SR
U0CR1
U0CR2

TXR_RXR0
BRG0
U1SR

U1CR1
U1CR2

TXR_RXR1
BRG1

PTM3C0
PTM3C1
PTM3DL
PTM3DH
PTM3AL
PTM3AH

PTM3RPL
PTM3RPH

PTM2C0
PTM2C1
PTM2DL
PTM2DH
PTM2AL
PTM2AH

PTM2RPL
PTM2RPH

STM1C0
STM1C1
STM1DL
STM1DH
STM1AL
STM1AH
STM1RP

IFS1
IFS2

PFS0
PFS1

PG
PGC

PGPU

MFI6
MFI5

MFI7

PMPS
RSTC

VBGRC

INTEG

PTM0C0
PTM0C1
PTM0DL
PTM0DH
PTM0AL
PTM0AH

CRCCR
CRCIN
CRCDL
CRCDH

IECC

PTM0RPL
PTM0RPH

U2SR
U2CR1
U2CR2

TXR_RXR2 STM0C0
STM0C1

SLEDC1
SLEDC2

STM0DL
STM0DH
STM0AL

PGS1

PBP

PH
PHC

PHPU

IFS3

PGS0

PHS1
PHS0

Sector 2
CTRLRL

STATRL

ERRCNTL

EEAH
TREQR1H

TREQR2H

Sector 3

MSGVAL1H
MSGVAL2L
MSGVAL2H

TREQR1L

INTPND2H

MSGVAL1L

NEWDT2H

INTPND1L
INTPND1H
INTPND2L

NEWDT1L
NEWDT1H
NEWDT2L

TREQR2L
IF2CREQH

Sector 2
IF2CREQL

IF2DTB2L
IF2DTB1H

IF2DTB2H

IF2MSK1L
IF2MSK1H
IF2MSK2L
IF2MSK2H
IF2ARB1L
IF2ARB1H
IF2ARB2L
IF2ARB2H
IF2MCTRL
IF2MCTRH
IF2DTA1L
IF2DTA1H
IF2DTA2L
IF2DTA2H
IF2DTB1L

IF2CMSKL

SLEDC3

CANCFG

CRLL
CRLH
CRHL
CRHH

IF1DTB2L
IF1DTB1H

IF1DTB2H

IF1MSK1L
IF1MSK1H

ERRCNTH

IF1ARB1L
IF1ARB1H
IF1ARB2L
IF1ARB2H
IF1MCTRL
IF1MCTRH
IF1DTA1L
IF1DTA1H
IF1DTA2L
IF1DTA2H
IF1DTB1L

BTRL
BTRH
INTRL
INTRH

TESTRL

BRPERL

IF1MSK2L
IF1MSK2H

IF1CREQL
IF1CREQH
IF1CMSKL

SCOMC

: Reserved, cannot be changed

Special Purpose Data Memory

Rev. 1.00 54 December 27, 2019 Rev. 1.00 55 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Special Function Register Description
Most of the Special Function Register details will be described in the relevant functional sections,
however several registers require a separate description in this section.

Indirect Addressing Registers – IAR0, IAR1, IAR2
The Indirect Addressing Registers, IAR0, IAR1 and IAR2, although having their locations in normal
RAM register space, do not actually physically exist as normal registers. The method of indirect
addressing for RAM data manipulation uses these Indirect Addressing Registers and Memory
Pointers, in contrast to direct memory addressing, where the actual memory address is specified.
Actions on the IAR0, IAR1 and IAR2 registers will result in no actual read or write operation to
these registers but rather to the memory location specified by their corresponding Memory Pointers,
MP0, MP1L/MP1H or MP2L/MP2H. Acting as a pair, IAR0 and MP0 can together access data only
from Sector 0 while the IAR1 register together with the MP1L/MP1H register pair and IAR2 register
together with the MP2L/MP2H register pair can access data from any Data Memory Sector. As
the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing
Registers will return a result of “00H” and writing to the registers will result in no operation.

Memory Pointers – MP0, MP1L, MP1H, MP2L, MP2H
Five Memory Pointers, known as MP0, MP1L, MP1H, MP2L, MP2H, are provided. These Memory
Pointers are physically implemented in the Data Memory and can be manipulated in the same way
as normal registers providing a convenient way with which to address and track data. When any
operation to the relevant Indirect Addressing Registers is carried out, the actual address that the
microcontroller is directed to is the address specified by the related Memory Pointer. MP0, together
with Indirect Addressing Register, IAR0, are used to access data from Sector 0, while MP1L/MP1H
together with IAR1 and MP2L/MP2H together with IAR2 are used to access data from all sectors
according to the corresponding MP1H or MP2H register. Direct Addressing can be used in all
sectors using the corresponding instruction which can address all available data memory space.

The following example shows how to clear a section of four Data Memory locations already defined
as locations adres1 to adres4.

Indirect Addressing Program Example 1
data .section ´data´
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 ćode´
org 00h
start:
 mov a, 04h ; setup size of block
 mov block, a
	 mov	a,	offset	adres1	 	 ;	Accumulator	loaded	with	first	RAM	address
	 mov	mp0,	a		 	 	 	 ;	setup	memory	pointer	with	first	RAM	address
loop:
	 clr	IAR0	 	 	 	 	 ;	clear	the	data	at	address	defined	by	MP0
 inc mp0 ; increment memory pointer
 sdz block ; check if last memory location has been cleared
 jmp loop
continue:

Rev. 1.00 56 December 27, 2019 Rev. 1.00 57 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Indirect Addressing Program Example 2
data .section ´data´
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 ćode´
org 00h
start:
 mov a, 04h ; setup size of block
 mov block, a
 mov a, 01h ; setup the memory sector
 mov mp1h, a
	 mov	a,	offset	adres1	 	 ;	Accumulator	loaded	with	first	RAM	address
	 mov	mp1l,	a	 	 	 	 ;	setup	memory	pointer	with	first	RAM	address
loop:
	 clr	IAR1	 	 	 	 	 ;	clear	the	data	at	address	defined	by	MP1L
	 inc	mp1l	 	 	 	 	 ;	increment	memory	pointer	MP1L
 sdz block ; check if last memory location has been cleared
 jmp loop
continue:

The important point to note here is that in the example shown above, no reference is made to specific
Data Memory addresses.

Direct Addressing Program Example using extended instructions
data .section ´data´
temp db ?
code .section at 0 ćode´
org 00h
start:
 lmov a, [m] ; move [m] data to acc
 lsub a, [m+1] ; compare [m] and [m+1] data
 snz c ; [m]>[m+1]?
 jmp continue ; no
 lmov a, [m] ; yes, exchange [m] and [m+1] data
 mov temp, a
 lmov a, [m+1]
 lmov [m], a
 mov a, temp
 lmov [m+1], a
continue:

Note: Here “m” is a data memory address located in any data memory sectors. For example,
m=1F0H, it indicates address 0F0H in Sector 1.

Rev. 1.00 56 December 27, 2019 Rev. 1.00 57 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Program Memory Bank Pointer – PBP
For the device the Program Memory is divided into several banks. Selecting the required Program
Memory area is achieved using the Program Memory Bank Pointer, PBP. The PBP register should be
properly configured before the device executes the “Branch” operation using the “JMP” or “CALL”
instruction. After that a jump to a non-consecutive Program Memory address which is located in a
certain bank selected by the program memory bank pointer bits will occur.

• PBP Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 PBP1 PBP0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~2 D7~D2: General data bits and can be read or written
Bit 1~0 PBP1~PBP0: Program Memory Bank Point bit 1 ~ bit 0

00: Bank 0
01: Bank 1
10: Bank 2
11: Bank 3

Accumulator – ACC
The Accumulator is central to the operation of any microcontroller and is closely related with
operations carried out by the ALU. The Accumulator is the place where all intermediate results
from the ALU are stored. Without the Accumulator it would be necessary to write the result of
each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory
resulting in higher programming and timing overheads. Data transfer operations usually involve
the temporary storage function of the Accumulator; for example, when transferring data between
one user-defined register and another, it is necessary to do this by passing the data through the
Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register – PCL
To provide additional program control functions, the low byte of the Program Counter is made
accessible to programmers by locating it within the Special Purpose area of the Data Memory. By
manipulating this register, direct jumps to other program locations are easily implemented. Loading
a value directly into this PCL register will cause a jump to the specified Program Memory location,
however, as the register is only 8-bit wide, only jumps within the current Program Memory page are
permitted. When such operations are used, note that a dummy cycle will be inserted.

Look-up Table Registers – TBLP, TBHP, TBLH
These three special function registers are used to control operation of the look-up table which is
stored in the Program Memory. TBLP and TBHP are the table pointers and indicate the location
where the table data is located. Their value must be setup before any table read commands are
executed. Their value can be changed, for example using the “INC” or “DEC” instructions, allowing
for easy table data pointing and reading. TBLH is the location where the high order byte of the table
data is stored after a table read data instruction has been executed. Note that the lower order table
data byte is transferred to a user defined location.

Rev. 1.00 58 December 27, 2019 Rev. 1.00 59 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Status Register – STATUS
This 8-bit register contains the SC flag, CZ flag, zero flag (Z), carry flag (C), auxiliary carry flag (AC),
overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/
logical operation and system management flags are used to record the status and operation of the
microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions
like most other registers. Any data written into the status register will not change the TO or PDF flag.
In addition, operations related to the status register may give different results due to the different
instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or
by executing the “CLR WDT” or “HALT” instruction. The PDF flag is affected only by executing
the “HALT” or “CLR WDT” instruction or during a system power-up.

The Z, OV, AC, C, SC and CZ flags generally reflect the status of the latest operations.

• C is set if an operation results in a carry during an addition operation or if a borrow does not take
place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through
carry instruction.

• AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from
the high nibble into the low nibble in subtraction; otherwise AC is cleared.

• Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.

• OV is set if an operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit, or vice versa; otherwise OV is cleared.

• PDF is cleared by a system power-up or executing the “CLR WDT” instruction. PDF is set by
executing the “HALT” instruction.

• TO is cleared by a system power-up or executing the “CLR WDT” or “HALT” instruction. TO is
set by a WDT time-out.

• CZ is the operational result of different flags for different instructions. Refer to register
definitions for more details.

• SC is the result of the “XOR” operation which is performed by the OV flag and the MSB of the
current instruction operation result.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will
not be pushed onto the stack automatically. If the contents of the status registers are important and if
the subroutine can corrupt the status register, precautions must be taken to correctly save it.

Rev. 1.00 58 December 27, 2019 Rev. 1.00 59 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• STATUS Register
Bit 7 6 5 4 3 2 1 0

Name SC CZ TO PDF OV Z AC C
R/W R/W R/W R R R/W R/W R/W R/W
POR x x 0 0 x x x x

“x”: unknown
Bit 7 SC: The result of the “XOR” operation which is performed by the OV flag and the

MSB of the instruction operation result.
Bit 6 CZ: The operational result of different flags for different instructions

For SUB/SUBM/LSUB/LSUBM instructions, the CZ flag is equal to the Z flag.
For SBC/SBCM/LSBC/LSBCM instructions, the CZ flag is the “AND” operation
result which is performed by the previous operation CZ flag and current operation zero
flag.
For other instructions, the CZ flag will not be affected.

Bit 5 TO: Watchdog Time-Out Flag
0: After power up or executing the “CLR WDT” or “HALT” instruction
1: A watchdog time-out occurred.

Bit 4 PDF: Power Down Flag
0: After power up or executing the “CLR WDT” instruction
1: By executing the “HALT” instruction

Bit 3 OV: Overflow Flag
0: No overflow
1: An operation results in a carry into the highest-order bit but not a carry out of the

highest-order bit or vice versa.
Bit 2 Z: Zero Flag

0: The result of an arithmetic or logical operation is not zero
1: The result of an arithmetic or logical operation is zero

Bit 1 AC: Auxiliary flag
0: No auxiliary carry
1: An operation results in a carry out of the low nibbles in addition, or no borrow

from the high nibble into the low nibble in subtraction
Bit 0 C: Carry Flag

0: No carry-out
1: An operation results in a carry during an addition operation or if a borrow does

not take place during a subtraction operation
The “C” flag is also affected by a rotate through carry instruction.

Rev. 1.00 60 December 27, 2019 Rev. 1.00 61 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

EEPROM Data Memory
This device contains an area of internal EEPROM Data Memory. EEPROM is by its nature a non-
volatile form of re-programmable memory, with data retention even when its power supply is
removed. By incorporating this kind of data memory, a whole new host of application possibilities
are made available to the designer. The availability of EEPROM storage allows information such
as product identification numbers, calibration values, specific user data, system setup data or other
product information to be stored directly within the product microcontroller. The process of reading
and writing data to the EEPROM memory has been reduced to a very trivial affair.

EEPROM Data Memory Structure
The EEPROM Data Memory capacity is 1024×8 bits for the device. Unlike the Program Memory
and RAM Data Memory, the EEPROM Data Memory is not directly mapped into memory space and
is therefore not directly addressable in the same way as the other types of memory. Read and Write
operations to the EEPROM are carried out in single byte operations using two address and a data
register in Sector 0 and a single control register in Sector 1.

EEPROM Registers
Four registers control the overall operation of the internal EEPROM Data Memory. These are the
address registers, EEAL and EEAH, the data register, EED and a single control register, EEC. As
the EEAL/EEAH and EED registers are located in Sector 0, they can be directly accessed in the
same was as any other Special Function Register. The EEC register however, being located in Sector
1, can only be read from or written to indirectly using the MP1L/MP1H or MP2L/MP2H Memory
Pointer and Indirect Addressing Register, IAR1/IAR2. Because the EEC control register is located at
address 40H in Sector 1, the MP1L or MP2L Memory Pointer must first be set to the value 40H and
the MP1H or MP2H Memory Pointer high byte set to the value, 01H, before any operations on the
EEC register are executed.

Register
Name

Bit
7 6 5 4 3 2 1 0

EEAL EEAL7 EEAL6 EEAL5 EEAL4 EEAL3 EEAL2 EEAL1 EEAL0
EEAH — — — — — — EEAH1 EEAH0
EED EED7 EED6 EED5 EED4 EED3 EED2 EED1 EED0
EEC — — — — EEWREN EEWR EERDEN EERD

EEPROM Register List

• EEAL Register
Bit 7 6 5 4 3 2 1 0

Name EEAL7 EEAL6 EEAL5 EEAL4 EEAL3 EEAL2 EEAL1 EEAL0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 EEAL7~EEAL0: Data EEPROM low byte address bit 7 ~ bit 0

• EEAH Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — EEAH1 EEAH0
R/W — — — — — — R/W R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 EEAH1~EEAH0: Data EEPROM high byte address bit 1 ~ bit 0

Rev. 1.00 60 December 27, 2019 Rev. 1.00 61 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• EED Register
Bit 7 6 5 4 3 2 1 0

Name EED7 EED6 EED5 EED4 EED3 EED2 EED1 EED0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 EED7~EED0: Data EEPROM Data bit 7 ~ bit 0

• EEC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — EEWREN EEWR EERDEN EERD
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 0 0 0

Bit 7~4 Unimplemented, read as “0”
Bit 3 EEWREN: Data EEPROM Write Enable

0: Disable
1: Enable

This is the Data EEPROM Write Enable Bit which must be set high before Data
EEPROM write operations are carried out. Clearing this bit to zero will inhibit Data
EEPROM write operations.

Bit 2 EEWR: EEPROM Write Control
0: Write cycle has finished
1: Activate a write cycle

This is the Data EEPROM Write Control Bit and when set high by the application
program will activate a write cycle. This bit will be automatically reset to zero by the
hardware after the write cycle has finished. Setting this bit high will have no effect if
the EEWREN has not first been set high.

Bit 1 EERDEN: Data EEPROM Read Enable
0: Disable
1: Enable

This is the Data EEPROM Read Enable Bit which must be set high before Data
EEPROM read operations are carried out. Clearing this bit to zero will inhibit Data
EEPROM read operations.

Bit 0 EERD: EEPROM Read Control
0: Read cycle has finished
1: Activate a read cycle

This is the Data EEPROM Read Control Bit and when set high by the application
program will activate a read cycle. This bit will be automatically reset to zero by the
hardware after the read cycle has finished. Setting this bit high will have no effect if
the EERDEN bit has not first been set high.

Note: 1. The EEWREN, EEWR, EERDEN and EERD cannot be set high at the same time in one
instruction. The EEWR and EERD cannot be set high at the same time.

2. Ensure that the fSUB clock is stable before executing the write operation.

3. Ensure that the write operation is totally complete before changing the EEC register content.

Rev. 1.00 62 December 27, 2019 Rev. 1.00 63 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Reading Data from the EEPROM
To read data from the EEPROM, the EEPROM address of the data to be read must first be placed in
the EEAL and EEAH registers. Then the read enable bit, EERDEN, in the EEC register must be set
high to enable the read function. If the EERD bit in the EEC register is now set high, a read cycle
will be initiated. Setting the EERD bit high will not initiate a read operation if the EERDEN bit has
not been set. When the read cycle terminates, the EERD bit will be automatically cleared to zero,
after which the data can be read from the EED register. The data will remain in the EED register
until another read or write operation is executed. The application program can poll the EERD bit to
determine when the data is valid for reading.

Writing Data to the EEPROM
The EEPROM address of the data to be written must first be placed in the EEAL and EEAH
registers and the data placed in the EED register. To write data to the EEPROM, the write enable
bit, EEWREN, in the EEC register must first be set high to enable the write function. After this,
the EEWR bit in the EEC register must be immediately set high to initiate a write cycle. These two
instructions must be executed in two consecutive instruction cycles. The global interrupt bit EMI
should also first be cleared before implementing any write operations, and then set again after the
write cycle has started. Note that setting the EEWR bit high will not initiate a write cycle if the
EEWREN bit has not been set. As the EEPROM write cycle is controlled using an internal timer
whose operation is asynchronous to microcontroller system clock, a certain time will elapse before
the data will have been written into the EEPROM. Detecting when the write cycle has finished
can be implemented either by polling the EEWR bit in the EEC register or by using the EEPROM
interrupt. When the write cycle terminates, the EEWR bit will be automatically cleared to zero
by the microcontroller, informing the user that the data has been written to the EEPROM. The
application program can therefore poll the EEWR bit to determine when the write cycle has ended.

Write Protection
Protection against inadvertent write operation is provided in several ways. After the device is
powered-on the Write Enable bit in the control register will be cleared preventing any write
operations. Also at power-on the Memory Pointer high byte register, MP1H or MP2H, will be reset
to zero, which means that Data Memory Sector 0 will be selected. As the EEPROM control register
is located in Sector 1, this adds a further measure of protection against spurious write operations.
During normal program operation, ensuring that the Write Enable bit in the control register is
cleared will safeguard against incorrect write operations.

EEPROM Interrupt
The EEPROM write interrupt is generated when an EEPROM write cycle has ended. The EEPROM
interrupt must first be enabled by setting the DEE bit in the relevant interrupt register. However as
the EEPROM is contained within a Multi-function Interrupt, the associated multi-function interrupt
enable bit must also be set. When an EEPROM write cycle ends, the DEF request flag and its
associated multi-function interrupt request flag will both be set. If the global, EEPROM and Multi-
function interrupts are enabled and the stack is not full, a jump to the associated Multi-function
Interrupt vector will take place. When the interrupt is serviced only the Multi-function interrupt flag
will be automatically reset, the EEPROM interrupt flag must be manually reset by the application
program. More details can be obtained in the Interrupt section.

Rev. 1.00 62 December 27, 2019 Rev. 1.00 63 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Programming Considerations
Care must be taken that data is not inadvertently written to the EEPROM. Protection can be
enhanced by ensuring that the Write Enable bit is normally cleared to zero when not writing. Also
the Memory Pointer high byte register, MP1H or MP2H, could be normally cleared to zero as this
would inhibit access to Sector 1 where the EEPROM control register exist. Although certainly not
necessary, consideration might be given in the application program to the checking of the validity of
new write data by a simple read back process.

When writing data the EEWR bit must be set high immediately after the EEWREN bit has been
set high, to ensure the write cycle executes correctly. The global interrupt bit EMI should also be
cleared before a write cycle is executed and then re-enabled after the write cycle starts. Note that
the device should not enter the IDLE or SLEEP mode until the EEPROM read or write operation is
totally complete. Otherwise, the EEPROM read or write operation will fail.

Programming Examples

Reading data from the EEPROM – polling method
MOV	 A,	EEPROM_ADRES	 	 ;	user	defined	address
MOV	 EEA,	A
MOV	 A,	40H		 	 	 	 ;	setup	memory	pointer	MP1L
MOV	 MP1L,	A		 	 	 	 ;	MP1L	points	to	EEC	register
MOV	 A,	01H		 	 	 	 ;	setup	memory	pointer	MP1H
MOV	 MP1H,	A
SET	 IAR1.1		 	 	 	 ;	set	EERDEN	bit,	enable	read	operations
SET	 IAR1.0		 	 	 	 ;	start	Read	Cycle	-	set	EERD	bit
BACK:
SZ	 IAR1.0		 	 	 	 ;	check	for	read	cycle	end
JMP	 BACK
CLR	 IAR1	 	 	 	 	 ;	disable	EEPROM	read	if	no	more	read	operations	are	required
CLR	 MP1H
MOV	 A,	EED		 	 	 	 ;	move	read	data	to	register
MOV	 READ_DATA,	A

Note: For each read operation, the address register should be re-specified followed by setting the
EERD bit high to activate a read cycle even if the target address is consecutive.

Writing Data to the EEPROM – polling method
MOV	 A,	EEPROM_ADRES	 	 ;	user	defined	address
MOV	 EEA,	A
MOV	 A,	EEPROM_DATA	 	 ;	user	defined	data
MOV	 EED,	A
MOV	 A,	040H		 	 	 	 ;	setup	memory	pointer	MP1L
MOV	 MP1L,	A		 	 	 	 ;	MP1L	points	to	EEC	register
MOV	 A,	01H		 	 	 	 ;	setup	memory	pointer	MP1H
MOV	 MP1H,	A
CLR	 EMI
SET	 IAR1.3		 	 	 	 ;	set	EEWREN	bit,	enable	write	operations
SET	 IAR1.2		 	 	 	 ;	start	Write	Cycle	-	set	EEWR	bit	–	executed	immediately
	 	 	 	 	 	 	 ;	after	set	EEWREN	bit
SET		EMI
BACK:
SZ	 IAR1.2		 	 	 	 ;	check	for	write	cycle	end
JMP	 BACK
CLR	 MP1H

Rev. 1.00 64 December 27, 2019 Rev. 1.00 65 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Oscillators
Various oscillator options offer the user a wide range of functions according to their various
application requirements. The flexible features of the oscillator functions ensure that the best
optimisation can be achieved in terms of speed and power saving. Oscillator selections and operation
are selected through relevant control registers.

Oscillator Overview
In addition to being the source of the main system clock the oscillators also provide clock sources
for the Watchdog Timer and Time Base Interrupts. External oscillators requiring some external
components as well as fully integrated internal oscillators, requiring no external components, are
provided to form a wide range of both fast and slow system oscillators. All oscillator options are
selected through the registers. The higher frequency oscillators provide higher performance but
carry with it the disadvantage of higher power requirements, while the opposite is of course true
for the lower frequency oscillators. With the capability of dynamically switching between fast and
slow system clock, the device has the flexibility to optimize the performance/power ratio, a feature
especially important in power sensitive portable applications.

Type Name Freq. Pins
External High Speed Crystal HXT 400kHz~16MHz OSC1/OSC2
Internal High Speed RC HIRC 8/12/16MHz —
External Low Speed Crystal LXT 32.768kHz XT1/XT2
Internal Low Speed RC LIRC 32kHz —

Oscillator Types

System Clock Configurations
There are four methods of generating the system clock, two high speed oscillators and two low
speed oscillators. The two high speed oscillators are the external crystal/ceramic oscillator, HXT,
and the internal 8/12/16MHz RC oscillator, HIRC. The two low speed oscillators are the internal
32kHz RC oscillator, LIRC, and the external 32.768kHz crystal oscillator, LXT. Selecting whether
the low or high speed oscillator is used as the system oscillator is implemented using the CKS2 ~
CKS0 bits in the SCC register and the system clock can be dynamically selected.

The actual source clock used for the low speed oscillators is chosen via the FSS bit in the SCC
register while for the high speed oscillator the source clock is selected by the FHS bit in the SCC
register. The frequency of the slow speed or high speed system clock is determined using the
CKS2~CKS0 bits in the SCC register. Note that two oscillator selections must be made namely one
high speed and one low speed system oscillators. It is not possible to choose a no-oscillator selection
for either the high or low speed oscillator.

Rev. 1.00 64 December 27, 2019 Rev. 1.00 65 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

HXT

High Speed
Oscillators

FHS

PrescalerHIRC

fH

fH/2

fH/4

fH/8

fH/16

fH/32

fH/64

CKS2~CKS0

fSYS

LXT

Low Speed
Oscillators

LIRC

FSS
fLIRC

IDLE0
SLEEP

IDLE2
SLEEP

fSUB

fSUB

HIRCEN

HXTEN

LXTEN

System Clock Configurations

External Crystal/Ceramic Oscillator – HXT
The External Crystal/Ceramic System Oscillator is the high frequency oscillator. For most crystal
oscillator configurations, the simple connection of a crystal across OSC1 and OSC2 will create the
necessary phase shift and feedback for oscillation, without requiring external capacitors. However,
for some crystal types and frequencies, to ensure oscillation, it may be necessary to add two small
value capacitors, C1 and C2. Using a ceramic resonator will usually require two small value
capacitors, C1 and C2, to be connected as shown for oscillation to occur. The values of C1 and C2
should be selected in consultation with the crystal or resonator manufacturer’s specification.

For oscillator stability and to minimise the effects of noise and crosstalk, it is important to ensure
that the crystal and any associated resistors and capacitors along with interconnecting lines are all
located as close to the MCU as possible.

Note: 1. RP is normally not required. C1 and C2 are required.
2. Although not shown OSC1/OSC2 pins have a parasitic

capacitance of around 7pF.

To internal
circuits

Internal
Oscillator
Circuit

C1

C2

OSC1

OSC2

RFRP

Crystal/Resonator Oscillator

HXT Oscillator C1 and C2 Values
Crystal Frequency C1 C2

16MHz 0pF 0pF
12MHz 0pF 0pF
8MHz 0pF 0pF
4MHz 0pF 0pF
1MHz 100pF 100pF

Note: C1 and C2 values are for guidance only.

Crystal Recommended Capacitor Values

Rev. 1.00 66 December 27, 2019 Rev. 1.00 67 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Internal RC Oscillator – HIRC
The internal RC oscillator is a fully integrated system oscillator requiring no external components.
The internal RC oscillator has a fixed frequency of 8/12/16MHz. Device trimming during the
manufacturing process and the inclusion of internal frequency compensation circuits are used to
ensure that the influence of the power supply voltage, temperature and process variations on the
oscillation frequency are minimised. As a result, at a power supply of 3V or 5V and at a temperature
of 25°C degrees, the selected trimmed oscillation frequency will have a tolerance within 1%. Note
that if this internal system clock is selected, it requires no external pins for its operation.

External 32.768kHz Crystal Oscillator – LXT
The External 32.768kHz Crystal System Oscillator is one of the low frequency oscillator choices,
which is selected via a software control bit, FSS. This clock source has a fixed frequency of
32.768kHz and requires a 32.768kHz crystal to be connected between pins XT1 and XT2. The
external resistor and capacitor components connected to the 32.768kHz crystal are necessary to
provide oscillation. For applications where precise frequencies are essential, these components may
be required to provide frequency compensation due to different crystal manufacturing tolerances.
After the LXT oscillator is enabled by setting the LXTEN bit to 1, there is a time delay associated
with the LXT oscillator waiting for it to start-up.

When the microcontroller enters the SLEEP or IDLE Mode, the system clock is switched off to stop
microcontroller activity and to conserve power. However, in many microcontroller applications it
may be necessary to keep the internal timers operational even when the microcontroller is in the
SLEEP or IDLE Mode. To do this, another clock, independent of the system clock, must be provided.

However, for some crystals, to ensure oscillation and accurate frequency generation, it is necessary
to add two small value external capacitors, C1 and C2. The exact values of C1 and C2 should be
selected in consultation with the crystal or resonator manufacturer’s specification. The external
parallel feedback resistor, Rp, is required.

The pin-shared software control bits determine if the XT1/XT2 pins are used for the LXT oscillator
or as I/O or other pin-shared functional pins.

• If the LXT oscillator is not used for any clock source, the XT1/XT2 pins can be used as normal I/O
or other pin-shared functional pins.

• If the LXT oscillator is used for any clock source, the 32.768kHz crystal should be connected to
the XT1/XT2 pins.

For oscillator stability and to minimise the effects of noise and crosstalk, it is important to ensure
that the crystal and any associated resistors and capacitors along with interconnecting lines are all
located as close to the MCU as possible.

Note: 1. RP, C1 and C2 are required.
2. Although not shown pins have a parasitic capacitance of around 7pF.

To internal
circuits

Internal
Oscillator
Circuit

C1

C2

XT1

XT2

RP
32.768kHz

Internal RC
Oscillator

External LXT Oscillator

Rev. 1.00 66 December 27, 2019 Rev. 1.00 67 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Internal 32kHz Oscillator – LIRC
The Internal 32kHz System Oscillator is one of the low frequency oscillator choices, which is
selected via a software control bit, FSS. It is a fully integrated RC oscillator with a typical frequency
of 32kHz at full voltage range, requiring no external components for its implementation. Device
trimming during the manufacturing process and the inclusion of internal frequency compensation
circuits are used to ensure that the influence of the power supply voltage, temperature and process
variations on the oscillation frequency are minimised.

Operating Modes and System Clocks
Present day applications require that their microcontrollers have high performance but often still
demand that they consume as little power as possible, conflicting requirements that are especially
true in battery powered portable applications. The fast clocks required for high performance will
by their nature increase current consumption and of course vice versa, lower speed clocks reduce
current consumption. As both high and low speed clock sources are provided the means to switch
between them dynamically, the user can optimise the operation of their microcontroller to achieve
the best performance/power ratio.

System Clocks
The device has different clock sources for both the CPU and peripheral function operation. By
providing the user with a wide range of clock selections using register programming, a clock system
can be configured to obtain maximum application performance.
The main system clock, can come from either a high frequency, fH, or low frequency, fSUB, source,
and is selected using the CKS2~CKS0 bits in the SCC register. The high speed system clock is
sourced from an HXT or HIRC oscillator, selected via configuring the FHS bit in the SCC register.
The low speed system clock source can be sourced from the internal clock fSUB. If fSUB is selected
then it can be sourced from the LXT or LIRC oscillator. The other choice, which is a divided version
of the high speed system oscillator has a range of fH/2~fH/64.

HXT

High Speed
Oscillators

FHS

PrescalerHIRC

fH

fH/2

fH/4

fH/8

fH/16

fH/32

fH/64

CKS2~CKS0

fSYS

LXT

Low Speed
Oscillators

LIRC

FSS

IDLE0
SLEEP

IDLE2
SLEEP

fSUB

fSUB

HIRCEN

HXTEN

LXTEN

fSYS

fSYS/4

fSUB

CLKSEL0[1:0]

fPSC0
Prescaler 0

WDT
fLIRC

Time Base 0

LVR
fLIRC fSYS

fSYS/4

fSUB

CLKSEL1[1:0]

fPSC1
Prescaler 1 Time Base 1

TB0[2:0]

TB1[2:0]

Device Clock Configurations

Note: When the system clock source fSYS is switched to fSUB from fH, the high speed oscillator can be
stopped to conserve the power or continue to oscillate to provide the clock source, fH~fH/64,
for peripheral circuit to use, which is determined by configuring the corresponding high speed
oscillator enable control bit.

Rev. 1.00 68 December 27, 2019 Rev. 1.00 69 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

System Operation Modes
There are six different modes of operation for the microcontroller, each one with its own
special characteristics and which can be chosen according to the specific performance and
power requirements of the application. There are two modes allowing normal operation of the
microcontroller, the FAST Mode and SLOW Mode. The remaining four modes, the SLEEP, IDLE0,
IDLE1 and IDLE2 Mode are used when the microcontroller CPU is switched off to conserve power.

Operation
Mode CPU

Register Setting
fSYS fH fSUB fLIRC

FHIDEN FSIDEN CKS2~CKS0
FAST On x x 000~110 fH~fH/64 On On On
SLOW On x x 111 fSUB On/Off (1) On On

IDLE0 Off 0 1
000~110 Off

Off On On
111 On

IDLE1 Off 1 1 xxx On On On On

IDLE2 Off 1 0
000~110 On

On Off On
111 Off

SLEEP Off 0 0 xxx Off Off Off On/Off (2)

“x”: don’t care
Note: 1. The fH clock will be switched on or off by configuring the corresponding oscillator enable bit

in the SLOW mode.
2. The fLIRC clock can be switched on or off which is controlled by the WDT function being

enabled or disabled in the SLEEP mode.

FAST Mode
This is one of the main operating modes where the microcontroller has all of its functions operational
and where the system clock is provided by one of the high speed oscillators. This mode operates
allowing the microcontroller to operate normally with a clock source which will come from the HXT
or HIRC oscillator. The high speed oscillator will however first be divided by a ratio ranging from 1 to
64, the actual ratio being selected by the CKS2~CKS0 bits in the SCC register. Although a high speed
oscillator is used, running the microcontroller at a divided clock ratio reduces the operating current.

SLOW Mode
This is also a mode where the microcontroller operates normally although now with a slower speed
clock source. The clock source used will be from fSUB. The fSUB clock is derived from the LXT or
LIRC oscillator.

SLEEP Mode
The SLEEP Mode is entered when a HALT instruction is executed and when the FHIDEN and
FSIDEN bit are low. In the SLEEP mode the CPU will be stopped. However the fLIRC clock can still
continue to operate if the WDT function is enabled by the WDTC register.

IDLE0 Mode
The IDLE0 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the
SCC register is low and the FSIDEN bit in the SCC register is high. In the IDLE0 Mode the CPU will
be switched off but the low speed oscillator will be turned on to drive some peripheral functions.

IDLE1 Mode
The IDLE1 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the
SCC register is high and the FSIDEN bit in the SCC register is high. In the IDLE1 Mode the CPU
will be switched off but both the high and low speed oscillators will be turned on to provide a clock
source to keep some peripheral functions operational.

Rev. 1.00 68 December 27, 2019 Rev. 1.00 69 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

IDLE2 Mode
The IDLE2 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the
SCC register is high and the FSIDEN bit in the SCC register is low. In the IDLE2 Mode the CPU
will be switched off but the high speed oscillator will be turned on to provide a clock source to keep
some peripheral functions operational.

Control Registers
The registers, SCC, HIRCC, HXTC and LXTC, are used to control the system clock and the
corresponding oscillator configurations.

Register
Name

Bit
7 6 5 4 3 2 1 0

SCC CKS2 CKS1 CKS0 — FHS FSS FHIDEN FSIDEN
HIRCC — — — — HIRC1 HIRC0 HIRCF HIRCEN
HXTC — — — — — HXTM HXTF HXTEN
LXTC — — — — — — LXTF LXTEN

System Operating Mode Control Registers List

• SCC Register
Bit 7 6 5 4 3 2 1 0

Name CKS2 CKS1 CKS0 — FHS FSS FHIDEN FSIDEN
R/W R/W R/W R/W — R/W R/W R/W R/W
POR 0 0 0 — 0 0 0 0

Bit 7~5 CKS2~CKS0: System clock selection
000: fH

001: fH/2
010: fH/4
011: fH/8
100: fH/16
101: fH/32
110: fH/64
111: fSUB

These three bits are used to select which clock is used as the system clock source. In
addition to the system clock source directly derived from fH or fSUB, a divided version
of the high speed system oscillator can also be chosen as the system clock source.

Bit 4 Unimplemented, read as “0”
Bit 3 FHS: High Frequency clock selection

0: HIRC
1: HXT

Bit 2 FSS: Low Frequency clock selection
0: LIRC
1: LXT

Bit 1 FHIDEN: High Frequency oscillator control when CPU is switched off
0: Disable
1: Enable

This bit is used to control whether the high speed oscillator is activated or stopped
when the CPU is switched off by executing an “HALT” instruction.

Bit 0 FSIDEN: Low Frequency oscillator control when CPU is switched off
0: Disable
1: Enable

This bit is used to control whether the low speed oscillator is activated or stopped
when the CPU is switched off by executing an “HALT” instruction.

Rev. 1.00 70 December 27, 2019 Rev. 1.00 71 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• HIRCC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — HIRC1 HIRC0 HIRCF HIRCEN
R/W — — — — R/W R/W R R/W
POR — — — — 0 0 0 1

Bit 7~4 Unimplemented, read as “0”
Bit 3~2 HIRC1~HIRC0: HIRC Frequency selection

00: 8MHz
01: 12MHz
10: 16MHz
11: 8MHz

When the HIRC oscillator is enabled or the HIRC frequency selection is changed
by application program, the clock frequency will automatically be changed after the
HIRCF flag is set to 1.

Bit 1 HIRCF: HIRC oscillator stable flag
0: HIRC unstable
1: HIRC stable

This bit is used to indicate whether the HIRC oscillator is stable or not. When the
HIRCEN bit is set to 1 to enable the HIRC oscillator or the HIRC frequency selection
is changed by application program, the HIRCF bit will first be cleared to 0 and then
set to 1 after the HIRC oscillator is stable.

Bit 0 HIRCEN: HIRC oscillator enable control
0: Disable
1: Enable

• HXTC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — HXTM HXTF HXTEN
R/W — — — — — R/W R R/W
POR — — — — — 0 0 0

Bit 7~3 Unimplemented, read as “0”
Bit 2 HXTM: HXT mode selection

0: HXT frequency ≤ 10 MHz
1: HXT frequency >10 MHz

This bit is used to select the HXT oscillator operating mode. Note that this bit must
be properly configured before the HXT is enabled. When the OSC1 and OSC2 pins
are enabled and the HXTEN bit is set to 1 to enable the HXT oscillator, it is invalid to
change the value of this bit. Otherwise, this bit value can be changed with no operation
on the HXT function.

Bit 1 HXTF: HXT oscillator stable flag
0: HXT unstable
1: HXT stable

This bit is used to indicate whether the HXT oscillator is stable or not. When the
HXTEN bit is set to 1 to enable the HXT oscillator, the HXTF bit will first be cleared
to 0 and then set to 1 after the HXT oscillator is stable.

Bit 0 HXTEN: HXT oscillator enable control
0: Disable
1: Enable

Rev. 1.00 70 December 27, 2019 Rev. 1.00 71 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• LXTC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — LXTF LXTEN
R/W — — — — — — R R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1 LXTF: LXT oscillator stable flag

0: LXT unstable
1: LXT stable

This bit is used to indicate whether the LXT oscillator is stable or not. When the
LXTEN bit is set to 1 to enable the LXT oscillator, the LXTF bit will first be cleared
to 0 and then set to 1 after the LXT oscillator is stable.

Bit 0 LXTEN: LXT oscillator enable control
0: Disable
1: Enable

Operating Mode Switching
The device can switch between operating modes dynamically allowing the user to select the best
performance/power ratio for the present task in hand. In this way microcontroller operations that
do not require high performance can be executed using slower clocks thus requiring less operating
current and prolonging battery life in portable applications.

In simple terms, Mode Switching between the FAST Mode and SLOW Mode is executed using the
CKS2~CKS0 bits in the SCC register while Mode Switching from the FAST/SLOW Modes to the
SLEEP/IDLE Modes is executed via the HALT instruction. When a HALT instruction is executed,
whether the device enters the IDLE Mode or the SLEEP Mode is determined by the condition of the
FHIDEN and FSIDEN bits in the SCC register.

FAST
fSYS=fH~fH/64

fH on
CPU run
fSYS on
fSUB on

SLOW
fSYS=fSUB
fSUB on

CPU run
fSYS on

fH on/off

IDLE0
HALT instruction executed

CPU stop
FHIDEN=0
FSIDEN=1

fH off
fSUB on

IDLE1
HALT instruction executed

CPU stop
FHIDEN=1
FSIDEN=1

fH on
fSUB on

IDLE2
HALT instruction executed

CPU stop
FHIDEN=1
FSIDEN=0

fH on
fSUB off

SLEEP
HALT instruction executed

CPU stop
FHIDEN=0
FSIDEN=0

fH off
fSUB off

Rev. 1.00 72 December 27, 2019 Rev. 1.00 73 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

FAST Mode to SLOW Mode Switching
When running in the FAST Mode, which uses the high speed system oscillator, and therefore
consumes more power, the system clock can switch to run in the SLOW Mode by setting the
CKS2~CKS0 bits to “111” in the SCC register. This will then use the low speed system oscillator
which will consume less power. Users may decide to do this for certain operations which do not
require high performance and can subsequently reduce power consumption.

The SLOW Mode is sourced from the LXT or LIRC oscillator and therefore requires the selected
oscillator to be stable before full mode switching occurs.

FAST Mode

SLOW Mode

CKS2~CKS0 = 111

SLEEP Mode

FHIDEN=0, FSIDEN=0
HALT instruction is executed

IDLE0 Mode

FHIDEN=0, FSIDEN=1
HALT instruction is executed

IDLE1 Mode

FHIDEN=1, FSIDEN=1
HALT instruction is executed

IDLE2 Mode

FHIDEN=1, FSIDEN=0
HALT instruction is executed

Rev. 1.00 72 December 27, 2019 Rev. 1.00 73 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

SLOW Mode to FAST Mode Switching
In SLOW mode the system clock is derived from fSUB. When system clock is switched back to the
FAST mode from fSUB, the CKS2~CKS0 bits should be set to “000”~“110” and then the system
clock will respectively be switched to fH~fH/64.

However, if fH is not used in SLOW mode and thus switched off, it will take some time to re-
oscillate and stabilise when switching to the FAST mode from the SLOW Mode. This is monitored
using the HXTF bit in the HXTC register or the HIRCF bit in the HIRCC register. The time duration
required for the high speed system oscillator stabilization is specified in the relevant characteristics.

FAST Mode

SLOW Mode

CKS2~CKS0 = 000~110

SLEEP Mode

FHIDEN=0, FSIDEN=0
HALT instruction is executed

IDLE0 Mode

FHIDEN=0, FSIDEN=1
HALT instruction is executed

IDLE1 Mode

FHIDEN=1, FSIDEN=1
HALT instruction is executed

IDLE2 Mode

FHIDEN=1, FSIDEN=0
HALT instruction is executed

Entering the SLEEP Mode
There is only one way for the device to enter the SLEEP Mode and that is to execute the “HALT”
instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register
equal to “0”. In this mode all the clocks and functions will be switched off except the WDT function.
When this instruction is executed under the conditions described above, the following will occur:

• The system clock will be stopped and the application program will stop at the “HALT”
instruction.

• The Data Memory contents and registers will maintain their present condition.

• The I/O ports will maintain their present conditions.

• In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be
cleared.

• The WDT will be cleared and resume counting if the WDT function is enabled by the WDTC
register.

Rev. 1.00 74 December 27, 2019 Rev. 1.00 75 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Entering the IDLE0 Mode
There is only one way for the device to enter the IDLE0 Mode and that is to execute the “HALT”
instruction in the application program with the FHIDEN bit in the SCC register equal to “0” and the
FSIDEN bit in the SCC register equal to “1”. When this instruction is executed under the conditions
described above, the following will occur:

• The fH clock will be stopped and the application program will stop at the “HALT” instruction, but
the fSUB clock will be on.

• The Data Memory contents and registers will maintain their present condition.

• The I/O ports will maintain their present conditions.

• In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be
cleared.

• The WDT will be cleared and resume counting if the WDT function is enabled by the WDTC
register.

Entering the IDLE1 Mode
There is only one way for the device to enter the IDLE1 Mode and that is to execute the “HALT”
instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register
equal to “1”. When this instruction is executed under the conditions described above, the following
will occur:

• The fH and fSUB clocks will be on but the application program will stop at the “HALT” instruction.

• The Data Memory contents and registers will maintain their present condition.

• The I/O ports will maintain their present conditions.

• In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be
cleared.

• The WDT will be cleared and resume counting if the WDT function is enabled by the WDTC
register.

Entering the IDLE2 Mode
There is only one way for the device to enter the IDLE2 Mode and that is to execute the “HALT”
instruction in the application program with the FHIDEN bit in the SCC register equal to “1” and the
FSIDEN bit in the SCC register equal to “0”. When this instruction is executed under the conditions
described above, the following will occur:

• The fH clock will be on but the fSUB clock will be off and the application program will stop at the
“HALT” instruction.

• The Data Memory contents and registers will maintain their present condition.

• The I/O ports will maintain their present conditions.

• In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be
cleared.

• The WDT will be cleared and resume counting if the WDT function is enabled by the WDTC
register.

Rev. 1.00 74 December 27, 2019 Rev. 1.00 75 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Standby Current Considerations
As the main reason for entering the SLEEP or IDLE Mode is to keep the current consumption of the
device to as low a value as possible, perhaps only in the order of several micro-amps except in the
IDLE1 and IDLE2 Mode, there are other considerations which must also be taken into account by
the circuit designer if the power consumption is to be minimised. Special attention must be made
to the I/O pins on the device. All high-impedance input pins must be connected to either a fixed
high or low level as any floating input pins could create internal oscillations and result in increased
current consumption. This also applies to devices which have different package types, as there may
be unbonbed pins. These must either be setup as outputs or if setup as inputs must have pull-high
resistors connected.

Care must also be taken with the loads, which are connected to I/O pins, which are setup as outputs.
These should be placed in a condition in which minimum current is drawn or connected only to
external circuits that do not draw current, such as other CMOS inputs. Also note that additional
standby current will also be required if the LIRC oscillator has enabled.

In the IDLE1 and IDLE 2 Mode the high speed oscillator is on, if the peripheral function clock
source is derived from the high speed oscillator, the additional standby current will also be perhaps
in the order of several hundred micro-amps.

Wake-up
To minimise power consumption the device can enter the SLEEP or any IDLE Mode, where the
CPU will be switched off. However, when the device is woken up again, it will take a considerable
time for the original system oscillator to restart, stablise and allow normal operation to resume.

After the system enters the SLEEP or IDLE Mode, it can be woken up from one of various sources
listed as follows:

• An external falling edge on Port A

• A external reset

• A system interrupt

• A WDT overflow

If the system is woken up by an external reset, the device will experience a full system reset.
However, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated.
Although both of these wake-up methods will initiate a reset operation, the actual source of the
wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a
system power-up or executing the clear Watchdog Timer instructions and is set when executing the
“HALT” instruction. The TO flag is set if a WDT time-out occurs and causes a wake-up that only
resets the Program Counter and Stack Pointer, other flags remain in their original status.

Each pin on Port A can be setup using the PAWU register to permit a negative transition on the pin
to wake up the system. When a Port A pin wake-up occurs, the program will resume execution at
the instruction following the “HALT” instruction. If the system is woken up by an interrupt, then
two possible situations may occur. The first is where the related interrupt is disabled or the interrupt
is enabled but the stack is full, in which case the program will resume execution at the instruction
following the “HALT” instruction. In this situation, the interrupt which woke up the device will not
be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled
or when a stack level becomes free. The other situation is where the related interrupt is enabled and
the stack is not full, in which case the regular interrupt response takes place. If an interrupt request
flag is set high before entering the SLEEP or IDLE Mode, the wake-up function of the related
interrupt will be disabled.

Rev. 1.00 76 December 27, 2019 Rev. 1.00 77 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Watchdog Timer
The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to
unknown locations, due to certain uncontrollable external events such as electrical noise.

Watchdog Timer Clock Source
The Watchdog Timer clock source is provided by the internal clock, fLIRC, which is in turn supplied
by the LIRC oscillator. The Watchdog Timer source clock is then subdivided by a ratio of 28 to 218 to
give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the WDTC register.

Watchdog Timer Control Register
A single register, WDTC, controls the required timeout period as well as the enable/disable and reset
MCU operation.

• WDTC Register
Bit 7 6 5 4 3 2 1 0

Name WE4 WE3 WE2 WE1 WE0 WS2 WS1 WS0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 1 0 1 0 0 1 1

Bit 7~3 WE4~WE0: WDT function software control
10101: Disable
01010: Enable
Others: Reset MCU

When these bits are changed by the environmental noise or software setting to reset
the microcontroller, the reset operation will be activated after a delay time, tSRESET, and
the WRF bit in the RSTFC register will be set high.

Bit 2~0 WS2~WS0: WDT time-out period selection
000: 28/fLIRC

001: 210/fLIRC

010: 212/fLIRC

011: 214/fLIRC

100: 215/fLIRC

101: 216/fLIRC

110: 217/fLIRC

111: 218/fLIRC

These three bits determine the division ratio of the watchdog timer source clock,
which in turn determines the time-out period.

• RSTFC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — RSTF LVRF LRF WRF
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 x 0 0

“x”: unknown
Bit 7~4 Unimplemented, read as “0”
Bit 3 RSTF: Reset control register software reset flag

Described elsewhere
Bit 2 LVRF: LVR function reset flag

Described elsewhere
Bit 1 LRF: LVR Control Register Software Reset Flag

Described elsewhere

Rev. 1.00 76 December 27, 2019 Rev. 1.00 77 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 0 WRF: WDT Control Register Software Reset Flag
0: Not occur
1: Occurred

This bit is set high by the WDT Control register software reset and cleared by the
application program. Note that this bit can only be cleared to zero by the application
program.

Watchdog Timer Operation
The Watchdog Timer operates by providing a device reset when its timer overflows. This means
that in the application program and during normal operation the user has to strategically clear the
Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is
done using the clear watchdog instruction. If the program malfunctions for whatever reason, jumps
to an unknown location, or enters an endless loop, the clear instruction will not be executed in the
correct manner, in which case the Watchdog Timer will overflow and reset the device. There are five
bits, WE4~WE0, in the WDTC register to offer the enable/disable control and reset control of the
Watchdog Timer. The WDT function will be disabled when the WE4~WE0 bits are set to a value of
10101B while the WDT function will be enabled if the WE4~WE0 bits are equal to 01010B. If the
WE4~WE0 bits are set to any other values, other than 01010B and 10101B, it will reset the device
after a delay time, tSRESET. After power on these bits will have a value of 01010B.

WE4~WE0 Bits WDT Function
10101B Disable
01010B Enable

Any other values Reset MCU

Watchdog Timer Enable/Disable Control

Under normal program operation, a Watchdog Timer time-out will initialise a device reset and set
the status bit TO. However, if the system is in the SLEEP or IDLE Mode, when a Watchdog Timer
time-out occurs, the TO bit in the status register will be set and only the Program Counter and Stack
Pointer will be reset. Four methods can be adopted to clear the contents of the Watchdog Timer.
The first is a WDT reset, which means a certain value except 01010B and 10101B written into the
WE4~WE0 bit filed, the second is using the Watchdog Timer software clear instruction and the third
is via a HALT instruction. The last is an external hardware reset, which means a low level on the
external reset pin if the external reset pin exists by the RSTC register.

There is only one method of using software instruction to clear the Watchdog Timer. That is to use
the single “CLR WDT” instruction to clear the WDT.

The maximum time out period is when the 218 division ratio is selected. As an example, with a
32kHz LIRC oscillator as its source clock, this will give a maximum watchdog period of around 8
seconds for the 218 division ratio, and a minimum timeout of 8ms for the 28 division ration.

“CLR WDT”Instruction

8-stage Divider WDT Prescaler

WE4~WE0 bitsWDTC
Register Reset MCU

LIRC
fLIRC fLIRC/28

8-to-1 MUX

CLR

WS2~WS0
(fLIRC/28 ~ fLIRC/218)

WDT Time-out
(28/fLIRC ~ 218/fLIRC)

“HALT”Instruction

External reset pin reset

Watchdog Timer

Rev. 1.00 78 December 27, 2019 Rev. 1.00 79 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Reset and Initialisation
A reset function is a fundamental part of any microcontroller ensuring that the device can be set
to some predetermined condition irrespective of outside parameters. The most important reset
condition is after power is first applied to the microcontroller. In this case, internal circuitry will
ensure that the microcontroller, after a short delay, will be in a well-defined state and ready to
execute the first program instruction. After this power-on reset, certain important internal registers
will be set to defined states before the program commences. One of these registers is the Program
Counter, which will be reset to zero forcing the microcontroller to begin program execution from the
lowest Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a
reset condition when the microcontroller is already running, the RES line is forcefully pulled low.
In such a case, known as a normal operation reset, some of the microcontroller registers remain
unchanged allowing the microcontroller to preceed with normal operation after the reset line is
allowed to return high.

The Watchdog Timer overflow is one of many reset types and will reset the microcontroller. Another
reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the RES reset is
implemented in situations where the power supply voltage falls below a certain threshold. Another
type of reset is when the Watchdog Timer overflows and resets the microcontroller. All types of reset
operations result in different register conditions being setup.

Reset Functions
There are several ways in which a microcontroller reset can occur, through events occurring both
internally and externally.

Power-on Reset
The most fundamental and unavoidable reset is the one that occurs after power is first applied to
the microcontroller. As well as ensuring that the Program Memory begins execution from the first
memory address, a power-on reset also ensures that certain other registers are preset to known
conditions. All the I/O port and port control registers will power up in a high condition ensuring that
all I/O ports will be first set to inputs.

VDD

Power-on Reset

SST Time-out

tRSTD

Power-On Reset Timing Chart

RES Pin Reset
As the reset pin is shared with I/O pins, the reset function must be selected using a control register,
RSTC. Although the microcontroller has an internal RC reset function, if the VDD power supply
rise time is not fast enough or does not stabilise quickly at power-on, the internal reset function
may be incapable of providing proper reset operation. For this reason it is recommended that an
external RC network is connected to the RES pin, whose additional time delay will ensure that the
RES pin remains low for an extended period to allow the power supply to stabilise. During this time
delay, normal operation of the microcontroller will be inhibited. After the RES line reaches a certain
voltage value, the reset delay time, tRSTD, is invoked to provide an extea delay time after which the
microcontroller will begin normal operation. The abbreviation SST in the figures stands for System

Rev. 1.00 78 December 27, 2019 Rev. 1.00 79 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Start-up Time. For most applications a resistor connected between VDD and the RES line and a
capacitor connected betweeb VSS and the RES pin will provide a suitable external reset circuit. Any
wiring connected to the RES pin should be kept as short as possible to minimise any stray noise
interference. For applications that operate within an environment where more noise is present the
Enhanced Reset Circuit shown is recommended.

VDD

VDD

RES

10kΩ~
100kΩ

0.01µF**

1N4148*

VSS

0.1µF~1µF
300Ω*

Note: “*” It is recommended that this component is added for added ESD protection.
“**” It is recommended that this component is added in environments where power line noise

is significant.
External RES Circuit

Pulling the RES pin low using external hardware will also execute a device reset. In this case, as in
the case of other resets, the Progran Counter will reset to zero and program execution initiated from
this point.

Internal Reset

tRSTD+tSST

RES
0.9VDD

0.4VDD

RES Reset Timing Chart

There is an internal reset control register, RSTC, which is used to select the external RES pin
function and provide a reset when the device operates abnormally due to the environmental noise
interference. If the content of the RSTC register is set to any value other than 01010101B or
10101010B, it will reset the device after a delay time, tSRESET. After power on the register will have a
value of 01010101B.

RSTC7 ~ RSTC0 Bits Reset Function
01010101B PB5

10101010B RES

Any other value Reset MCU

Internal Reset Function Control

Rev. 1.00 80 December 27, 2019 Rev. 1.00 81 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• RSTC Register
Bit 7 6 5 4 3 2 1 0

Name RSTC7 RSTC6 RSTC5 RSTC4 RSTC3 RSTC2 RSTC1 RSTC0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 1 0 1 0 1 0 1

Bit 7~0 RSTC7~RSTC0: Reset function control
01010101: PB5
10101010: RES pin
Other values: Reset MCU

If these bits are changed due to adverse environmental conditions, the microcontroller
will be reset. The reset operation will be activated after a delay time, tSRESET, and the
RSTF bit in the RSTFC register will be set to 1.
All resets will reset this register to POR value except the WDT time out hardware
warm reset. Note that if the register is set to 10101010 to select the RES pin, this
configuration has higher priority than other related pin-shared controls.

• RSTFC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — RSTF LVRF LRF WRF
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 x 0 0

“x”: unknown
Bit 7~4 Unimplemented, read as “0”
Bit 3 RSTF: Reset control register software reset flag

0: Not occurred
1: Occurred

This bit is set to 1 by the RSTC control register software reset and cleared by the
application program. Note that this bit can only be cleared to 0 by the application
program.

Bit 2 LVRF: LVR function reset flag
Described elsewhere

Bit 1 LRF: LVR control register software reset flag
Described elsewhere

Bit 0 WRF: WDT control register software reset flag
Described elsewhere

Low Voltage Reset – LVR
The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the
device. The LVR function is always enabled with a specific LVR voltage VLVR. If the supply voltage
of the device drops to within a range of 0.9V~VLVR such as might occur when changing the battery,
the LVR will automatically reset the device internally and the LVRF bit in the RSTFC register will
also be set high. For a valid LVR signal, a low supply voltage, i.e., a voltage in the range between
0.9V~VLVR must exist for a time greater than that specified by tLVR in the LVD/LVR Electrical
Characteristics. If the low supply voltage state does not exceed this value, the LVR will ignore the
low supply voltage and will not perform a reset function. The actual VLVR value can be selected
by the LVS7~LVS0 bits in the LVRC register. If the LVS7~LVS0 bits are changed to some certain
values by the environmental noise or software setting, the LVR will reset the device after a delay
time, tSRESET. When this happens, the LRF bit in the RSTFC register will be set high. After power
on the register will have the value of 01010101B. Note that the LVR function will be automatically
disabled when the device enters the IDLE/SLEEP mode.

Rev. 1.00 80 December 27, 2019 Rev. 1.00 81 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LVR

Internal Reset

tRSTD + tSST

Low Voltage Reset Timing Chart

• LVRC Register
Bit 7 6 5 4 3 2 1 0

Name LVS7 LVS6 LVS5 LVS4 LVS3 LVS2 LVS1 LVS0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 1 0 1 0 1 0 1

Bit 7~0 LVS7~LVS0: LVR voltage select
01010101: 2.1V
00110011: 2.55V
10011001: 3.15V
10101010: 3.8V
Other values: MCU reset (register is reset to POR value).

When an actual low voltage condition occurs, as specified by one of the four defined
LVR voltage values above, an MCU reset will be generated. The reset operation
will be activated after the low voltage condition keeps more than a tLVR time. In this
situation the register contents will remain the same after such a reset occurs.
Any register value, other than the four defined LVR values above, will also result in
the generation of an MCU reset. The reset operation will be activated after a delay
time, tSRESET. However in this situation the register contents will be reset to the POR
value.

• RSTFC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — RSTF LVRF LRF WRF
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 x 0 0

“x”: unknown
Bit 7~4 Unimplemented, read as “0”
Bit 3 RSTF: Reset control register software reset flag

Described elsewhere
Bit 2 LVRF: LVR function reset flag

0: Not occur
1: Occurred

This bit is set high when a specific Low Voltage Reset situation condition occurs. This
bit can only be cleared to zero by the application program.

Bit 1 LRF: LVR control register software reset flag
0: Not occur
1: Occurred

This bit is set high if the LVRC register contains any non-defined LVR voltage register
values. This in effect acts like a software-reset function. This bit can only be cleared to
zero by the application program.

Bit 0 WRF: WDT Control register software reset flag
Described elsewhere

Rev. 1.00 82 December 27, 2019 Rev. 1.00 83 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

In Application Programming Reset
The device contains an IAP function, therefore an IAP reset exists, which is caused by writing data
55H to FC1 register.

Watchdog Time-out Reset during Normal Operation
The Watchdog time-out Reset during normal operation is the same as LVR reset except that the
Watchdog time-out flag TO will be set high.

WDT Time-out

Internal Reset

tRSTD

WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during SLEEP or IDLE Mode
The Watchdog time-out Reset during SLEEP or IDLE Mode is a little different from other kinds
of reset. Most of the conditions remain unchanged except that the Program Counter and the Stack
Pointer will be cleared to zero and the TO flag will be set high. Refer to the System Start Up Time
Characteristics for tSST details.

WDT Time-out

Internal Reset

tSST

WDT Time-out Reset during Sleep or IDLE Mode Timing Chart

Reset Initial Conditions
The different types of reset described affect the reset flags in different ways. These flags, known
as PDF and TO are located in the status register and are controlled by various microcontroller
operations, such as the SLEEP or IDLE Mode function or Watchdog Timer. The reset flags are
shown in the table:

TO PDF Reset Conditions
0 0 Power-on reset
u u RES or LVR reset during FAST or SLOW Mode operation
1 u WDT time-out reset during FAST or SLOW Mode operation
1 1 WDT time-out reset during IDLE or SLEEP Mode operation

“u” stands for unchanged
The following table indicates the way in which the various components of the microcontroller are
affected after a power-on reset occurs.

Item Condition after Reset
Program Counter Reset to zero
Interrupts All interrupts will be disabled
WDT, Time Bases Clear after reset, WDT begins counting
Timer Modules Timer Modules will be turned off
Input/Output Ports I/O ports will be setup as inputs
Stack Pointer Stack Pointer will point to the top of the stack

Rev. 1.00 82 December 27, 2019 Rev. 1.00 83 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The different kinds of resets all affect the internal registers of the microcontroller in different ways.
To ensure reliable continuation of normal program execution after a reset occurs, it is important to
know what condition the microcontroller is in after a particular reset occurs. The following table
describes how each type of reset affects each of the microcontroller internal registers. Note that where
more than one package type exists the table will reflect the situation for the larger package type.

Register Reset
(Power On)

RESB Reset
(Normal Operation)

LVR Reset
(Normal Operation)

WDT Time-out
(Normal Operation)

WDT Time-out
(IDLE/SLEEP)

IAR0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MP0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IAR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MP1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MP1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
ACC x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TBLP x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBLH x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBHP - x x x x x x x - u u u u u u u - u u u u u u u - u u u u u u u - u u u u u u u
STATUS x x 0 0 x x x x u u u u u u u u u u u u u u u u x x 1 u u u u u u u 11 u u u u
PBP - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
IAR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MP2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MP2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
RSTFC - - - - 0 x 0 0 - - - - u u u u - - - - u 1 u u - - - - u u u u - - - - u u u u
INTC0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
INTC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTC3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PAWU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PBC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PBPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PCC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PCPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PD - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - u u u u u u u
PDC - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - u u u u u u u
PDPU - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
PE - - - 1 1 1 1 1 - - - 1 1 1 1 1 - - - 1 1 1 1 1 - - - 1 1 1 1 1 - - - u u u u u
PEC - - - 1 1 1 1 1 - - - 1 1 1 1 1 - - - 1 1 1 1 1 - - - 1 1 1 1 1 - - - u u u u u
PEPU - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u
PF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PFC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PFPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PGC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PGPU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PH - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u

Rev. 1.00 84 December 27, 2019 Rev. 1.00 85 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register Reset
(Power On)

RESB Reset
(Normal Operation)

LVR Reset
(Normal Operation)

WDT Time-out
(Normal Operation)

WDT Time-out
(IDLE/SLEEP)

PHC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PHPU - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
PMPS - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
RSTC 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 u u u u u u u u
VBGRC - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - u
MFI0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MFI1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MFI2 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - u u - - u u
MFI3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MFI4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MFI5 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - u u u - u u u
MFI6 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - u u - - u u
MFI7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTEG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SCC 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 u u u - u u u u
HIRCC - - - - 0 0 0 1 - - - - 0 0 0 1 - - - - 0 0 0 1 - - - - 0 0 0 1 - - - - u u u u
HXTC - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u
LXTC - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
WDTC 0 1 0 1 0 0 11 0 1 0 1 0 0 11 0 1 0 1 0 0 11 0 1 0 1 0 0 11 u u u u u u u u
LVRC 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 u u u u u u u u
LVDC - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
EEAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
EEAH - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
EED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
CP0C - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - -
CP1C - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - -
PTM0C0 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - - -
PTM0C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM0DL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM0DH - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
PTM0AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM0AH - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
PTM0RPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM0RPH - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
STM0C0 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - - -
STM0C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM0DL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM0DH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM0AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM0AH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM0RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SLEDC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SLEDC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SLEDC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SLEDC3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MDUWR0 x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MDUWR1 x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MDUWR2 x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MDUWR3 x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

Rev. 1.00 84 December 27, 2019 Rev. 1.00 85 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register Reset
(Power On)

RESB Reset
(Normal Operation)

LVR Reset
(Normal Operation)

WDT Time-out
(Normal Operation)

WDT Time-out
(IDLE/SLEEP)

MDUWR4 x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MDUWR5 x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MDUWCTRL 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u - - - - - -
CP0VOS - 0 0 1 0 0 0 0 - 0 0 1 0 0 0 0 - 0 0 1 0 0 0 0 - 0 0 1 0 0 0 0 - u u u u u u u
CP1VOS - 0 0 1 0 0 0 0 - 0 0 1 0 0 0 0 - 0 0 1 0 0 0 0 - 0 0 1 0 0 0 0 - u u u u u u u
PSC0R - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
TB0C 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 u - - - - u u u
TB1C 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 u - - - - u u u
PSC1R - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u

SADOL x x x x - - - - x x x x - - - - x x x x - - - - x x x x - - - -

u u u u - - - -
(ADRFS=0)
u u u u u u u u
(ADRFS=1)

SADOH x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

u u u u u u u u
(ADRFS=0)
- - - - u u u u
(ADRFS=1)

SADC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SADC1 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 u u u u - u u u
SADC2 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 u - - u u u u u
SIMC0 111 - 0 0 0 0 111 - 0 0 0 0 111 - 0 0 0 0 111 - 0 0 0 0 u u u - u u u u
SIMC1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 u u u u u u u u
SIMD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
SIMA/SIMC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SIMTOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SPIAC0 1 1 1 - - - 0 0 1 1 1 - - - 0 0 1 1 1 - - - 0 0 1 1 1 - - - 0 0 u u u - - - u u
SPIAC1 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
SPIAD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
FARL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FARH - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
FD0L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FD0H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FD1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FD1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FD2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FD2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FD3L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FD3H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
SCOMC - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u - - - -
CRCCR - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - u
CRCIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
CRCDL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
CRCDH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IECC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
U2SR 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 u u u u u u u u
U2CR1 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 u u u u u u u u
U2CR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TXR_RXR2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
BRG2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
U0SR 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 u u u u u u u u

Rev. 1.00 86 December 27, 2019 Rev. 1.00 87 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register Reset
(Power On)

RESB Reset
(Normal Operation)

LVR Reset
(Normal Operation)

WDT Time-out
(Normal Operation)

WDT Time-out
(IDLE/SLEEP)

U0CR1 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 u u u u u u u u
U0CR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TXR_RXR0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
BRG0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
U1SR 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 u u u u u u u u
U1CR1 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 u u u u u u u u
U1CR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TXR_RXR1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
BRG1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
PTM1C0 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - - -
PTM1C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM1DL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM1DH - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
PTM1AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM1AH - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
PTM1RPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM1RPH - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
PTM2C0 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - - -
PTM2C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM2DL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM2DH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM2AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM2AH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM2RPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM2RPH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM3C0 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - - -
PTM3C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM3DL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM3DH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM3AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM3AH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM3RPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PTM3RPH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM1C0 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - - -
STM1C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM1DL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM1DH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM1AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM1AH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM1RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM2C0 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - u u u u u - - -
STM2C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM2DL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM2DH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM2AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM2AH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
STM2RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
EEC - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - u u u u
FC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

Rev. 1.00 86 December 27, 2019 Rev. 1.00 87 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register Reset
(Power On)

RESB Reset
(Normal Operation)

LVR Reset
(Normal Operation)

WDT Time-out
(Normal Operation)

WDT Time-out
(IDLE/SLEEP)

FC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
FC2 - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - u
IFS0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
IFS1 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
IFS2 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
IFS3 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u
PAS0 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - u u - - u u - -
PAS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PBS0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PBS1 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 u u u u - - u u
PCS0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PCS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PDS0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PDS1 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
PES0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PES1 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - 0 0 - - - - - - u u
PFS0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PFS1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PGS0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - u u u u
PGS1 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u - -
PHS0 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - u u u u - - - -
PHS1 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - u u u u
CTRLRL 0 0 0 - 0 0 0 1 0 0 0 - 0 0 0 1 0 0 0 - 0 0 0 1 0 0 0 - 0 0 0 1 u u u - u u u u
STATRL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
ERRCNTL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
ERRCNTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
BTRL 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 u u u u u u u u
BTRH - 0 1 0 0 0 11 - 0 1 0 0 0 11 - 0 1 0 0 0 11 - 0 1 0 0 0 11 - u u u u u u u
INTRL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTRH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TESTRL x 0 0 0 0 0 - - x 0 0 0 0 0 - - x 0 0 0 0 0 - - x 0 0 0 0 0 - - u u u u u u - -
BRPERL - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - 0 0 0 0 - - - - u u u u
IF1CREQL - - 0 0 0 0 0 1 - - 0 0 0 0 0 1 - - 0 0 0 0 0 1 - - 0 0 0 0 0 1 - - u u u u u u
IF1CREQH 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - u - - - - - - -
IF1CMSKL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1MSK1L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
IF1MSK1H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
IF1MSK2L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
IF1MSK2H 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 u u - u u u u u
IF1ARB1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1ARB1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1ARB2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1ARB2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1MCTRL 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 u - - - u u u u
IF1MCTRH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1DTA1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1DTA1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1DTA2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1DTA2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

Rev. 1.00 88 December 27, 2019 Rev. 1.00 89 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register Reset
(Power On)

RESB Reset
(Normal Operation)

LVR Reset
(Normal Operation)

WDT Time-out
(Normal Operation)

WDT Time-out
(IDLE/SLEEP)

IF1DTB1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1DTB1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1DTB2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF1DTB2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
CRLL 0 0 1 0 0 111 0 0 1 0 0 111 0 0 1 0 0 111 0 0 1 0 0 111 u u u u u u u u
CRLH 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 u u u u u u u u
CRHL 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 u u u u u u u u
CRHH 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 u u u u u u u u
IF2CREQL - - 0 0 0 0 0 1 - - 0 0 0 0 0 1 - - 0 0 0 0 0 1 - - 0 0 0 0 0 1 - - u u u u u u
IF2CREQH 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - u - - - - - - -
IF2CMSKL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2MSK1L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
IF2MSK1H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
IF2MSK2L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
IF2MSK2H 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 - 1 1 1 1 1 u u - u u u u u
IF2ARB1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2ARB1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2ARB2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2ARB2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2MCTRL 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 0 - - - 0 0 0 0 u - - - u u u u
IF2MCTRH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTA1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTA1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTA2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTA2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTB1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTB1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTB2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
IF2DTB2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TREQR1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TREQR1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TREQR2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TREQR2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
NEWDT1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
NEWDT1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
NEWDT2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
NEWDT2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTPND1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTPND1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTPND2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
INTPND2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MSGVAL1L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MSGVAL1H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MSGVAL2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
MSGVAL2H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
CANCFG 1 0 - 0 0 0 0 0 1 0 - 0 0 0 0 0 1 0 - 0 0 0 0 0 1 0 - 0 0 0 0 0 u u - u u u u u

Note: “u” stands for unchanged
“x” stands for unknown
“-” stands for unimplemented

Rev. 1.00 88 December 27, 2019 Rev. 1.00 89 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Input/Output Ports
The microcontrollers offer considerable flexibility on their I/O ports. With the input or output
designation of every pin fully under user program control, pull-high selections for all ports and
wake-up selections on certain pins, the user is provided with an I/O structure to meet the needs of a
wide range of application possibilities.

The device provides bidirectional input/output lines labeled with port names PA~PH. These I/O
ports are mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose
Data Memory table. All of these I/O ports can be used for input and output operations. For input
operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge
of instruction “MOV A, [m]”, where m denotes the port address. For output operation, all the data is
latched and remains unchanged until the output latch is rewritten.

Register
Name

Bit
7 6 5 4 3 2 1 0

PA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
PAC PAC7 PAC6 PAC5 PAC4 PAC3 PAC2 PAC1 PAC0

PAPU PAPU7 PAPU6 PAPU5 PAPU4 PAPU3 PAPU2 PAPU1 PAPU0
PAWU PAWU7 PAWU6 PAWU5 PAWU4 PAWU3 PAWU2 PAWU1 PAWU0

PB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0
PBC PBC7 PBC6 PBC5 PBC4 PBC3 PBC2 PBC1 PBC0

PBPU PBPU7 PBPU6 PBPU5 PBPU4 PBPU3 PBPU2 PBPU1 PBPU0
PC PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

PCC PCC7 PCC6 PCC5 PCC4 PCC3 PCC2 PCC1 PCC0
PCPU PCPU7 PCPU6 PCPU5 PCPU4 PCPU3 PCPU2 PCPU1 PCPU0

PD — PD6 PD5 PD4 PD3 PD2 PD1 PD0
PDC — PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0

PDPU — PDPU6 PDPU5 PDPU4 PDPU3 PDPU2 PDPU1 PDPU0
PE — — — PE4 PE3 PE2 PE1 PE0

PEC — — — PEC4 PEC3 PEC2 PEC1 PEC0
PEPU — — — PEPU4 PEPU3 PEPU2 PEPU1 PEPU0

PF PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0
PFC PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0

PFPU PFPU7 PFPU6 PFPU5 PFPU4 PFPU3 PFPU2 PFPU1 PFPU0
PG PG7 PG6 PG5 PG4 PG3 PG2 PG1 PG0

PGC PGC7 PGC6 PGC5 PGC4 PGC3 PGC2 PGC1 PGC0
PGPU PGPU7 PGPU6 PGPU5 PGPU4 PGPU3 PGPU2 PGPU1 PGPU0

PH — — PH5 PH4 PH3 PH2 PH1 PH0
PHC — — PHC5 PHC4 PHC3 PHC2 PHC1 PHC0

PHPU — — PHPU5 PHPU4 PHPU3 PHPU2 PHPU1 PHPU0
“—”: Unimplemented

I/O Logic Function Register List

Rev. 1.00 90 December 27, 2019 Rev. 1.00 91 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pull-high Resistors
Many product applications require pull-high resistors for their switch inputs usually requiring the
use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when
configured as an digital input have the capability of being connected to an internal pull-high
resistor. These pull-high resistors are selected using the relavant pull-high control registers, and are
implemented using weak PMOS transistors. Note that the pull-high resistor can be controlled by the
relevant pull-high control register only when the pin-shared functional pin is selected as a digital
input or NMOS output. Otherwise, the pull-high resistors cannot be enabled.

• PxPU Register
Bit 7 6 5 4 3 2 1 0

Name PxPU7 PxPU6 PxPU5 PxPU4 PxPU3 PxPU2 PxPU1 PxPU0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

PxPUn: I/O Port x Pin Pull-high Function Control
0: Disable
1: Enable

The PxPUn bit is used to control the pin pull-high function.Here the “x” can be A, B, C, D, E,
F, G and H. However, the actual available bits for each I/O port may be different.

Port A Wake-up
The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves
power, a feature that is important for battery and other low-power applications. Various methods
exist to wake-up the microcontroller, one of which is to change the logic condition on one of the
Port A pins from high to low. This function is especially suitable for applications that can be woken
up via external switches. Each pin on Port A can be selected individually to have this wake-up
feature using the PAWU register. Note that the wake-up function can be controlled by the wake-up
control registers only when the pin is selected as a general purpose input and the MCU enters the
Power down mode.

• PAWU Register
Bit 7 6 5 4 3 2 1 0

Name PAWU7 PAWU6 PAWU5 PAWU4 PAWU3 PAWU2 PAWU1 PAWU0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

PAWUn: Port A Pin Wake-up Control
0: Disable
1: Enable

I/O Port Control Registers
Each I/O port has its own control register which controls the input/output configuration. With
this control register, each CMOS output or input can be reconfigured dynamically under software
control. Each pin of the I/O ports is directly mapped to a bit in its associated port control register.
For the I/O pin to function as an input, the corresponding bit of the control register must be written
as a “1”. This will then allow the logic state of the input pin to be directly read by instructions.
When the corresponding bit of the control register is written as a “0”, the I/O pin will be setup as
a CMOS output. If the pin is currently setup as an output, instructions can still be used to read the
output register. However, it should be noted that the program will in fact only read the status of the
output data latch and not the actual logic status of the output pin.

Rev. 1.00 90 December 27, 2019 Rev. 1.00 91 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PxC Register
Bit 7 6 5 4 3 2 1 0

Name PxC7 PxC5 PxC5 PxC4 PxC3 PxC2 PxC1 PxC0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

PxCn: I/O Port x Pin Type Selection
0: Output
1: Input

The PxCn bit is used to control the pin type selection. Here the “x” can be A, B, C, D, E, F, G
and H. However, the actual available bits for each I/O port may be different.

I/O Port Source Current Control
The device supports different source current driving capability for each I/O port. With the
corresponding selection registers, SLEDCn, each I/O port can support four levels of the source
current driving capability. These source current bits are available when the corresponding pin is
configured as a CMOS output. Otherwise, these select bits have no effect. Users should refer to the
Input/Output Characteristics section to select the desired source current for different applications.

Register
Name

Bit
7 6 5 4 3 2 1 0

SLEDC0 SLEDC07 SLEDC06 SLEDC05 SLEDC04 SLEDC03 SLEDC02 SLEDC01 SLEDC00
SLEDC1 SLEDC17 SLEDC16 SLEDC15 SLEDC14 SLEDC13 SLEDC12 SLEDC11 SLEDC10
SLEDC2 SLEDC27 SLEDC26 SLEDC25 SLEDC24 SLEDC23 SLEDC22 SLEDC21 SLEDC20
SLEDC3 SLEDC37 SLEDC36 SLEDC35 SLEDC34 SLEDC33 SLEDC32 SLEDC31 SLEDC30

I/O Port Source Current Control Register List

• SLEDC0 Register
Bit 7 6 5 4 3 2 1 0

Name SLEDC07 SLEDC06 SLEDC05 SLEDC04 SLEDC03 SLEDC02 SLEDC01 SLEDC00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 SLEDC07~SLEDC06: PB7~PB4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 5~4 SLEDC05~SLEDC04: PB3~PB0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 3~2 SLEDC03~SLEDC02: PA7~PA4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 1~0 SLEDC01~SLEDC00: PA3~PA0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Rev. 1.00 92 December 27, 2019 Rev. 1.00 93 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• SLEDC1 Register
Bit 7 6 5 4 3 2 1 0

Name SLEDC17 SLEDC16 SLEDC15 SLEDC14 SLEDC13 SLEDC12 SLEDC11 SLEDC10
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 SLEDC17~SLEDC16: PD6~PD4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 5~4 SLEDC15~SLEDC14: PD3~PD0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 3~2 SLEDC13~SLEDC12: PC7~PC4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 1~0 SLEDC11~SLEDC10: PC3~PC0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

• SLEDC2 Register
Bit 7 6 5 4 3 2 1 0

Name SLEDC27 SLEDC26 SLEDC25 SLEDC24 SLEDC23 SLEDC22 SLEDC21 SLEDC20
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 SLEDC27~SLEDC26: PF7~PF4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 5~4 SLEDC25~SLEDC24: PF3~PF0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 3~2 SLEDC23~SLEDC22: PE4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 1~0 SLEDC21~SLEDC20: PE3~PE0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Rev. 1.00 92 December 27, 2019 Rev. 1.00 93 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• SLEDC3 Register
Bit 7 6 5 4 3 2 1 0

Name SLEDC37 SLEDC36 SLEDC35 SLEDC34 SLEDC33 SLEDC32 SLEDC31 SLEDC30
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 SLEDC37~SLEDC36: PH5~PH4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 5~4 SLEDC35~SLEDC34: PH3~PH0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 3~2 SLEDC33~SLEDC32: PG7~PG4 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

Bit 1~0 SLEDC31~SLEDC30: PG3~PG0 Source Current Selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3 (max.)

I/O Port Power Source Control
The device supports different I/O port power source selections for PE3~PE0. The port power can
come from either the power pin VDD or VDDIO which is determined using the PMPS1~PMPS0
bits in the PMPS register. The VDDIO power pin function should first be selected using the
corresponding pin-shared function selection bits if the port power is supposed to come from the
VDDIO pin. An important point to know is that the input power voltage on the VDDIO pin should
be equal to or less than the device supply power voltage when the VDDIO pin is selected as the port
power supply pin.

• PMPS Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — PMPS1 PMPS0
R/W — — — — — — R/W R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 PMPS1~PMPS0: PE3~PE0 pin power source selection

0x: VDD
1x: VDDIO

Rev. 1.00 94 December 27, 2019 Rev. 1.00 95 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Pin-shared Functions
The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more
than one function. Limited numbers of pins can force serious design constraints on designers but by
supplying pins with multi-functions, many of these difficulties can be overcome. For these pins, the
desired function of the multi-function I/O pins is selected by a series of registers via the application
program control.

Pin-shared Function Selection Registers
The limited number of supplied pins in a package can impose restrictions on the amount of functions
a certain device can contain. However by allowing the same pins to share several different functions
and providing a means of function selection, a wide range of different functions can be incorporated
into even relatively small package sizes. The device includes Port “x” output function Selection
register “n”, labeled as PxSn, and Input Function Selection register, labeled as IFSn, which can
select the desired functions of the multi-function pin-shared pins.

The most important point to note is to make sure that the desired pin-shared function is properly
selected and also deselected. For most pin-shared functions, to select the desired pin-shared function,
the pin-shared function should first be correctly selected using the corresponding pin-shared control
register. After that the corresponding peripheral functional setting should be configured and then
the peripheral function can be enabled. However, special point must be noted for some digital input
pins, such as INTn, xTCKn, etc, which share the same pin-shared control configuration with their
corresponding general purpose I/O functions when setting the relevant functions, in addition to the
necessary pin-shared control and peripheral functional setup aforementioned, they must also be
setup as input by setting the corresponding bit in the I/O port control register. To correctly deselect
the pin-shared function, the peripheral function should first be disabled and then the corresponding
pin-shared function control register can be modified to select other pin-shared functions.

Register
Name

Bit
7 6 5 4 3 2 1 0

PAS0 PAS07 PAS06 — — PAS03 PAS02 — —
PAS1 PAS17 PAS16 PAS15 PAS14 PAS13 PAS12 PAS11 PAS10
PBS0 PBS07 PBS06 PBS05 PBS04 PBS03 PBS02 PBS01 PBS00
PBS1 PBS17 PBS16 PBS15 PBS14 — — PBS11 PBS10
PCS0 PCS07 PCS06 PCS05 PCS04 PCS03 PCS02 PCS01 PCS00
PCS1 PCS17 PCS16 PCS15 PCS14 PCS13 PCS12 PCS11 PCS10
PDS0 PDS07 PDS06 PDS05 PDS04 PDS03 PDS02 PDS01 PDS00
PDS1 — — PDS15 PDS14 PDS13 PDS12 PDS11 PDS10
PES0 PES07 PES06 PES05 PES04 PES03 PES02 PES01 PES00
PES1 — — — — — — PES11 PES10
PFS0 PFS07 PFS06 PFS05 PFS04 PFS03 PFS02 PFS01 PFS00
PFS1 PFS17 PFS16 PFS15 PFS14 PFS13 PFS12 PFS11 PFS10
PGS0 — — — — PGS03 PGS02 PGS01 PGS00
PGS1 D7 D6 D5 D4 PGS13 PGS12 — —
PHS0 PHS07 PHS06 PHS05 PHS04 — — — —
PHS1 — — — — PHS13 PHS12 PHS11 PHS10
IFS0 — PTCK3PS PTCK2PS PTCK1PS PTCK0PS STCK2PS STCK1PS STCK0PS
IFS1 — PTP3IPS PTP2IPS PTP1IPS PTP0IPS STP2IPS STP1IPS STP0IPS
IFS2 — SCSBPS SDISDAPS SCKSCLPS INT3PS INT2PS INT1PS INT0PS
IFS3 — — — — — RX2PS RX1PS RX0PS

Pin-shared Function Selection Registers List

Rev. 1.00 94 December 27, 2019 Rev. 1.00 95 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PAS0 Register
Bit 7 6 5 4 3 2 1 0

Name PAS07 PAS06 — — PAS03 PAS02 — —
R/W R/W R/W — — R/W R/W — —
POR 0 0 — — 0 0 — —

Bit 7~6 PAS07~PAS06: PA3 pin-shared function selection
00/01/10: PA3/INT1
11: SDO

Bit 5~4 Unimplemented, read as “0”
Bit 3~2 PAS03~PAS02: PA1 pin-shared function selection

00/01/10: PA1/INT0
11: SCS

Bit 1~0 Unimplemented, read as “0”

• PAS1 Register
Bit 7 6 5 4 3 2 1 0

Name PAS17 PAS16 PAS15 PAS14 PAS13 PAS12 PAS11 PAS10
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PAS17~PAS16: PA7 pin-shared function selection
00/01/10: PA7/INT1
11: TX0

Bit 5~4 PAS15~PAS14: PA6 pin-shared function selection
00/01/10: PA6/INT0
11: RX0

Bit 3~2 PAS13~PAS12: PA5 pin-shared function selection
00/01/10: PA5/INT3
11: SCK/SCL

Bit 1~0 PAS11~PAS10: PA4 pin-shared function selection
00/01/10: PA4/INT2
11: SDI/SDA

• PBS0 Register
Bit 7 6 5 4 3 2 1 0

Name PBS07 PBS06 PBS05 PBS04 PBS03 PBS02 PBS01 PBS00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PBS07~PBS06: PB3 pin-shared function selection
00/01: PB3/PTP2I
10: RX2
11: PTP2

Bit 5~4 PBS05~PBS04: PB2 pin-shared function selection
00/01/10: PB2
11: CANRX

Bit 3~2 PBS03~PBS02: PB1 pin-shared function selection
00/01/10: PB1
11: CANTX

Bit 1~0 PBS01~PBS00: PB0 pin-shared function selection
00/01/10: PB0/STCK2
11: C0X

Rev. 1.00 96 December 27, 2019 Rev. 1.00 97 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PBS1 Register
Bit 7 6 5 4 3 2 1 0

Name PBS17 PBS16 PBS15 PBS14 — — PBS11 PBS10
R/W R/W R/W R/W R/W — — R/W R/W
POR 0 0 0 0 — — 0 0

Bit 7~6 PBS17~PBS16: PB7 pin-shared function selection
00/01/10: PB7/STCK1
11: OSC2

Bit 5~4 PBS15~PBS14: PB6 pin-shared function selection
00/01: PB6/STP1I
10: STP1
11: OSC1

Bit 3~2 Unimplmented, read as “0”
Bit 1~0 PBS11~PBS10: PB4 pin-shared function selection

00/01: PB4
10: TX2
11: C1X

• PCS0 Register
Bit 7 6 5 4 3 2 1 0

Name PCS07 PCS06 PCS05 PCS04 PCS03 PCS02 PCS01 PCS00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PCS07~PCS06: PC3 pin-shared function selection
00/01/10: PC3/PTCK0
11: AN3

Bit 5~4 PCS05~PCS04: PC2 pin-shared function selection
00/01: PC2/PTP0I
10: PTP0
11: AN2

Bit 3~2 PCS03~PCS02: PC1 pin-shared function selection
00: PC1
01: C0X
10: VREF
11: AN1

Bit 1~0 PCS01~PCS00: PC0 pin-shared function selection
00/01: PC0
10: VREFI
11: AN0

• PCS1 Register
Bit 7 6 5 4 3 2 1 0

Name PCS17 PCS16 PCS15 PCS14 PCS13 PCS12 PCS11 PCS10
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PCS17~PCS16: PC7 pin-shared function selection
00/01/10: PC7/INT3/STCK0
11: AN7

Bit 5~4 PCS15~PCS14: PC6 pin-shared function selection
00/01: PC6/STP0I
10: STP0
11: AN6

Rev. 1.00 96 December 27, 2019 Rev. 1.00 97 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 3~2 PCS13~PCS12: PC5 pin-shared function selection
00/01/10: PC5/PTCK1
11: AN5

Bit 1~0 PCS11~PCS10: PC4 pin-shared function selection
00/01: PC4/PTP1I
10: PTP1
11: AN4

• PDS0 Register
Bit 7 6 5 4 3 2 1 0

Name PDS07 PDS06 PDS05 PDS04 PDS03 PDS02 PDS01 PDS00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PDS07~PDS06: PD3 pin-shared function selection
00/01/10: PD3/PTCK2
11: AN11

Bit 5~4 PDS05~PDS04: PD2 pin-shared function selection
00: PD2/PTP2I
01: PTP2
10: TX1
11: AN10

Bit 3~2 PDS03~PDS02: PD1 pin-shared function selection
00/01: PD1/STCK1
10: RX1
11: AN9

Bit 1~0 PDS01~PDS00: PD0 pin-shared function selection
00/01: PD0/INT2/STP1I
10: STP1
11: AN8

• PDS1 Register
Bit 7 6 5 4 3 2 1 0

Name — — PDS15 PDS14 PDS13 PDS12 PDS11 PDS10
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 0 0 0 0

Bit 7~6 Unimplemented, read as “0”
Bit 5~4 PDS15~PDS14: PD6 pin-shared function selection

00/01: PD6/STP2I
10: STP2
11: C1X

Bit 3~2 PDS13~PDS12: PD5 pin-shared function selection
00/01: PD5/PTCK3
10: TX0
11: C1+

Bit 1~0 PDS11~PDS10: PD4 pin-shared function selection
00: PD4/PTP3I
01: RX0
10: PTP3
11: C1-

Rev. 1.00 98 December 27, 2019 Rev. 1.00 99 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PES0 Register
Bit 7 6 5 4 3 2 1 0

Name PES07 PES06 PES05 PES04 PES03 PES02 PES01 PES00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PES07~PES06: PE3 pin-shared function selection
00/01: PE3/PTP1I
10: PTP1
11: SCKA

Bit 5~4 PES05~PES04: PE2 pin-shared function selection
00/01/10: PE2/PTCK1
11: SDIA

Bit 3~2 PES03~PES02: PE1 pin-shared function selection
00/01: PE1/STP0I
10: STP0
11: SDOA

Bit 1~0 PES01~PES00: PE0 pin-shared function selection
00/01/10: PE0/STCK0
11: SCSA

• PES1 Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — PES11 PES10
R/W — — — — — — R/W R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 PES11~PES10: PE4 pin-shared function selection

00/01/10: PE4
11: VDDIO

• PFS0 Register
Bit 7 6 5 4 3 2 1 0

Name PFS07 PFS06 PFS05 PFS04 PFS03 PFS02 PFS01 PFS00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PFS07~PFS06: PF3 pin-shared function selection
00/01: PF3
10: SCK/SCL
11: SCOM3

Bit 5~4 PFS05~PFS04: PF2 pin-shared function selection
00/01: PF2
10: SDI/SDA
11: SCOM2

Bit 3~2 PFS03~PFS02: PF1 pin-shared function selection
00/01: PF1
10: SDO
11: SCOM1

Bit 1~0 PFS01~PFS00: PF0 pin-shared function selection
00/01: PF0
10: SCS
11: SCOM0

Rev. 1.00 98 December 27, 2019 Rev. 1.00 99 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PFS1 Register
Bit 7 6 5 4 3 2 1 0

Name PFS17 PFS16 PFS15 PFS14 PFS13 PFS12 PFS11 PFS10
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PFS17~PFS16: PF7 pin-shared function selection
00: PF7/STP2I
01: TX1
10: STP2
11: C0+

Bit 5~4 PFS15~PFS14: PF6 pin-shared function selection
00/01: PF6/STCK2
10: RX1
11: C0-

Bit 3~2 PFS13~PFS12: PF5 pin-shared function selection
00/01: PF5/PTP0I
10: PTP0
11: XT1

Bit 1~0 PFS11~PFS10: PF4 pin-shared function selection
00/01/10: PF4/PTCK0
11: XT2

• PGS0 Register
Bit 7 6 5 4 3 2 1 0

Name — — — — PGS03 PGS02 PGS01 PGS00
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 0 0 0

Bit 7~4 Unimplemented, read as “0”
Bit 3~2 PGS03~PGS02: PG1 pin-shared function selection

00/01/10: PG1
11: TX2

Bit 1~0 PGS01~PGS00: PG0 pin-shared function selection
00/01/10: PG0
11: RX2

• PGS1 Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 PGS13 PGS12 — —
R/W R/W R/W R/W R/W R/W R/W — —
POR 0 0 0 0 0 0 — —

Bit 7~4 D7~D4: Reserved, must be fixed at “0000B”
Bit 3~2 PGS13~PGS12: PG5 pin-shared function selection

00/01/10: PG5/PTP3I/PTCK2
11: PTP3

Bit 1~0 Unimplemented, read as “0”

Rev. 1.00 100 December 27, 2019 Rev. 1.00 101 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PHS0 Register
Bit 7 6 5 4 3 2 1 0

Name PHS07 PHS06 PHS05 PHS04 — — — —
R/W R/W R/W R/W R/W — — — —
POR 0 0 0 0 — — — —

Bit 7~6 PHS07~PHS06: PH3 pin-shared function selection
00/01/10: PH3
11: AN13

Bit 5~4 PHS05~PHS04: PH2 pin-shared function selection
00/01/10: PH2
11: AN12

Bit 3~0 Unimplemented, read as “0”

• PHS1 Register
Bit 7 6 5 4 3 2 1 0

Name — — — — PHS13 PHS12 PHS11 PHS10
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 0 0 0

Bit 7~4 Unimplemented, read as “0”
Bit 3~2 PHS13~PHS12: PH5 pin-shared function selection

00/01/10: PH5
11: AN15

Bit 1~0 PHS11~PHS10: PH4 pin-shared function selection
00/01/10: PH4
11: AN14

• IFS0 Register
Bit 7 6 5 4 3 2 1 0

Name — PTCK3PS PTCK2PS PTCK1PS PTCK0PS STCK2PS STCK1PS STCK0PS
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit 7 Unimplemented, read as “0”
Bit 6 PTCK3PS: PTCK3 input source pin selection

0: PD5
1: PG4

Bit 5 PTCK2PS: PTCK2 input source pin selection
0: PD3
1: PG5

Bit 4 PTCK1PS: PTCK1 input source pin selection
0: PC5
1: PE2

Bit 3 PTCK0PS: PTCK0 input source pin selection
0: PC3
1: PF4

Bit 2 STCK2PS: STCK2 input source pin selection
0: PF6
1: PB0

Bit 1 STCK1PS: STCK1 input source pin selection
0: PD1
1: PB7

Bit 0 STCK0PS: STCK0 input source pin selection
0: PC7
1: PE0

Rev. 1.00 100 December 27, 2019 Rev. 1.00 101 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IFS1 Register
Bit 7 6 5 4 3 2 1 0

Name — PTP3IPS PTP2IPS PTP1IPS PTP0IPS STP2IPS STP1IPS STP0IPS
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit 7 Unimplemented, read as “0”
Bit 6 PTP3IPS: PTP3I input source pin selection

0: PD4
1: PG5

Bit 5 PTP2IPS: PTP2I input source pin selection
0: PD2
1: PB3

Bit 4 PTP1IPS: PTP1I input source pin selection
0: PC4
1: PE3

Bit 3 PTP0IPS: PTP0I input source pin selection
0: PC2
1: PF5

Bit 2 STP2IPS: STP2I input source pin selection
0: PD6
1: PF7

Bit 1 STP1IPS: STP1I input source pin selection
0: PD0
1: PB6

Bit 0 STP0IPS: STP0I input source pin selection
0: PC6
1: PE1

• IFS2 Register
Bit 7 6 5 4 3 2 1 0

Name — SCSBPS SDISDAPS SCKSCLPS INT3PS INT2PS INT1PS INT0PS
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit 7 Unimplemented, read as “0”
Bit 6 SCSBPS: SCS input source pin selection

0: PA1
1: PF0

Bit 5 SDISDAPS: SDI/SDA input source pin selection
0: PA4
1: PF2

Bit 4 SCKSCLPS: SCK/SCL input source pin selection
0: PA5
1: PF3

Bit 3 INT3PS: INT3 input source pin selection
0: PA5
1: PC7

Bit 2 INT2PS: INT2 input source pin selection
0: PA4
1: PD0

Bit 1 INT1PS: INT1 input source pin selection
0: PA3
1: PA7

Bit 0 INT0PS: INT0 input source pin selection
0: PA1
1: PA6

Rev. 1.00 102 December 27, 2019 Rev. 1.00 103 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IFS3 Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — RX2PS RX1PS RX0PS
R/W — — — — — R/W R/W R/W
POR — — — — — 0 0 0

Bit 7~3 Unimplemented, read as “0”
Bit 2 RX2PS: RX2 input source pin selection

0: PB3
1: PG0

Bit 1 RX1PS: RX1 input source pin selection
0: PD1
1: PF6

Bit 0 RX0PS: RX0 input source pin selection
0: PA6
1: PD4

I/O Pin Structures
The accompanying diagram illustrates the internal structures of the I/O logic function. As the exact
logical construction of the I/O pin will differ from this diagram, it is supplied as a guide only to
assist with the functional understanding of the logic function I/O pins. The wide range of pin-shared
structures does not permit all types to be shown.

M
U
X

VDD

Control Bit

Data Bit

Data Bus

Write Control Register

Chip Reset

Read Control Register

Read Data Register

Write Data Register

System Wake-up wake-up Select

I/O pin

Weak
Pull-up

Pull-high
Register
Select

Q

D

CK

Q

D

CK

Q

Q
S

S

PA only

IECM

Logic Function Input/Output Structure

READ PORT Function
The READ PORT function is used to manage the reading of the output data from the data latch or I/O
pin, which is specially designed for the IEC60730 self-diagnostic test on the I/O function and A/D
paths. There is a register, IECC, which is used to control the READ PORT function. If the READ
PORT function is disabled, the pin function will operate as the selected pin-shared function. When
a specific data pattern, “11001010”, is written into the IECC register, the internal signal named
IECM will be set high to enable the READ PORT function. If the READ PORT function is enabled,
the value on the corresponding pins will be passed to the accumulator ACC when the read port
instruction “mov acc, Px” is executed where the “x” stands for the corresponding I/O port name.

Rev. 1.00 102 December 27, 2019 Rev. 1.00 103 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IECC Register
Bit 7 6 5 4 3 2 1 0

Name IECS7 IECS6 IECS5 IECS4 IECS3 IECS2 IECS1 IECS0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 IECS7~IECS0: READ PORT function enable control bit 7~bit 0
11001010: IECM=1 – READ PORT function is enabled
Others: IECM=0 – READ PORT function is disabled

READ PORT Function Disabled Enabled
Port Control Register Bit – PxC.n 1 0 1 0
I/O Function

Pin value

Data latch
value Pin value

Digital Input Function
Digital Output Function
(except I2C SDA/SCL) 0

I2C SDA/SCL Pin value
Analog Function 0

Note: The value on the above table is the content of the ACC register after “mov a,
Px” instruction is executed where “x” means the relevant port name.

The additional function of the READ PORT mode is to check the A/D path. When the READ PORT
function is disabled, the A/D path from the external pin to the internal analog input will be switched
off if the A/D input pin function is not selected by the corresponding selection bits. For the MCU
with A/D converter channels, such as A/D AN15~AN0, the desired A/D channel can be switched on
by properly configuring the external analog input channel selection bits in the A/D Control Register
together with the corresponding analog input pin function is selected. However, the additional
function of the READ PORT mode is to force the A/D path to be switched on. For example, when
the AN0 is selected as the analog input channel as the READ PORT function is enabled, the AN0
analog input path will be switched on even if the AN0 analog input pin function is not selected. In
this way, the AN0 analog input path can be examined by internally connecting the digital output on
this shared pin with the AN0 analog input pin switch and then converting the corresponding digital
data without any external analog input voltage connected.

READ PORT
function enabled,
AN0 Pin-shared
path switched on
automatically

External analog input
channel selection

A/D Converter

AN0

AN15

Digital Output Function

A/D Channel Input Path Internal Connection

Rev. 1.00 104 December 27, 2019 Rev. 1.00 105 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Programming Considerations
Within the user program, one of the things first to consider is port initialisation. After a reset, all
of the I/O data and port control registers will be set to high. This means that all I/O pins will be
defaulted to an input state, the level of which depends on the other connected circuitry and whether
pull-high selections have been chosen. If the port control registers are then programmed to setup
some pins as outputs, these output pins will have an initial high output value unless the associated
port data registers are first programmed. Selecting which pins are inputs and which are outputs can
be achieved byte-wide by loading the correct values into the appropriate port control register or
by programming individual bits in the port control register using the “SET [m].i” and “CLR [m].i”
instructions. Note that when using these bit control instructions, a read-modify-write operation takes
place. The microcontroller must first read in the data on the entire port, modify it to the required new
bit values and then rewrite this data back to the output ports.

Port A has the additional capability of providing wake-up functions. When the device is in the
SLEEP or IDLE Mode, various methods are available to wake the device up. One of these is a high
to low transition of any of the Port A pins. Single or multiple pins on Port A can be setup to have this
function.

Timer Modules – TM
One of the most fundamental functions in any microcontroller devices is the ability to control and
measure time. To implement time related functions the device includes several Timer Modules,
generally abbreviated to the name TM. The TMs are multi-purpose timing units and serve to provide
operations such as Timer/Counter, Input Capture, Compare Match Output and Single Pulse Output
as well as being the functional unit for the generation of PWM signals. Each of the TMs has two
interrupts. The addition of input and output pins for each TM ensures that users are provided with
timing units with a wide and flexible range of features.

The common features of the different TM types are described here with more detailed information
provided in the individual Standard and Periodic TM sections.

Introduction
The device contains several TMs and each individual TM can be categorised as a certain type,
namely Standard Type TM or Periodic Type TM. Although similar in nature, the different TM types
vary in their feature complexity. The common features to all of the Standard and Periodic type TMs
will be described in this section and the detailed operation regarding each of the TM types will be
described in separate sections. The main features and differences between the two types of TMs are
summarised in the accompanying table.

TM Function STM PTM
Timer/Counter √ √
Input Capture √ √
Compare Match Output √ √
PWM Output √ √
Single Pulse Output √ √
PWM Alignment Edge Edge
PWM Adjustment Period & Duty Duty or Period Duty or Period

TM Function Summary

Rev. 1.00 104 December 27, 2019 Rev. 1.00 105 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

TM Operation
The different types of TM offer a diverse range of functions, from simple timing operations to PWM
signal generation. The key to understanding how the TM operates is to see it in terms of a free
running count-up counter whose value is then compared with the value of pre-programmed internal
comparators. When the free running count-up counter has the same value as the pre-programmed
comparator, known as a compare match situation, a TM interrupt signal will be generated which
can clear the counter and perhaps also change the condition of the TM output pin. The internal TM
counter is driven by a user selectable clock source, which can be an internal clock or an external pin.

TM Clock Source
The clock source which drives the main counter in each TM can originate from various sources.
The selection of the required clock source is implemented using the xTnCK2~xTnCK0 bits in the
xTMn control registers, where “x” stands for S or P type TM and “n” stands for the specific TM
serial number. The clock source can be a ratio of the system clock, fSYS, or the internal high clock,
fH, the fSUB clock source or the external xTCKn pin. The xTCKn pin clock source is used to allow an
external signal to drive the TM as an external clock source for event counting.

TM Interrupts
The Standard or Periodic type TM has two internal interrupt, one for each of the internal comparator
A or comparator P, which generate a TM interrupt when a compare match condition occurs. When a
TM interrupt is generated, it can be used to clear the counter and also to change the state of the TM
output pin.

TM External Pins
Each of the TMs, irrespective of what type, has two TM input pins, with the label xTCKn and xTPnI
respectively. The xTMn input pin, xTCKn, is essentially a clock source for the xTMn and is selected
using the xTnCK2~xTnCK0 bits in the xTMnC0 register. This external TM input pin allows an
external clock source to drive the internal TM. The xTCKn input pin can be chosen to have either a
rising or falling active edge. The STCKn and PTCKn pins are also used as the external trigger input
pin in single pulse output mode for the STMn and PTMn respectively.

The other xTM input pin, STPnI or PTPnI, is the capture input whose active edge can be a
rising edge, a falling edge or both rising and falling edges and the active edge transition type is
selected using the STnIO1~STnIO0 or PTnIO1~PTnIO0 bits in the STMnC1 or PTMnC1 register
respectively. There is another capture input, PTCKn, for PTMn capture input mode, which can be
used as the external trigger input source except the PTPnI pin.

The TMs each have one output pin, xTPn. The TM output pin can be selected using the corresponding
pin-shared function selection bits described in the Pin-shared Function section. When the TM is in the
Compare Match Output Mode, these pins can be controlled by the TM to switch to a high or low level or
to toggle when a compare match situation occurs. The external xTPn output pin is also the pin where the
TM generates the PWM output waveform. As the TM output pins are pin-shared with other functions,
the TM output function must first be setup using relevant pin-shared function selection register. The
details of the pin-shared function selection are described in the pin-shared function section.

STM PTM
Input Output Input Output

STCK0, STP0I
STCK1, STP1I
STCK2, STP2I

STP0
STP1
STP2

PTCK0, PTP0I
PTCK1, PTP1I
PTCK2, PTP2I
PTCK3, PTP3I

PTP0
PTP1
PTP2
PTP3

TM External Pins

Rev. 1.00 106 December 27, 2019 Rev. 1.00 107 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

STMn

STCKn

STPn

STPnI
CCR capture input

CCR output

Clock input

STM Function Pin Block Diagram (n = 0~2)

PTMn

PTCKn

PTPn

PTPnI
CCR capture input

CCR output

Clock/capture input

PTM Function Pin Block Diagram (n = 0~3)

Programming Considerations
The TM Counter Registers and the Capture/Compare CCRA and CCRP registers, all have a low and
high byte structure. The high bytes can be directly accessed, but as the low bytes can only be accessed
via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific
way. The important point to note is that data transfer to and from the 8-bit buffer and its related low
byte only takes place when a write or read operation to its corresponding high byte is executed.

As the CCRA and CCRP registers are implemented in the way shown in the following diagram and
accessing these register pairs is carried out in a specific way as described above, it is recommended
to use the “MOV” instruction to access the CCRA and CCRP low byte registers, named xTMnAL
and PTMnRPL, using the following access procedures. Accessing the CCRA or CCRP low byte
registers without following these access procedures will result in unpredictable values.

Data Bus

8-bit Buffer

xTMnDHxTMnDL

xTMnAHxTMnAL

xTMn Counter Register (Read only)

xTMn CCRA Register (Read/Write)

PTMnRPHPTMnRPL

PTMn CCRP Register (Read/Write)

The following steps show the read and write procedures:

• Writing Data to CCRA or CCRP
 ♦ Step 1. Write data to Low Byte xTMnAL or PTMnRPL

 – note that here data is only written to the 8-bit buffer.

Rev. 1.00 106 December 27, 2019 Rev. 1.00 107 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

 ♦ Step 2. Write data to High Byte xTMnAH or PTMnRPH
 – here data is written directly to the high byte registers and simultaneously data is latched
from the 8-bit buffer to the Low Byte registers.

• Reading Data from the Counter Registers and CCRA or CCRP
 ♦ Step 1. Read data from the High Byte xTMnDH, xTMnAH or PTMnRPH

 – here data is read directly from the High Byte registers and simultaneously data is latched
from the Low Byte register into the 8-bit buffer.

 ♦ Step 2. Read data from the Low Byte xTMnDL, xTMnAL or PTMnRPL
 – this step reads data from the 8-bit buffer.

Standard Type TM – STM
The Standard Type TM contains five operating modes, which are Compare Match Output, Timer/
Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Standard TM can
also be controlled with two external input pins and can drive one external output pin.

STM Core STM Input Pin STM Output Pin

16-bit STM
(STM0, STM1, STM2)

STCK0, STP0I
STCK1, STP1I
STCK2, STP2I

STP0
STP1
STP2

fSYS

fSYS/4

fH/64
fH/16

fSUB

STCKn

000
001
010
011
100
101
110
111

STnCK2~STnCK0

16-bit Count-up Counter

8-bit Comparator P

CCRP

b8~b15

b0~b15

16-bit Comparator A

STnON
STnPAU

Comparator A Match

Comparator P Match

Counter Clear 0
1

Output
Control

Polarity
Control STPn

STnOC

STnM1, STnM0
STnIO1, STnIO0

STMnAF Interrupt

STMnPF Interrupt

STnPOL

CCRA

STnCCLR

Edge
Detector STPnI

STnIO1, STnIO0

fH/8

Pin
Control

PxSn

Standard Type TM Block Diagram (n = 0~2)

Standard TM Operation
The size of Standard TM is 16-bit wide and its core is a 16-bit count-up counter which is driven by
a user selectable internal or external clock source. There are also two internal comparators with the
names, Comparator A and Comparator P. These comparators will compare the value in the counter with
CCRP and CCRA registers. The CCRP comparator is 8-bit wide whose value is compared the with
highest 8 bits in the counter while the CCRA is the sixteen bits and therefore compares all counter bits.

The only way of changing the value of the 16-bit counter using the application program, is to
clear the counter by changing the STnON bit from low to high. The counter will also be cleared
automatically by a counter overflow or a compare match with one of its associated comparators.
When these conditions occur, a STM interrupt signal will also usually be generated. The Standard
Type TM can operate in a number of different operational modes, can be driven by different clock
sources including an input pin and can also control an output pin. All operating setup conditions are
selected using relevant internal registers.

Rev. 1.00 108 December 27, 2019 Rev. 1.00 109 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Standard Type TM Register Description
Overall operation of the Standard TM is controlled using a series of registers. A read only register
pair exists to store the internal counter 16-bit value, while a read/write register pair exists to store
the internal 16-bit CCRA value. The STMnRP register is used to store the 8-bit CCRP value. The
remaining two registers are control registers which setup the different operating and control modes.

Register
Name

Bit
7 6 5 4 3 2 1 0

STMnC0 STnPAU STnCK2 STnCK1 STnCK0 STnON — — —
STMnC1 STnM1 STnM0 STnIO1 STnIO0 STnOC STnPOL STnDPX STnCCLR
STMnDL D7 D6 D5 D4 D3 D2 D1 D0
STMnDH D15 D14 D13 D12 D11 D10 D9 D8
STMnAL D7 D6 D5 D4 D3 D2 D1 D0
STMnAH D15 D14 D13 D12 D11 D10 D9 D8
STMnRP D7 D6 D5 D4 D3 D2 D1 D0

16-bit Standard TM Registers List (n = 0~2)

• STMnDL Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 STMn Counter Low Byte Register bit 7 ~ bit 0
STMn 16-bit Counter bit 7 ~ bit 0

• STMnDH Register
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 STMn Counter High Byte Register bit 7 ~ bit 0
STMn 16-bit Counter bit 15 ~ bit 8

• STMnAL Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 STMn CCRA Low Byte Register bit 7 ~ bit 0
STMn 16-bit CCRA bit 7 ~ bit 0

• STMnAH Register
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 STMn CCRA High Byte Register bit 7 ~ bit 0
STMn 16-bit CCRA bit 15 ~ bit 8

Rev. 1.00 108 December 27, 2019 Rev. 1.00 109 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• STMnRP Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: STMn CCRP 8-bit register, compared with the STMn counter bit 15~bit 8
Comparator P match period =

0: 65536 STMn clocks
1~255: (1~255) × 256 STMn clocks

These eight bits are used to setup the value on the internal CCRP 8-bit register, which are
then compared with the internal counter’s highest eight bits. The result of this comparison
can be selected to clear the internal counter if the STnCCLR bit is set to zero. Setting the
STnCCLR bit to zero ensures that a compare match with the CCRP values will reset the
internal counter. As the CCRP bits are only compared with the highest eight counter bits,
the compare values exist in 256 clock cycle multiples. Clearing all eight bits to zero is in
effect allowing the counter to overflow at its maximum value.

• STMnC0 Register
Bit 7 6 5 4 3 2 1 0

Name STnPAU STnCK2 STnCK1 STnCK0 STnON — — —
R/W R/W R/W R/W R/W R/W — — —
POR 0 0 0 0 0 — — —

Bit 7 STnPAU: STMn Counter Pause control
0: Run
1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores
normal counter operation. When in a Pause condition the STMn will remain powered
up and continue to consume power. The counter will retain its residual value when
this bit changes from low to high and resume counting from this value when the bit
changes to a low value again.

Bit 6~4 STnCK2~STnCK0: Select STMn Counter clock
000: fSYS/4
001: fSYS

010: fH/16
011: fH/64
100: fSUB

101: fSUB

110: STCKn rising edge clock
111: STCKn falling edge clock

These three bits are used to select the clock source for the STMn. The external pin
clock source can be chosen to be active on the rising or falling edge. The clock source
fSYS is the system clock, while fH and fSUB are other internal clocks, the details of which
can be found in the oscillator section.

Bit 3 STnON: STMn Counter On/Off control
0: Off
1: On

This bit controls the overall on/off function of the STMn. Setting the bit high enables
the counter to run while clearing the bit disables the STMn. Clearing this bit to zero
will stop the counter from counting and turn off the STMn which will reduce its power
consumption. When the bit changes state from low to high the internal counter value will
be reset to zero, however when the bit changes from high to low, the internal counter will
retain its residual value until the bit returns high again. If the STMn is in the Compare
Match Output Mode then the STMn output pin will be reset to its initial condition, as
specified by the STnOC bit, when the STnON bit changes from low to high.

Bit 2~0 Unimplemented, read as “0”

Rev. 1.00 110 December 27, 2019 Rev. 1.00 111 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• STMnC1 Register
Bit 7 6 5 4 3 2 1 0

Name STnM1 STnM0 STnIO1 STnIO0 STnOC STnPOL STnDPX STnCCLR
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 STnM1~STnM0: Select STMn Operating Mode
00: Compare Match Output Mode
01: Capture Input Mode
10: PWM Output Mode or Single Pulse Output Mode
11: Timer/Counter Mode

These bits setup the required operating mode for the STMn. To ensure reliable
operation the STMn should be switched off before any changes are made to the
STnM1 and STnM0 bits. In the Timer/Counter Mode, the STMn output pin state is
undefined.

Bit 5~4 STnIO1~STnIO0: Select STMn external pin STPn function
Compare Match Output Mode

00: No change
01: Output low
10: Output high
11: Toggle output

PWM Output Mode/Single Pulse Output Mode
00: PWM output inactive state
01: PWM output active state
10: PWM output
11: Single Pulse Output

Capture Input Mode
00: Input capture at rising edge of STPnI
01: Input capture at falling edge of STPnI
10: Input capture at rising/falling edge of STPnI
11: Input capture disabled

Timer/Counter Mode
Unused

These two bits are used to determine how the STMn output pin changes state when a
certain condition is reached. The function that these bits select depends upon in which
mode the STMn is running.
In the Compare Match Output Mode, the STnIO1 and STnIO0 bits determine how the
STMn output pin changes state when a compare match occurs from the Comparator
A. The TM output pin can be setup to switch high, switch low or to toggle its present
state when a compare match occurs from the Comparator A. When the bits are both
zero, then no change will take place on the output. The initial value of the STMn
output pin should be setup using the STnOC bit in the STMnC1 register. Note that
the output level requested by the STnIO1 and STnIO0 bits must be different from the
initial value setup using the STnOC bit otherwise no change will occur on the STMn
output pin when a compare match occurs. After the STMn output pin changes state,
it can be reset to its initial level by changing the level of the STnON bit from low to
high.
In the PWM Output Mode, the STnIO1 and STnIO0 bits determine how the STMn
output pin changes state when a certain compare match condition occurs. The PWM
output function is modified by changing these two bits. It is necessary to only change
the values of the STnIO1 and STnIO0 bits only after the STMn has been switched off.
Unpredictable PWM outputs will occur if the STnIO1 and STnIO0 bits are changed
when the STMn is running.

Rev. 1.00 110 December 27, 2019 Rev. 1.00 111 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 3 STnOC: STMn STPn Output control
Compare Match Output Mode

0: Initial low
1: Initial high

PWM Output Mode/Single Pulse Output Mode
0: Active low
1: Active high

This is the output control bit for the STMn output pin. Its operation depends upon
whether STMn is being used in the Compare Match Output Mode or in the PWM
Output Mode/Single Pulse Output Mode. It has no effect if the STMn is in the Timer/
Counter Mode. In the Compare Match Output Mode it determines the logic level of
the STMn output pin before a compare match occurs. In the PWM output Mode it
determines if the PWM signal is active high or active low. In the Single Pulse Output
Mode it determines the logic level of the STMn output pin when the STnON bit
changes from low to high.

Bit 2 STnPOL: STMn STPn Output polarity control
0: Non-invert
1: Invert

This bit controls the polarity of the STPn output pin. When the bit is set high the
STMn output pin will be inverted and not inverted when the bit is zero. It has no effect
if the STMn is in the Timer/Counter Mode.

Bit 1 STnDPX: STMn PWM duty/period control
0: CCRP – period; CCRA – duty
1: CCRP – duty; CCRA – period

This bit determines which of the CCRA and CCRP registers are used for period and
duty control of the PWM waveform.

Bit 0 STnCCLR: STMn Counter Clear condition selection
0: Comparator P match
1: Comparator A match

This bit is used to select the method which clears the counter. Remember that the
Standard TM contains two comparators, Comparator A and Comparator P, either of
which can be selected to clear the internal counter. With the STnCCLR bit set high,
the counter will be cleared when a compare match occurs from the Comparator A.
When the bit is low, the counter will be cleared when a compare match occurs from
the Comparator P or with a counter overflow. A counter overflow clearing method can
only be implemented if the CCRP bits are all cleared to zero. The STnCCLR bit is not
used in the PWM Output, Single Pulse Output or Capture Input Mode.

Standard Type TM Operation Modes
The Standard Type TM can operate in one of five operating modes, Compare Match Output Mode,
PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The
operating mode is selected using the STnM1 and STnM0 bits in the STMnC1 register.

Compare Match Output Mode
To select this mode, bits STnM1 and STnM0 in the STMnC1 register, should be set to 00
respectively. In this mode once the counter is enabled and running it can be cleared by three
methods. These are a counter overflow, a compare match from Comparator A and a compare match
from Comparator P. When the STnCCLR bit is low, there are two ways in which the counter can be
cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all
zero which allows the counter to overflow. Here both STMnAF and STMnPF interrupt request flags
for Comparator A and Comparator P respectively, will both be generated.

If the STnCCLR bit in the STMnC1 register is high then the counter will be cleared when a compare
match occurs from Comparator A. However, here only the STMnAF interrupt request flag will

Rev. 1.00 112 December 27, 2019 Rev. 1.00 113 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore
when STnCCLR is high no STMnPF interrupt request flag will be generated. In the Compare Match
Output Mode, the CCRA can not be set to “0”.

As the name of the mode suggests, after a comparison is made, the STMn output pin, will change
state. The STMn output pin condition however only changes state when a STMnAF interrupt request
flag is generated after a compare match occurs from Comparator A. The STMnPF interrupt request
flag, generated from a compare match occurs from Comparator P, will have no effect on the STMn
output pin. The way in which the STMn output pin changes state are determined by the condition of
the STnIO1 and STnIO0 bits in the STMnC1 register. The STMn output pin can be selected using
the STnIO1 and STnIO0 bits to go high, to go low or to toggle from its present condition when a
compare match occurs from Comparator A. The initial condition of the STMn output pin, which is
setup after the STnON bit changes from low to high, is setup using the STnOC bit. Note that if the
STnIO1 and STnIO0 bits are zero then no pin change will take place.

Counter Value

0xFFFF

CCRP

CCRA

STnON

STnPAU

STnPOL

CCRP Int.
flag STMnPF

CCRA Int.
flag STMnAF

STMn
O/P Pin

Time

CCRP=0

CCRP > 0

Counter overflow
CCRP > 0

Counter cleared by CCRP value

Pause

Resume

Stop

Counter
Restart

STnCCLR = 0; STnM [1:0] = 00

Output pin set to
initial Level Low if
STnOC=0

Output Toggle with
STMnAF flag

Note STnIO [1:0] = 10
Active High Output selectHere STnIO [1:0] = 11

Toggle Output select

Output not affected by
STMnAF flag. Remains High
until reset by STnON bit

Output Pin
Reset to Initial value

Output controlled by other
pin-shared function

Output Inverts
when STnPOL is high

Compare Match Output Mode – STnCCLR = 0
Note: 1. With STnCCLR=0 a Comparator P match will clear the counter

2. The STMn output pin is controlled only by the STMnAF flag
3. The output pin is reset to its initial state by a STnON bit rising edge
4. n=0~2

Rev. 1.00 112 December 27, 2019 Rev. 1.00 113 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

0xFFFF

CCRP

CCRA

STnON

STnPAU

STnPOL

CCRP Int.
flag STMnPF

CCRA Int.
flag STMnAF

STMn O/P
Pin

Time

CCRA=0

CCRA = 0
Counter overflowCCRA > 0 Counter cleared by CCRA value

Pause

Resume

Stop Counter Restart

STnCCLR = 1; STnM [1:0] = 00

Output pin set to
initial Level Low if
STnOC=0

Output Toggle with
STMnAF flag

Note STnIO [1:0] = 10
Active High Output selectHere STnIO [1:0] = 11

Toggle Output select

Output not affected by
STMnAF flag. Remains High
until reset by STnON bit

Output Pin
Reset to Initial value

Output controlled by other
pin-shared function

Output Inverts
when STnPOL is high

STMnPF not
generated

No STMnAF flag
generated on
CCRA overflow

Output does
not change

Compare Match Output Mode – STnCCLR = 1
Note: 1. With STnCCLR=1 a Comparator A match will clear the counter

2. The STMn output pin is controlled only by the STMnAF flag
3. The output pin is reset to its initial state by a STnON bit rising edge
4. A STMnPF flag is not generated when STnCCLR=1
5. n=0~2

Rev. 1.00 114 December 27, 2019 Rev. 1.00 115 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Timer/Counter Mode
To select this mode, bits STnM1 and STnM0 in the STMnC1 register should be set to 11
respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output
Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the
STMn output pin is not used. Therefore the above description and Timing Diagrams for the Compare
Match Output Mode can be used to understand its function. As the STMn output pin is not used in
this mode, the pin can be used as a normal I/O pin or other pin-shared function.

PWM Output Mode
To select this mode, bits STnM1 and STnM0 in the STMnC1 register should be set to 10 respectively
and also the STnIO1 and STnIO0 bits should be set to 10 respectively. The PWM function within
the STMn is useful for applications which require functions such as motor control, heating control,
illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the
STMn output pin, a square wave AC waveform can be generated with varying equivalent DC RMS
values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated
waveform is extremely flexible. In the PWM Output Mode, the STnCCLR bit has no effect as the
PWM period. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one
register is used to clear the internal counter and thus control the PWM waveform frequency, while
the other one is used to control the duty cycle. Which register is used to control either frequency
or duty cycle is determined using the STnDPX bit in the STMnC1 register. The PWM waveform
frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match
occurs from either Comparator A or Comparator P. The STnOC bit in the STMnC1 register is used
to select the required polarity of the PWM waveform while the two STnIO1 and STnIO0 bits are
used to enable the PWM output or to force the STMn output pin to a fixed high or low level. The
STnPOL bit is used to reverse the polarity of the PWM output waveform.

• 16-bit STMn, PWM Output Mode, Edge-aligned Mode, STnDPX=0
CCRP 1~255 0
Period CCRP × 256 65536
Duty CCRA

If fSYS=16MHz, STMn clock source is fSYS/4, CCRP=2 and CCRA=128,

The STMn PWM output frequency=(fSYS/4)/(2×256)=fSYS/2048=8kHz, duty=128/(2×256)=25%.

If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the
PWM output duty is 100%.

• 16-bit STMn, PWM Output Mode, Edge-aligned Mode, STnDPX=1
CCRP 1~255 0
Period CCRA
Duty CCRP×256 65536

The PWM output period is determined by the CCRA register value together with the TM clock
while the PWM duty cycle is defined by the CCRP register value except when the CCRP value is
equal to 0.

Rev. 1.00 114 December 27, 2019 Rev. 1.00 115 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

CCRP

CCRA

STnON

STnPAU

STnPOL

CCRP Int.
flag STMnPF

CCRA Int.
flag STMnAF

STMn O/P Pin
(STnOC=1)

Time

Counter cleared by
CCRP

Pause Resume Counter Stop if
STnON bit low

Counter Reset when
STnON returns high

STnDPX = 0; STnM [1:0] = 10

PWM Duty Cycle
set by CCRA

PWM resumes
operation

Output controlled by other
pin-shared function Output Inverts

when STnPOL = 1PWM Period set
by CCRP

STMn O/P Pin
(STnOC=0)

PWM Output Mode – STnDPX = 0
Note: 1. Here STnDPX=0 – Counter cleared by CCRP

2. A counter clear sets the PWM Period
3. The internal PWM function continues running even when STnIO [1:0] = 00 or 01
4. The STnCCLR bit has no influence on PWM operation
5. n=0~2

Rev. 1.00 116 December 27, 2019 Rev. 1.00 117 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

CCRP

CCRA

STnON

STnPAU

STnPOL

CCRP Int.
flag STMnPF

CCRA Int.
flag STMnAF

STMn O/P Pin
(STnOC=1)

Time

Counter cleared by
CCRA

Pause Resume Counter Stop if
STnON bit low

STnDPX = 1; STnM [1:0] = 10

PWM Duty Cycle
set by CCRP

PWM resumes
operation

Output controlled by other
pin-shared function Output Inverts

when STnPOL = 1PWM Period
set by CCRA

STMn O/P Pin
(STnOC=0)

Counter Reset when
STnON returns high

PWM Output Mode – STnDPX = 1
Note: 1. Here STnDPX=1 – Counter cleared by CCRA

2. A counter clear sets the PWM Period
3. The internal PWM function continues even when STnIO [1:0] = 00 or 01
4. The STnCCLR bit has no influence on PWM operation
5. n=0~2

Rev. 1.00 116 December 27, 2019 Rev. 1.00 117 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Single Pulse Output Mode
To select this mode, bits STnM1 and STnM0 in the STMnC1 register should be set to 10
respectively and also the STnIO1 and STnIO0 bits should be set to 11 respectively. The Single Pulse
Output Mode, as the name suggests, will generate a single shot pulse on the STMn output pin.

The trigger for the pulse output leading edge is a low to high transition of the STnON bit, which
can be implemented using the application program. However in the Single Pulse Output Mode, the
STnON bit can also be made to automatically change from low to high using the external STCKn
pin, which will in turn initiate the Single Pulse output. When the STnON bit transitions to a high
level, the counter will start running and the pulse leading edge will be generated. The STnON bit
should remain high when the pulse is in its active state. The generated pulse trailing edge will be
generated when the STnON bit is cleared to zero, which can be implemented using the application
program or when a compare match occurs from Comparator A.

However a compare match from Comparator A will also automatically clear the STnON bit and thus
generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control
the pulse width. A compare match from Comparator A will also generate a STMn interrupt. The
counter can only be reset back to zero when the STnON bit changes from low to high when the
counter restarts. In the Single Pulse Output Mode CCRP is not used. The STnCCLR and STnDPX
bits are not used in this Mode.

STnON bit
0 → 1

S/W Command
SET“STnON”

or
STCKn Pin

Transition

STnON bit
1 → 0

CCRA
Trailing Edge

S/W Command
CLR“STnON”

or
CCRA Compare
Match

STPn Output Pin

Pulse Width = CCRA Value

CCRA
Leading Edge

Single Pulse Generation

Note: It is recommended that before the STMn operates in the single pulse output mode, the STnON
bit should be cleared to zero and the STCKn pin state should be low to avoid unexpected
trigger.

Rev. 1.00 118 December 27, 2019 Rev. 1.00 119 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

CCRP

CCRA

STnON

STnPAU

STnPOL

CCRP Int.
Flag STMnPF

CCRA Int.
Flag STMnAF

STMn O/P Pin
(STnOC=1)

Time

Counter stopped by
CCRA

Pause
Resume Counter Stops by

software

Counter Reset when
STnON returns high

STnM [1:0] = 10 ; STnIO [1:0] = 11

Pulse Width
set by CCRA

Output Inverts
when STnPOL = 1

No CCRP Interrupts
generated

STMn O/P Pin
(STnOC=0)

STCKn pin

Software
Trigger

Cleared by
CCRA match

STCKn pin
Trigger

Auto. set by
STCKn pin

Software
Trigger

Software
Clear

Software
TriggerSoftware

Trigger

Single Pulse Output Mode
Note: 1. Counter stopped by CCRA

2. CCRP is not used
3. The pulse triggered by the STCKn pin or by setting the STnON bit high
4. A STCKn pin active edge will automatically set the STnON bit high
5. In the Single Pulse Output Mode, STnIO [1:0] must be set to “11” and can not be changed
6. n=0~2

Rev. 1.00 118 December 27, 2019 Rev. 1.00 119 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Capture Input Mode
To select this mode bits STnM1 and STnM0 in the STMnC1 register should be set to 01 respectively.
This mode enables external signals to capture and store the present value of the internal counter
and can therefore be used for applications such as pulse width measurements. The external signal
is supplied on the STPnI pin, whose active edge can be a rising edge, a falling edge or both rising
and falling edges; the active edge transition type is selected using the STnIO1 and STnIO0 bits in
the STMnC1 register. The counter is started when the STnON bit changes from low to high which is
initiated using the application program.

When the required edge transition appears on the STPnI pin the present value in the counter will be
latched into the CCRA registers and a STMn interrupt generated. Irrespective of what events occur
on the STPnI pin the counter will continue to free run until the STnON bit changes from high to
low. When a CCRP compare match occurs the counter will reset back to zero; in this way the CCRP
value can be used to control the maximum counter value. When a CCRP compare match occurs from
Comparator P, a STMn interrupt will also be generated. Counting the number of overflow interrupt
signals from the CCRP can be a useful method in measuring long pulse widths. The STnIO1 and
STnIO0 bits can select the active trigger edge on the STPnI pin to be a rising edge, falling edge or
both edge types. If the STnIO1 and STnIO0 bits are both set high, then no capture operation will
take place irrespective of what happens on the STPnI pin, however it must be noted that the counter
will continue to run. The STnCCLR and STnDPX bits are not used in this Mode.

Rev. 1.00 120 December 27, 2019 Rev. 1.00 121 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

YY

CCRP

STnON

STnPAU

CCRP Int.
Flag STMnPF

CCRA Int.
Flag STMnAF

CCRA
Value

Time

Counter cleared by
CCRP

Pause
Resume

Counter
Reset

STnM [1:0] = 01

STMn capture
pin STPnI

XX

Counter
Stop

STnIO [1:0]
Value

XX YY XX YY

Active
edge Active

edge
Active edge

00 – Rising edge 01 – Falling edge 10 – Both edges 11 – Disable Capture

Capture Input Mode
Note: 1. STnM [1:0] = 01 and active edge set by the STnIO [1:0] bits

2. A STMn Capture input pin active edge transfers the counter value to CCRA
3. STnCCLR bit not used
4. No output function – STnOC and STnPOL bits are not used
5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to

zero.
6. n=0~2

Rev. 1.00 120 December 27, 2019 Rev. 1.00 121 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Periodic Type TM – PTM
The Periodic Type TM contains five operating modes, which are Compare Match Output, Timer/
Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Periodic TM can
also be controlled with two external input pins and can drive one external output pin.

PTM Core PTM Input Pin PTM Output Pin
10-bit PTM

(PTM0, PTM1)
PTCK0, PTP0I
PTCK1, PTP1I

PTP0
PTP1

16-bit PTM
(PTM2, PTM3)

PTCK2, PTP2I
PTCK3, PTP3I

PTP2
PTP3

PTCKn

10-bit Count-up Counter

10-bit Comparator P

CCRP

10-bit Comparator A

Output
Control

Polarity
Control

Pin
Control PTPn

CCRA Edge
Detector

PTPnIPin
Control

PTnCCLR

fSYS

fSYS/4

fH/64
fH/16

fSUB

PTnCK2~PTnCK0

PTnON
PTnPAU

Comparator A Match

Comparator P Match

Counter Clear

PTnOC

PTnM1, PTnM0
PTnIO1, PTnIO0

PTMnAF Interrupt

PTMnPF Interrupt

PTnPOL PxSn

PTnIO1, PTnIO0

fSUB

PxSn
PTnCAPTS

000

001

010

011

100

101

110

111

b0~b9

b0~b9

0
1

1
0

10-bit Periodic Type TM Block Diagram (n = 0~1)

PTCKn

16-bit Count-up Counter

16-bit Comparator P

CCRP

16-bit Comparator A

Output
Control

Polarity
Control

Pin
Control PTPn

CCRA Edge
Detector

PTPnIPin
Control

PTnCCLR

fSYS

fSYS/4

fH/64
fH/16

fSUB

PTnCK2~PTnCK0

PTnON
PTnPAU

Comparator A Match

Comparator P Match

Counter Clear

PTnOC

PTnM1, PTnM0
PTnIO1, PTnIO0

PTMnAF Interrupt

PTMnPF Interrupt

PTnPOL PxSn

PTnIO1, PTnIO0

fSUB

PxSn
PTnCAPTS

000

001

010

011

100

101

110

111

b0~b9

b0~b9

0
1

1
0

16-bit Periodic Type TM Block Diagram (n = 2~3)

Periodic TM Operation
The size of Periodic TM is 10-/16-bit wide and its core is a 10-/16-bit count-up counter which is
driven by a user selectable internal or external clock source. There are also two internal comparators
with the names, Comparator A and Comparator P. These comparators will compare the value in the
counter with CCRP and CCRA registers. The CCRP and CCRA comparators are 10-/16-bit wide
whose value is respectively compared with all counter bits.

The only way of changing the value of the 10-/16-bit counter using the application program is to
clear the counter by changing the PTnON bit from low to high. The counter will also be cleared

Rev. 1.00 122 December 27, 2019 Rev. 1.00 123 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

automatically by a counter overflow or a compare match with one of its associated comparators.
When these conditions occur, a PTM interrupt signal will also usually be generated. The Periodic
Type TM can operate in a number of different operational modes, can be driven by different clock
sources including an input pin and can also control the output pins. All operating setup conditions
are selected using relevant internal registers.

Periodic Type TM Register Description
Overall operation of the Periodic TM is controlled using a series of registers. A read only register
pair exists to store the internal counter 10-/16-bit value, while two read/write register pairs exist
to store the internal 10-/16-bit CCRA and CCRP value. The remaining two registers are control
registers which setup the different operating and control modes.

Register
Name

Bit
7 6 5 4 3 2 1 0

PTMnC0 PTnPAU PTnCK2 PTnCK1 PTnCK0 PTnON — — —
PTMnC1 PTnM1 PTnM0 PTnIO1 PTnIO0 PTnOC PTnPOL PTnCAPTS PTnCCLR
PTMnDL D7 D6 D5 D4 D3 D2 D1 D0
PTMnDH — — — — — — D9 D8
PTMnAL D7 D6 D5 D4 D3 D2 D1 D0
PTMnAH — — — — — — D9 D8
PTMnRPL D7 D6 D5 D4 D3 D2 D1 D0
PTMnRPH — — — — — — D9 D8

10-bit Periodic TM Registers List (n = 0~1)

Register
Name

Bit
7 6 5 4 3 2 1 0

PTMnC0 PTnPAU PTnCK2 PTnCK1 PTnCK0 PTnON — — —
PTMnC1 PTnM1 PTnM0 PTnIO1 PTnIO0 PTnOC PTnPOL PTnCAPTS PTnCCLR
PTMnDL D7 D6 D5 D4 D3 D2 D1 D0
PTMnDH D15 D14 D13 D12 D11 D10 D9 D8
PTMnAL D7 D6 D5 D4 D3 D2 D1 D0
PTMnAH D15 D14 D13 D12 D11 D10 D9 D8
PTMnRPL D7 D6 D5 D4 D3 D2 D1 D0
PTMnRPH D15 D14 D13 D12 D11 D10 D9 D8

16-bit Periodic TM Registers List (n = 2~3)

• PTMnDL Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 PTMn Counter Low Byte Register bit 7 ~ bit 0
PTMn 10-/16-bit Counter bit 7 ~ bit 0

Rev. 1.00 122 December 27, 2019 Rev. 1.00 123 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PTMnDH Register (n=0~1)
Bit 7 6 5 4 3 2 1 0

Name — — — — — — D9 D8
R/W — — — — — — R R
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 PTMn Counter High Byte Register bit 1 ~ bit 0

PTMn 10-bit Counter bit 9 ~ bit 8

• PTMnDH Register (n=2~3)
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 PTMn Counter High Byte Register bit 7 ~ bit 0
PTMn 16-bit Counter bit 15 ~ bit 8

• PTMnAL Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 PTMn CCRA Low Byte Register bit 7 ~ bit 0
PTMn 10-/16-bit CCRA bit 7 ~ bit 0

• PTMnAH Register (n=0~1)
Bit 7 6 5 4 3 2 1 0

Name — — — — — — D9 D8
R/W — — — — — — R/W R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 PTMn CCRA High Byte Register bit 1 ~ bit 0

PTMn 10-bit CCRA bit 9 ~ bit 8

• PTMnAH Register (n=2~3)
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 PTMn CCRA High Byte Register bit 7 ~ bit 0
PTMn 16-bit CCRA bit 15 ~ bit 8

• PTMnRPL Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: PTMn CCRP Low Byte Register bit 7 ~ bit 0
PTMn 10-/16-bit CCRP bit 7 ~ bit 0

Rev. 1.00 124 December 27, 2019 Rev. 1.00 125 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PTMnRPH Register (n = 0~1)
Bit 7 6 5 4 3 2 1 0

Name — — — — — — D9 D8
R/W — — — — — — R/W R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 D9~D8: PTMn CCRP High Byte Register bit 1 ~ bit 0

PTMn 10-bit CCRP bit 9 ~ bit 8

• PTMnRPH Register (n = 2~3)
Bit 7 6 5 4 3 2 1 0

Name D15 D14 D13 D12 D11 D10 D9 D8
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D15~D8: PTMn CCRP High Byte Register bit 7 ~ bit 0
PTMn 16-bit CCRP bit 15 ~ bit 8

• PTMnC0 Register
Bit 7 6 5 4 3 2 1 0

Name PTnPAU PTnCK2 PTnCK1 PTnCK0 PTnON — — —
R/W R/W R/W R/W R/W R/W — — —
POR 0 0 0 0 0 — — —

Bit 7 PTnPAU: PTMn Counter Pause control
0: Run
1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores
normal counter operation. When in a Pause condition the PTMn will remain powered
up and continue to consume power. The counter will retain its residual value when
this bit changes from low to high and resume counting from this value when the bit
changes to a low value again.

Bit 6~4 PTnCK2~PTnCK0: Select PTMn Counter clock
000: fSYS/4
001: fSYS

010: fH/16
011: fH/64
100: fSUB

101: fSUB

110: PTCKn rising edge clock
111: PTCKn falling edge clock

These three bits are used to select the clock source for the PTMn. The external pin
clock source can be chosen to be active on the rising or falling edge. The clock source
fSYS is the system clock, while fH and fSUB are other internal clocks, the details of which
can be found in the oscillator section.

Bit 3 PTnON: PTMn Counter On/Off control
0: Off
1: On

This bit controls the overall on/off function of the PTMn. Setting the bit high enables
the counter to run while clearing the bit disables the PTMn. Clearing this bit to zero
will stop the counter from counting and turn off the PTMn which will reduce its power
consumption. When the bit changes state from low to high the internal counter value
will be reset to zero, however when the bit changes from high to low, the internal
counter will retain its residual value until the bit returns high again. If the PTMn is in

Rev. 1.00 124 December 27, 2019 Rev. 1.00 125 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

the Compare Match Output Mode or the PWM Output Mode or Single Pulse Output
Mode then the PTMn output pin will be reset to its initial condition, as specified by the
PTnOC bit, when the PTnON bit changes from low to high.

Bit 2~0 Unimplemented, read as “0”

• PTMnC1 Register
Bit 7 6 5 4 3 2 1 0

Name PTnM1 PTnM0 PTnIO1 PTnIO0 PTnOC PTnPOL PTnCAPTS PTnCCLR
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 PTnM1~PTnM0: Select PTMn Operating Mode
00: Compare Match Output Mode
01: Capture Input Mode
10: PWM Output Mode or Single Pulse Output Mode
11: Timer/Counter Mode

These bits setup the required operating mode for the PTMn. To ensure reliable
operation the PTMn should be switched off before any changes are made to the PTnM1
and PTnM0 bits. In the Timer/Counter Mode, the PTMn output pin state is undefined.

Bit 5~4 PTnIO1~PTnIO0: Select PTMn external pin PTPn or PTPnI function
Compare Match Output Mode

00: No change
01: Output low
10: Output high
11: Toggle output

PWM Output Mode/Single Pulse Output Mode
00: PWM output inactive state
01: PWM output active state
10: PWM output
11: Single Pulse Output

Capture Input Mode
00: Input capture at rising edge of PTPnI or PTCKn
01: Input capture at falling edge of PTPnI or PTCKn
10: Input capture at rising/falling edge of PTPnI or PTCKn
11: Input capture disabled

Timer/Counter Mode
Unused

These two bits are used to determine how the PTMn output pin changes state when a
certain condition is reached. The function that these bits select depends upon in which
mode the PTMn is running.
In the Compare Match Output Mode, the PTnIO1 and PTnIO0 bits determine how the
PTMn output pin changes state when a compare match occurs from the Comparator A.
The PTMn output pin can be setup to switch high, switch low or to toggle its present
state when a compare match occurs from the Comparator A. When the bits are both
zero, then no change will take place on the output. The initial value of the PTMn output
pin should be setup using the PTnOC bit in the PTMnC1 register. Note that the output
level requested by the PTnIO1 and PTnIO0 bits must be different from the initial value
setup using the PTnOC bit otherwise no change will occur on the PTMn output pin
when a compare match occurs. After the PTMn output pin changes state, it can be reset
to its initial level by changing the level of the PTnON bit from low to high.
In the PWM Output Mode, the PTnIO1 and PTnIO0 bits determine how the TM
output pin changes state when a certain compare match condition occurs. The PTMn
output function is modified by changing these two bits. It is necessary to only change
the values of the PTnIO1 and PTnIO0 bits only after the PTMn has been switched off.
Unpredictable PWM outputs will occur if the PTnIO1 and PTnIO0 bits are changed
when the PTMn is running.

Rev. 1.00 126 December 27, 2019 Rev. 1.00 127 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 3 PTnOC: PTMn PTPn Output control
Compare Match Output Mode

0: Initial low
1: Initial high

PWM Output Mode/Single Pulse Output Mode
0: Active low
1: Active high

This is the output control bit for the PTMn output pin. Its operation depends upon
whether PTMn is being used in the Compare Match Output Mode or in the PWM
Output Mode/Single Pulse Output Mode. It has no effect if the PTMn is in the Timer/
Counter Mode. In the PWM Output Mode it determines if the PWM signal is active
high or active low. In the Single Pulse Output Mode it determines the logic level of the
PTM output pin when the PTnON bit changes from low to high.

Bit 2 PTnPOL: PTMn PTPn Output polarity control
0: Non-invert
1: Invert

This bit controls the polarity of the PTPn output pin. When the bit is set high the
PTMn output pin will be inverted and not inverted when the bit is zero. It has no effect
if the PTMn is in the Timer/Counter Mode.

Bit 1 PTnCAPTS: PTMn Capture Trigger Source selection
0: From PTPnI pin
1: From PTCKn pin

Bit 0 PTnCCLR: PTMn Counter Clear condition selection
0: Comparator P match
1: Comparator A match

This bit is used to select the method which clears the counter. Remember that the
Periodic TM contains two comparators, Comparator A and Comparator P, either of
which can be selected to clear the internal counter. With the PTnCCLR bit set high,
the counter will be cleared when a compare match occurs from the Comparator A.
When the bit is low, the counter will be cleared when a compare match occurs from
the Comparator P or with a counter overflow. A counter overflow clearing method can
only be implemented if the CCRP bits are all cleared to zero. The PTnCCLR bit is not
used in the PWM Output, Single Pulse Output or Capture Input Mode.

Periodic Type TM Operation Modes
The Periodic Type TM can operate in one of five operating modes, Compare Match Output Mode,
PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The
operating mode is selected using the PTnM1 and PTnM0 bits in the PTMnC1 register.

Compare Match Output Mode
To select this mode, bits PTnM1 and PTnM0 in the PTMnC1 register, should be set to 00
respectively. In this mode once the counter is enabled and running it can be cleared by three
methods. These are a counter overflow, a compare match from Comparator A and a compare match
from Comparator P. When the PTnCCLR bit is low, there are two ways in which the counter can be
cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all
zero which allows the counter to overflow. Here both PTMnAF and PTMnPF interrupt request flags
for Comparator A and Comparator P respectively, will both be generated.

If the PTnCCLR bit in the PTMnC1 register is high then the counter will be cleared when a compare
match occurs from Comparator A. However, here only the PTMnAF interrupt request flag will
be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore
when PTnCCLR is high no PTMnPF interrupt request flag will be generated. In the Compare Match
Output Mode, the CCRA can not be set to “0”.

Rev. 1.00 126 December 27, 2019 Rev. 1.00 127 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

As the name of the mode suggests, after a comparison is made, the PTMn output pin will change
state. The PTMn output pin condition however only changes state when a PTMnAF interrupt request
flag is generated after a compare match occurs from Comparator A. The PTMnPF interrupt request
flag, generated from a compare match occurs from Comparator P, will have no effect on the PTMn
output pin. The way in which the PTMn output pin changes state are determined by the condition of
the PTnIO1 and PTnIO0 bits in the PTMnC1 register. The PTMn output pin can be selected using
the PTnIO1 and PTnIO0 bits to go high, to go low or to toggle from its present condition when a
compare match occurs from Comparator A. The initial condition of the PTMn output pin, which is
setup after the PTnON bit changes from low to high, is setup using the PTnOC bit. Note that if the
PTnIO1 and PTnIO0 bits are zero then no pin change will take place.

Counter Value

0x3FF/
0xFFFF

CCRP

CCRA

PTnON

PTnPAU

PTnPOL

CCRP Int. Flag
PTMnPF

CCRA Int. Flag
PTMnAF

PTMn O/P Pin

Time

CCRP=0

CCRP > 0

Counter overflow
CCRP > 0
Counter cleared by CCRP value

Pause

Resume

Stop

Counter
Restart

Output pin set to
initial Level Low if
PTnOC=0

Output Toggle
with PTMnAF flag

Note PTnIO [1:0] = 10
Active High Output select

Here PTnIO [1:0] = 11
Toggle Output select

Output not affected by
PTMnAF flag. Remains High
until reset by PTnON bit Output Pin

Reset to Initial value
Output controlled by other
pin-shared function

Output Inverts when
PTnPOL is high

PTnCCLR = 0; PTnM [1:0] = 00

Compare Match Output Mode – PTnCCLR = 0
Note: 1. With PTnCCLR=0, a Comparator P match will clear the counter

2. The PTMn output pin is controlled only by the PTMnAF flag
3. The output pin is reset to its initial state by a PTnON bit rising edge
4. The 10-bit PTM maximum counter value is 0x3FF while the 16-bit PTM maximum counter value is

0xFFFF.
5. n=0~1 for 10-bit PTM while n=2~3 for 16-bit PTM

Rev. 1.00 128 December 27, 2019 Rev. 1.00 129 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

0x3FF/
0xFFFF

CCRP

CCRA

PTnON

PTnPAU

PTnPOL

CCRP Int.
Flag PTMnPF

CCRA Int.
Flag PTMnAF

PTMn O/P
Pin

Time

CCRA=0

CCRA = 0
Counter overflowCCRA > 0 Counter cleared by CCRA value

Pause

Resume

Stop Counter Restart

Output pin set to
initial Level Low if
PTnOC=0

Output Toggle
with PTMnAF flag

Note PTnIO [1:0] = 10
Active High Output select

Here PTnIO [1:0] = 11
Toggle Output select

Output not affected by
PTMnAF flag. Remains High
until reset by PTnON bit

Output Pin
Reset to Initial value

Output controlled by
other pin-shared function

Output Inverts
when PTnPOL is high

PTMnPF not
generated

No PTMnAF flag
generated on
CCRA overflow

Output does
not change

PTnCCLR = 1; PTnM [1:0] = 00

Compare Match Output Mode – PTnCCLR = 1
Note: 1. With PTnCCLR=1, a Comparator A match will clear the counter

2. The PTMn output pin is controlled only by the PTMnAF flag
3. The output pin is reset to its initial state by a PTnON bit rising edge
4. A PTMnPF flag is not generated when PTnCCLR =1
5. The 10-bit PTM maximum counter value is 0x3FF while the 16-bit PTM maximum counter value is

0xFFFF.
6. n = 0 ~1 for 10-bit PTM while n = 2 ~3 for 16-bit PTM

Rev. 1.00 128 December 27, 2019 Rev. 1.00 129 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Timer/Counter Mode
To select this mode, bits PTnM1 and PTnM0 in the PTMnC1 register should be set to 11
respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output
Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the
PTMn output pin is not used. Therefore the above description and Timing Diagrams for the Compare
Match Output Mode can be used to understand its function. As the PTMn output pin is not used in
this mode, the pin can be used as a normal I/O pin or other pin-shared function.

PWM Output Mode
To select this mode, bits PTnM1 and PTnM0 in the PTMnC1 register should be set to 10 respectively
and also the PTnIO1 and PTnIO0 bits should be set to 10 respectively. The PWM function within
the PTMn is useful for applications which require functions such as motor control, heating control,
illumination control, etc. By providing a signal of fixed frequency but of varying duty cycle on the
PTMn output pin, a square wave AC waveform can be generated with varying equivalent DC RMS
values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated
waveform is extremely flexible. In the PWM Output Mode, the PTnCCLR bit has no effect as the
PWM period. Both of the CCRP and CCRA registers are used to generate the PWM waveform, one
register is used to clear the internal counter and thus control the PWM waveform frequency, while
the other one is used to control the duty cycle. The PWM waveform frequency and duty cycle can
therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match
occurs from either Comparator A or Comparator P. The PTnOC bit in the PTMnC1 register is used
to select the required polarity of the PWM waveform while the two PTnIO1 and PTnIO0 bits are
used to enable the PWM output or to force the PTMn output pin to a fixed high or low level. The
PTnPOL bit is used to reverse the polarity of the PWM output waveform.

• 10-bit PTMn, PWM Output Mode
CCRP 1~1023 0
Period 1~1023 1024
Duty CCRA

• 16-bit PTMn, PWM Output Mode
CCRP 1~65535 0
Period 1~65535 65536
Duty CCRA

If fSYS=16MHz, TM clock source select fSYS/4, CCRP=512 and CCRA=128,

The PTMn PWM output frequency=(fSYS/4)/512=fSYS/2048=8kHz, duty=128/512=25%,

If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the
PWM output duty is 100%.

Rev. 1.00 130 December 27, 2019 Rev. 1.00 131 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

CCRP

CCRA

PTnON

PTnPAU

PTnPOL

CCRP Int. Flag
PTMnPF

CCRA Int. Flag
PTMnAF

PTMn O/P Pin
(PTnOC=1)

Time

Counter cleared by
CCRP

Pause Resume Counter Stop if
PTnON bit low

Counter Reset when
PTnON returns high

PWM Duty Cycle
set by CCRA

PWM resumes
operationOutput controlled by

other pin-shared function
Output Inverts
When PTnPOL = 1

PWM Period set by CCRP

PTMn O/P Pin
(PTnOC=0)

PTnM [1:0] = 10

PWM Output Mode
Note: 1. The counter is cleared by CCRP.

2. A counter clear sets the PWM Period
3. The internal PWM function continues running even when PTnIO [1:0] = 00 or 01
4. The PTnCCLR bit has no influence on PWM operation
5. n=0~1 for 10-bit PTM while n=2~3 for 16-bit PTM

Rev. 1.00 130 December 27, 2019 Rev. 1.00 131 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Single Pulse Output Mode
To select this mode, bits PTnM1 and PTnM0 in the PTMnC1 register should be set to 10
respectively and also the PTnIO1 and PTnIO0 bits should be set to 11 respectively. The Single Pulse
Output Mode, as the name suggests, will generate a single shot pulse on the PTMn output pin.

The trigger for the pulse output leading edge is a low to high transition of the PTnON bit, which
can be implemented using the application program. However in the Single Pulse Output Mode, the
PTnON bit can also be made to automatically change from low to high using the external PTCKn
pin, which will in turn initiate the Single Pulse output. When the PTnON bit transitions to a high
level, the counter will start running and the pulse leading edge will be generated. The PTnON bit
should remain high when the pulse is in its active state. The generated pulse trailing edge will be
generated when the PTnON bit is cleared to zero, which can be implemented using the application
program or when a compare match occurs from Comparator A.

However a compare match from Comparator A will also automatically clear the PTnON bit and thus
generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control
the pulse width. A compare match from Comparator A will also generate a PTMn interrupt. The
counter can only be reset back to zero when the PTnON bit changes from low to high when the
counter restarts. In the Single Pulse Output Mode CCRP is not used. The PTnCCLR is not used in
this Mode.

PTnON bit
0 1

S/W Command
SET“PTnON”

or
PTCKn Pin

Transition

PTnON bit
1 0

CCRA
Trailing Edge

S/W Command
CLR“PTnON”

or
CCRA Compare
Match

PTPn Output Pin

Pulse Width = CCRA Value

CCRA
Leading Edge

Single Pulse Generation

Rev. 1.00 132 December 27, 2019 Rev. 1.00 133 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

CCRP

CCRA

PTnON

PTnPAU

PTnPOL

CCRP Int. Flag
PTMnPF

CCRA Int. Flag
PTMnAF

PTMn O/P Pin
(PTnOC=1)

Time

Counter stopped by
CCRA

Pause
Resume Counter Stops

by software

Counter Reset when
PTnON returns high

Pulse Width
set by CCRA

Output Inverts
when PTnPOL = 1

No CCRP
Interrupts
generated

PTMn O/P Pin
(PTnOC=0)

PTCKn pin

Software
Trigger

Cleared by
CCRA match

PTCKn pin
Trigger

Auto. set by
PTCKn pin

Software
Trigger

Software
Clear

Software
TriggerSoftware

Trigger

PTnM [1:0] = 10 ; PTnIO [1:0] = 11

Single Pulse Output Mode
Note: 1. Counter stopped by CCRA

2. CCRP is not used
3. The pulse triggered by the PTCKn pin or by setting the PTnON bit high
4. A PTCKn pin active edge will automatically set the PTnON bit high.
5. In the Single Pulse Output Mode, PTnIO [1:0] must be set to “11” and can not be changed.
6. n = 0~1 for 10-bit PTM while n = 2~3 for 16-bit PTM

Rev. 1.00 132 December 27, 2019 Rev. 1.00 133 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Capture Input Mode
To select this mode bits PTnM1 and PTnM0 in the PTMnC1 register should be set to 01 respectively.
This mode enables external signals to capture and store the present value of the internal counter
and can therefore be used for applications such as pulse width measurements. The external signal is
supplied on the PTPnI or PTCKn pin, selected by the PTnCAPTS bit in the PTMnC1 register. The
input pin active edge can be either a rising edge, a falling edge or both rising and falling edges; the
active edge transition type is selected using the PTnIO1 and PTnIO0 bits in the PTMnC1 register.
The counter is started when the PTnON bit changes from low to high which is initiated using the
application program.

When the required edge transition appears on the PTPnI or PTCKn pin the present value in the
counter will be latched into the CCRA registers and a PTMn interrupt generated. Irrespective of
what events occur on the PTPnI or PTCKn pin the counter will continue to free run until the PTnON
bit changes from high to low. When a CCRP compare match occurs the counter will reset back to
zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP
compare match occurs from Comparator P, a PTMn interrupt will also be generated. Counting the
number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse
widths. The PTnIO1 and PTnIO0 bits can select the active trigger edge on the PTPnI or PTCKn pin
to be a rising edge, falling edge or both edge types. If the PTnIO1 and PTnIO0 bits are both set high,
then no capture operation will take place irrespective of what happens on the PTPnI or PTCKn pin,
however it must be noted that the counter will continue to run.

As the PTPnI or PTCKn pin is pin shared with other functions, care must be taken if the PTMn is in
the Input Capture Mode. This is because if the pin is setup as an output, then any transitions on this
pin may cause an input capture operation to be executed. The PTnCCLR, PTnOC and PTnPOL bits
are not used in this Mode.

Rev. 1.00 134 December 27, 2019 Rev. 1.00 135 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Counter Value

YY

CCRP

PTnON

PTnPAU

CCRP Int.
Flag PTMnPF

CCRA Int.
Flag PTMnAF

CCRA Value

Time

Counter cleared by
CCRP

Pause
Resume

Counter
Reset

PTnM[1:0] = 01

PTMn Capture Pin
PTPnI or PTCKn

XX

Counter
Stop

PTnIO [1:0]
Value

Active
edge

Active
edge Active edge

00 - Rising edge 01 - Falling edge 10 - Both edges 11 - Disable Capture

XX YY XX YY

Capture Input Mode
Note: 1. PTnM [1:0] = 01 and active edge set by the PTnIO [1:0] bits

2. A PTMn Capture input pin active edge transfers the counter value to CCRA
3. PTnCCLR bit not used
4. No output function – PTnOC and PTnPOL bits are not used
5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to

zero.
6. n=0~1 for 10-bit PTM while n=2~3 for 16-bit PTM

Rev. 1.00 134 December 27, 2019 Rev. 1.00 135 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Analog to Digital Converter
The need to interface to real world analog signals is a common requirement for many electronic
systems. However, to properly process these signals by a microcontroller, they must first be
converted into digital signals by A/D converters. By integrating the A/D conversion electronic
circuitry into the microcontroller, the need for external components is reduced significantly with the
corresponding follow-on benefits of lower costs and reduced component space requirements.

A/D Overview
The device contains a multi-channel analog to digital converter which can directly interface to
external analog signals, such as that from sensors or other control signals and convert these signals
directly into a 12-bit digital value. It also can convert the internal signals, such as the internal
reference voltage, into a 12-bit digital value. The external or internal analog signal to be converted is
determined by the SAINS and SACS bit fields. Note that when the internal analog signal is selected
to be converted using the SAINS field, the external channel analog input will automatically be
switched off. More detailed information about the A/D input signal selection will be described in the
“A/D Converter Input Signals” section.

The accompanying block diagram shows the internal structure of the A/D converter with temperature
sensor together with its associated registers and control bits.

External Input Channels Internal Signals A/D Signal Select

16: AN0~AN15 6: AVDD, AVDD/2, AVDD/4, VR,
VR/2, VR/4,

SAINS3~SAINS0
SACS3~SACS0

SAINS3~SAINS0

A/D Converter

START ADBZ ADCEN

AVSS

A/D Clock

÷ 2N

(N=0~7)

fSYS

SACKS2~
SACKS0

AVDD

ADCEN

SADOL

SADOH

AN0

AN1

AN15

A/D Data
Registers

AVDD

AVDD/2
AVDD/4

VR

VR/2
VR/4

ADRFS

PGAVRI
VREFI

VBGREF

(Gain=1, 1.667, 2.5, 3.333)

SAVRS1~SAVRS0

ADPGAEN

VR

AVDDVREFI

A/D Converter
Reference Voltage

AN11

Pin-shared
Selection SACS3~SACS0

Pin-shared
Selection

PGAIS

PGAS1~PGAS0

VREF VREF

Pin-shared
Selection

AVSS

A/D Converter Structure

Rev. 1.00 136 December 27, 2019 Rev. 1.00 137 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Registers Descriptions
Overall operation of the A/D converter is controlled using six registers. A read only register pair
exists to store the A/D Converter data 12-bit value. Three registers, SADC0, SADC1 and SADC2,
are the control registers which setup the operating conditions and control function of the A/D
converter. The VBGRC register contains the VBGREN bit to control the bandgap reference voltage.

Register Name
Bit

7 6 5 4 3 2 1 0
SADOL (ADRFS=0) D3 D2 D1 D0 — — — —
SADOL (ADRFS=1) D7 D6 D5 D4 D3 D2 D1 D0
SADOH (ADRFS=0) D11 D10 D9 D8 D7 D6 D5 D4
SADOH (ADRFS=1) — — — — D11 D10 D9 D8
SADC0 START ADBZ ADCEN ADRFS SACS3 SACS2 SACS1 SACS0
SADC1 SAINS3 SAINS2 SAINS1 SAINS0 — SACKS2 SACKS1 SACKS0
SADC2 ADPGAEN — — PGAIS SAVRS1 SAVRS0 PGAGS1 PGAGS0
VBGRC — — — — — — — VBGREN

A/D Converter Registers List

A/D Converter Data Registers – SADOL, SADOH
As the device contains an internal 12-bit A/D converter, it requires two data registers to store the
converted value. These are a high byte register, known as SADOH, and a low byte register, known
as SADOL. After the conversion process takes place, these registers can be directly read by the
microcontroller to obtain the digitised conversion value. As only 12 bits of the 16-bit register space
is utilised, the format in which the data is stored is controlled by the ADRFS bit in the SADC0
register as shown in the accompanying table. D0~D11 are the A/D conversion result data bits.
Any unused bits will be read as zero. The A/D data registers contents will be unchanged if the A/D
converter is disabled.

ADRFS
SADOH SADOL

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0
1 0 0 0 0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

A/D Converter Data Registers

A/D Converter Control Registers – SADC0, SADC1, SADC2
To control the function and operation of the A/D converter, three control registers known as SADC0,
SADC1 and SADC2 are provided. These 8-bit registers define functions such as the selection of
which analog signal is connected to the internal A/D converter, the digitised data format, the A/D
clock source as well as controlling the start function and monitoring the A/D converter busy status.
As the device contains only one actual analog to digital converter hardware circuit, each of the
external and internal analog signals must be routed to the converter. The SAINS field in the SADC1
register and SACS field in the SADC0 register are used to determine which analog signal derived
from the external or internal signals will be connected to the A/D converter. The A/D converter also
contains a programmable gain amplifier, PGA, to generate the A/D converter internal reference
voltage. The overall operation of the PGA is controlled using the SADC2 register.

The relevant pin-shared function selection bits determine which pins on I/O Ports are used as analog
inputs for the A/D converter input and which pins are not. When the pin is selected to be an A/D
input, its original function whether it is an I/O or other pin-shared function will be removed. In
addition, any internal pull-high resistor connected to the pin will be automatically removed if the pin
is selected to be an A/D converter input.

Rev. 1.00 136 December 27, 2019 Rev. 1.00 137 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• SADC0 Register
Bit 7 6 5 4 3 2 1 0

Name START ADBZ ADCEN ADRFS SACS3 SACS2 SACS1 SACS0
R/W R/W R R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 START: Start the A/D Conversion
0→1→0: Start

This bit is used to initiate an A/D conversion process. The bit is normally low but if set
high and then cleared low again, the A/D converter will initiate a conversion process.

Bit 6 ADBZ: A/D Converter busy flag
0: No A/D conversion is in progress
1: A/D conversion is in progress

This read only flag is used to indicate whether the A/D conversion is in progress or
not. When the START bit is set from low to high and then to low again, the ADBZ flag
will be set to 1 to indicate that the A/D conversion is initiated. The ADBZ flag will be
cleared to 0 after the A/D conversion is complete.

Bit 5 ADCEN: A/D Converter function enable control
0: Disable
1: Enable

This bit controls the A/D internal function. This bit should be set to one to enable
the A/D converter. If the bit is set low, then the A/D converter will be switched off
reducing the device power consumption. When the A/D converter function is disabled,
the contents of the A/D data register pair known as SADOH and SADOL will be
unchanged.

Bit 4 ADRFS: A/D conversion data format select
0: A/D converter data format → SADOH = D [11:4]; SADOL = D [3:0]
1: A/D converter data format → SADOH = D [11:8]; SADOL = D [7:0]

This bit controls the format of the 12-bit converted A/D value in the two A/D data
registers. Details are provided in the A/D converter data register section.

Bit 3~0 SACS3~SACS0: A/D converter external analog input channel select
0000: External AN0 input
0001: External AN1 input
0010: External AN2 input
0011: External AN3 input
0100: External AN4 input
0101: External AN5 input
0110: External AN6 input
0111: External AN7 input
1000: External AN8 input
1001: External AN9 input
1010: External AN10 input
1011: External AN11 input
1100: External AN12 input
1101: External AN13 input
1110: External AN14 input
1111: External AN15 input

These bits are used to select which external analog input channel is to be converted.
When the external analog input channel is selected, the SAINS bit field must set to
“0000”, “0100” or “11xx”. Details are summarized in the “A/D Converter Input Signal
Selection” table.

Rev. 1.00 138 December 27, 2019 Rev. 1.00 139 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• SADC1 Register
Bit 7 6 5 4 3 2 1 0

Name SAINS3 SAINS2 SAINS1 SAINS0 — SACKS2 SACKS1 SACKS0
R/W R/W R/W R/W R/W — R/W R/W R/W
POR 0 0 0 0 — 0 0 0

Bit 7~4 SAINS3~SAINS0: A/D converter input signal select
0000: External source – External analog channel intput, ANn
0001: Internal source – Internal signal derived from AVDD

0010: Internal source – Internal signal derived from AVDD/2
0011: Internal source – Internal signal derived from AVDD/4
0100: External source – External analog channel intput, ANn
0101: Internal source – Internal signal derived from PGA output VR

0110: Internal source – Internal signal derived from PGA output VR/2
0111: Internal source – Internal signal derived from PGA output VR/4
10xx: Internal source – Ground
11xx: External source – External analog channel intput, ANn

When the internal analog signal is selected to be converted, the external channel signal
input will automatically be switched off regardless of the SACS field value. It will
prevent the external channel input from being connected together with the internal
analog signal.

Bit 3 Unimplemented, read as “0”
Bit 2~0 SACKS2~SACKS0: A/D conversion clock source select

000: fSYS

001: fSYS/2
010: fSYS/4
011: fSYS/8
100: fSYS/16
101: fSYS/32
110: fSYS/64
111: fSYS/128

These bits are used to select the clock source for the A/D converter.

• SADC2 Register
Bit 7 6 5 4 3 2 1 0

Name ADPGAEN — — PGAIS SAVRS1 SAVRS0 PGAGS1 PGAGS0
R/W R/W — — R/W R/W R/W R/W R/W
POR 0 — — 0 0 0 0 0

Bit 7 ADPGAEN: PGA enable control
0: Disable
1: Enable

Bit 6~5 Unimplemented, read as “0”
Bit 4 PGAIS: PGA input voltage selection

0: From VREFI pin
1: From internal reference voltage VBGREF

Bit 3~2 SAVRS1~SAVRS0: A/D converter reference voltage select
00: Internal A/D converter power, AVDD

01: External VREF pin
1x: Internal PGA output voltage, VR

These bits are used to select the A/D converter reference voltage source. When the
internal reference voltage source is selected, the reference voltage derived from the
external VREF pin will automatically be switched off.

Rev. 1.00 138 December 27, 2019 Rev. 1.00 139 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 1~0 PGAGS1~PGAGS0: PGA gain select
00: Gain=1
01: Gain=1.667 – VR=2V as VRI=1.2V
10: Gain=2.5 – VR=3V as VRI=1.2V
11: Gain=3.333 – VR=4V as VRI=1.2V

These bits are used to select the PGA gain. Note that here the gain is guaranteed only
when the PGA input voltage is equal to 1.2V.

• VBGRC Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — — VBGREN
R/W — — — — — — — R/W
POR — — — — — — — 0

Bit 7~1 Unimplemented, read as “0”
Bit 0 VBGREN: Bandgap reference voltage control

0: Disable
1: Enable

This bit is used to enable the internal Bandgap reference circuit. The internal Bandgap
reference circuit should first be enabled before the VBGREF voltage is selected to be
used. A specific start-up time is necessary for the Bandgap circuit to become stable and
accurate.

A/D Converter Reference Voltage
The actual reference voltage supply to the A/D Converter can be supplied from the positive power
supply, AVDD, an external reference source supplied on pin VREF or an internal reference voltage
VR determined by the SAVRS1~SAVRS0 bits in the SADC2 register. The internal reference voltage
is amplified through a programmable gain amplifier, PGA, which is controlled by the ADPGAEN
bit in the SADC2 register. The PGA gain can be equal to 1, 1.667, 2.5 or 3.333 and selected using
the PGAGS1~PGAGS0 bits in the SADC2 register. The PGA input can come from the external
reference input pin, VREFI, or an internal Bandgap reference voltage, VBGREF, selected by the PGAIS
bit in the SADC2 register. As the VREFI and VREF pin both are pin-shared with other functions,
when the VREFI or VREF pin is selected as the reference voltage pin, the VREFI or VREF pin-
shared function selection bits should first be properly configured to disable other pin-shared
functions. However, if the internal reference signal is selected as the reference source, the external
reference input from the VREFI or VREF pin will automatically be switched off by hardware. The
analog input values must not be allowed to exceed the value of the selected reference voltage, VREF.

A/D Converter Input Signals
All of the external A/D analog input pins are pin-shared with the I/O pins as well as other functions.
The corresponding pin-shared function selection bits in the PxS1 and PxS0 registers, determine
whether the external input pins are setup as A/D converter analog channel inputs or whether they
have other functions. If the corresponding pin is setup to be an A/D converter analog channel input,
the original pin function will be disabled. In this way, pins can be changed under program control
to change their function between A/D inputs and other functions. All pull-high resistors, which are
setup through register programming, will be automatically disconnected if the pins are setup as A/D
inputs. Note that it is not necessary to first setup the A/D pin as an input in the port control register
to enable the A/D input as when the relevant A/D input function selection bits enable an A/D input,
the status of the port control register will be overridden.

Rev. 1.00 140 December 27, 2019 Rev. 1.00 141 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

As the device contains only one actual analog to digital converter hardware circuit, each of the
external and internal analog signals must be routed to the converter. The SAINS3~SAINS0 bits in
the SADC1 register are used to determine that the analog signal to be converted comes from the
external channel input or internal analog signal. The SACS3~SACS0 bits in the SADC0 register are
used to determine which external channel input is selected to be converted. If the SAINS3~SAINS0
bits are set to “0000”, the external channel input will be selected to be converted and the
SACS3~SACS0 bits can determine which external channel is selected.

When the SAINS field is set to the value of “0x01”, “0x10” or “0x11”, the internal analog signal will
be selected. If the internal analog signal is selected to be converted, the external channel signal input
will automatically be switched off regardless of the SACS field value. It will prevent the external
channel input from being connected together with the internal analog signal.

SAINS [3:0] SACS [3:0] Input Signals Description
0000, 0100, 11xx 0000~1111 AN0~AN15 External channel analog input ANn

0001 xxxx AVDD Internal signal derived from AVDD

0010 xxxx AVDD/2 Internal signal derived from AVDD/2
0011 xxxx AVDD/4 Internal signal derived from AVDD/4
0101 xxxx VR Internal signal derived from PGA output VR

0110 xxxx VR/2 Internal signal derived from PGA output VR/2
0111 xxxx VR/4 Internal signal derived from PGA output VR/4
10xx xxxx GND Connected to the ground

"x": don't care
A/D Converter Input Signal Selection

A/D Operation
The START bit in the SADC0 register is used to start the AD conversion. When the microcontroller
sets this bit from low to high and then low again, an analog to digital conversion cycle will be
initiated.

The ADBZ bit in the SADC0 register is used to indicate whether the analog to digital conversion
process is in progress or not. This bit will be automatically set to 1 by the microcontroller after an
A/D conversion is successfully initiated. When the A/D conversion is complete, the ADBZ bit will
be cleared to 0. In addition, the corresponding A/D interrupt request flag will be set in the interrupt
control register, and if the interrupts are enabled, an internal interrupt signal will be generated. This
A/D internal interrupt signal will direct the program flow to the associated A/D internal interrupt
address for processing. If the A/D internal interrupt is disabled, the microcontroller can poll the
ADBZ bit in the SADC0 register to check whether it has been cleared as an alternative method of
detecting the end of an A/D conversion cycle.

The clock source for the A/D converter, which originates from the system clock fSYS, can be chosen
to be either fSYS or a subdivided version of fSYS. The division ratio value is determined by the
SACKS2~SACKS0 bits in the SADC1 register. Although the A/D clock source is determined by
the system clock fSYS and by bits SACKS2~SACKS0, there are some limitations on the maximum
A/D clock source speed that can be selected. As the recommended range of permissible A/D clock
period, tADCK, is from 0.5μs to 10μs, care must be taken for system clock frequencies. For example, if
the system clock operates at a frequency of 8MHz, the SACKS2~SACKS0 bits should not be set to
000, 001 or 111. Doing so will give A/D clock periods that are less than the minimum or larger than
the maximum A/D clock period which may result in inaccurate A/D conversion values. Refer to the
following table for examples, where values marked with an asterisk * show where special care must
be taken, as the values may be out of the specified A/D clock period.

Rev. 1.00 140 December 27, 2019 Rev. 1.00 141 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

fSYS

A/D Clock Period (tADCK)
SACKS

[2:0]=000
(fSYS)

SACKS
[2:0]=001

(fSYS/2)

SACKS
[2:0]=010

(fSYS/4)

SACKS
[2:0]=011

(fSYS/8)

SACKS
[2:0]=100
(fSYS/16)

SACKS
[2:0]=101
(fSYS/32)

SACKS
[2:0]=110
(fSYS/64)

SACKS
[2:0]=111
(fSYS/128)

1 MHz 1μs 2μs 4μs 8μs 16μs * 32μs * 64μs * 128μs *
2 MHz 500ns 1μs 2μs 4μs 8μs 16μs * 32μs * 64μs *
4 MHz 250ns * 500ns 1μs 2μs 4μs 8μs 16μs * 32μs *
8 MHz 125ns * 250ns * 500ns 1μs 2μs 4μs 8μs 16μs *

12 MHz 83ns * 167ns * 333ns * 667ns 1.33μs 2.67μs 5.33μs 10.67μs *
16 MHz 62.5ns * 125ns * 250ns * 500ns 1μs 2μs 4μs 8μs

A/D Clock Period Examples

Controlling the power on/off function of the A/D converter circuitry is implemented using the
ADCEN bit in the SADC0 register. This bit must be set high to power on the A/D converter. When
the ADCEN bit is set high to power on the A/D converter internal circuitry a certain delay, as
indicated in the timing diagram, must be allowed before an A/D conversion is initiated. Even if
no pins are selected for use as A/D inputs, if the ADCEN bit is high, then some power will still be
consumed. In power conscious applications it is therefore recommended that the ADCEN is set low
to reduce power consumption when the A/D converter function is not being used.

Conversion Rate and Timing Diagram
A complete A/D conversion contains two parts, data sampling and data conversion. The data
sampling which is defined as tADS takes 4 A/D clock cycles and the data conversion takes 12 A/D
clock cycles. Therefore a total of 16 A/D clock cycles for an analog signal A/D conversion which is
defined as tADC are necessary.

Maximum single A/D conversion rate = A/D clock period / 16

The accompanying diagram shows graphically the various stages involved in an external channel
input signal analog to digital conversion process and its associated timing. After an A/D conversion
process has been initiated by the application program, the microcontroller internal hardware will
begin to carry out the conversion, during which time the program can continue with other functions.
The time taken for the A/D conversion is 16 tADCK clock cycles where tADCK is equal to the A/D clock
period.

ADCEN

START

ADBZ

SACS[3:0]

off on off on
tON2ST

tADS

A/D sampling time
tADS

A/D sampling time

Start of A/D conversion Start of A/D conversion Start of A/D conversion

End of A/D
conversion

End of A/D
conversion

tADC
A/D conversion time

tADC
A/D conversion time

tADC
A/D conversion time

0011B 0010B 0000B 0001B

A/D channel
switch

(SAINS=000)

A/D Conversion Timing

Rev. 1.00 142 December 27, 2019 Rev. 1.00 143 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Summary of A/D Conversion Steps
The following summarises the individual steps that should be executed in order to implement an A/D
conversion process.

• Step 1
Select the required A/D conversion clock by properly programming the SACKS2~SACKS0 bits
in the SADC1 register.

• Step 2
Enable the A/D converter by setting the ADCEN bit in the SADC0 register to one.

• Step 3
Select which signal is to be connected to the internal A/D converter by correctly configuring the
SACS and SAINS bit fields
Selecting the external channel input to be converted, go to Step 4.
Selecting the internal analog signal to be converted, go to Step 5.

• Step 4
If the SAINS field is 0000, 0100 or 11xx, the external channel input can be selected. The desired
external channel input is selected by configuring the SACS field. When the A/D input signal
comes from the external channel input, the corresponding pin should be configured as an A/D
input function by selecting the relevant pin-shared function control bits. Then go to Step 6.

• Step 5
If the SAINS field is set to 0x01, 0x10 or 0x11, the relevant internal analog signal will be
selected. When the internal analog signal is selected to be converted, the external channel analog
input will automatically be disconnected. Then go to Step 6.

• Step 6
Select the A/D converter output data format by configuring the ADRFS bit.

• Step 7
Select the A/D converter reference voltage source by configuring the SAVRS bit field.
Select the PGA input signal and the desired PGA gain if the PGA output voltage, VR, is selected
as the A/D converter reference voltage.

• Step 8
If A/D conversion interrupt is used, the interrupt control registers must be correctly configured
to ensure the A/D interrupt function is active. The master interrupt control bit, EMI, and the A/D
conversion interrupt control bit, ADE, must both be set high in advance.

• Step 9
The A/D conversion procedure can now be initialized by setting the START bit from low to high
and then low again.

• Step 10
If A/D conversion is in progress, the ADBZ flag will be set high. After the A/D conversion
process is complete, the ADBZ flag will go low and then the output data can be read from
SADOH and SADOL registers.

Note: When checking for the end of the conversion process, if the method of polling the ADBZ bit
in the SADC0 register is used, the interrupt enable step above can be omitted.

Rev. 1.00 142 December 27, 2019 Rev. 1.00 143 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Programming Considerations
During microcontroller operations where the A/D converter is not being used, the A/D internal
circuitry can be switched off to reduce power consumption, by setting bit ADCEN low in the
SADC0 register. When this happens, the internal A/D converter circuits will not consume power
irrespective of what analog voltage is applied to their input lines. If the A/D converter input lines are
used as normal I/Os, then care must be taken as if the input voltage is not at a valid logic level, then
this may lead to some increase in power consumption.

A/D Transfer Function
As the device contains a 12-bit A/D converter, its full-scale converted digitised value is equal to
FFFH. Since the full-scale analog input value is equal to the actual A/D converter reference voltage,
VREF, this gives a single bit analog input value of reference voltage value divided by 4096.

1 LSB = VREF ÷ 4096

The A/D Converter input voltage value can be calculated using the following equation:

A/D input voltage = A/D output digital value × VREF ÷ 4096

The diagram shows the ideal transfer function between the analog input value and the digitised
output value for the A/D converter. Except for the digitised zero value, the subsequent digitised
values will change at a point 0.5 LSB below where they would change without the offset, and the
last full scale digitised value will change at a point 1.5 LSB below the VREF level.

Note that here the VREF voltage is the actual A/D converter reference voltage determined by the
SAVRS field.

FFFH

FFEH

FFDH

03H

02H

01H

0 1 2 3 4093 4094 4095 4096

VREF
4096

Analog Input Voltage

A/D Conversion
Result

1.5 LSB

0.5 LSB

Ideal A/D Transfer Function

A/D Programming Examples
The following two programming examples illustrate how to setup and implement an A/D conversion.
In the first example, the method of polling the ADBZ bit in the SADC0 register is used to detect
when the conversion cycle is complete, whereas in the second example, the A/D interrupt is used to
determine when the conversion is complete.

Rev. 1.00 144 December 27, 2019 Rev. 1.00 145 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Example: Using an ADBZ polling method to detect the end of conversion
clr ADE ; disable ADC interrupt
mov a,03H ; select fSYS/8 as A/D clock and A/D input
mov	SADC1,a		 	 	 ;	signal	comes	from	external	channel
mov	a,00H	 	 	 	 ;	select	AVDD as the A/D reference voltage source
mov	SADC2,a
set	ADCEN
mov	a,03H	 	 	 	 ;	setup	PCS0	to	configure	pin	AN0
mov	PCS0,a
mov	a,00H	 	 	 	 ;	select	AN0	as	the	A/D	external	channel	input
mov	SADC0,a
:
start_conversion:
clr	START	 	 	 	 ;	high	pulse	on	start	bit	to	initiate	conversion
set	START	 	 	 	 ;	reset	A/D
clr	START	 	 	 	 ;	start	A/D
:
polling_EOC:
sz		ADBZ		 	 	 	 ;	poll	the	SADC0	register	ADBZ	bit	to	detect	end	of	A/D	conversion
jmp	polling_EOC		 	 ;	continue	polling
:
mov	a,SADOL		 	 	 ;	read	low	byte	conversion	result	value
mov	SADOL_buffer,a	 	 ;	save	result	to	user	defined	register
mov	a,SADOH		 	 	 ;	read	high	byte	conversion	result	value
mov	SADOH_buffer,a	 	 ;	save	result	to	user	defined	register
:
jmp	start_conversion	 ;	start	next	A/D	conversion

Example: Using the interrupt method to detect the end of conversion
clr ADE ; disable ADC interrupt
mov a,03H ; select fSYS/8 as A/D clock and A/D input
mov	SADC1,a		 	 	 ;	signal	comes	from	external	channel
mov	a,00H	 	 	 	 ;	select	AVDD as the A/D reference voltage source
mov	SADC2,a
set	ADCEN
mov	a,03h	 	 	 	 ;	setup	PCS0	to	configure	pin	AN0
mov	PCS0,a
mov a,00h
mov	SADC0,a		 	 	 ;	select	AN0	as	the	A/D	external	channel	input
:
Start_conversion:
clr	START	 	 	 	 ;	high	pulse	on	START	bit	to	initiate	conversion
set	START	 	 	 	 ;	reset	A/D
clr	START	 	 	 	 ;	start	A/D
clr	ADF	 	 	 	 	 ;	clear	ADC	interrupt	request	flag
set ADE ; enable ADC interrupt
set	EMI	 	 	 	 	 ;	enable	global	interrupt
:
:
ADC_ISR:		 	 	 	 ;	ADC	interrupt	service	routine
mov	acc_stack,a		 	 ;	save	ACC	to	user	defined	memory
mov	a,STATUS
mov	status_stack,a		 ;	save	STATUS	to	user	defined	memory
:
mov	a,SADOL		 	 	 ;	read	low	byte	conversion	result	value
mov	SADOL_buffer,a	 	 ;	save	result	to	user	defined	register
mov	a,SADOH		 	 	 ;	read	high	byte	conversion	result	value

Rev. 1.00 144 December 27, 2019 Rev. 1.00 145 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

mov	SADOH_buffer,a	 	 ;	save	result	to	user	defined	register
:
EXIT_INT_ISR:
mov	a,status_stack
mov	STATUS,a		 	 	 ;	restore	STATUS	from	user	defined	memory
mov	a,acc_stack		 	 ;	restore	ACC	from	user	defined	memory
reti

Serial Interface Module – SIM
The device contains a Serial Interface Module, which includes both the four-line SPI interface or
two-line I2C interface types, to allow an easy method of communication with external peripheral
hardware. Having relatively simple communication protocols, these serial interface types allow the
microcontroller to interface to external SPI or I2C based hardware such as sensors, Flash or EEPROM
memory, etc. The SIM interface pins are pin-shared with other I/O pins and therefore the SIM
interface functional pins must first be selected using the corresponding pin-shared function selection
bits. As both interface types share the same pins and registers, the choice of whether the SPI or I2C
type is used is made using the SIM operating mode control bits, named SIM2~SIM0, in the SIMC0
register. These pull-high resistors of the SIM pin-shared I/O pins are selected using pull-high control
registers when the SIM function is enabled and the corresponding pins are used as SIM input pins.

SPI Interface
The SPI interface is often used to communicate with external peripheral devices such as sensors,
Flash or EEPROM memory devices, etc. Originally developed by Motorola, the four line SPI
interface is a synchronous serial data interface that has a relatively simple communication protocol
simplifying the programming requirements when communicating with external hardware devices.

The communication is full duplex and operates as a slave/master type, where the devices can be
either master or slave. Although the SPI interface specification can control multiple slave devices
from a single master, these devices provided only one SCS pin. If the master needs to control
multiple slave devices from a single master, the master can use I/O pin to select the slave devices.

SPI Interface Operation
The SPI interface is a full duplex synchronous serial data link. It is a four line interface with pin
names SDI, SDO, SCK and SCS. Pins SDI and SDO are the Serial Data Input and Serial Data
Output lines, SCK is the Serial Clock line and SCS is the Slave Select line. As the SPI interface pins
are pin-shared with normal I/O pins and with the I2C function pins, the SPI interface pins must first
be selected by configuring the pin-shared function selection bits and setting the correct bits in the
SIMC0 and SIMC2 registers. After the desired SPI configuration has been set it can be disabled or
enabled using the SIMEN bit in the SIMC0 register. Communication between devices connected
to the SPI interface is carried out in a slave/master mode with all data transfer initiations being
implemented by the master. The Master also controls the clock signal. As the device only contains
a single SCS pin only one slave device can be utilized. The SCS pin is controlled by software, set
CSEN bit to 1 to enable SCS pin function, set CSEN bit to 0 the SCS pin will be floating state.

The SPI function in this device offers the following features:

• Full duplex synchronous data transfer

• Both Master and Slave modes

• LSB first or MSB first data transmission modes

• Transmission complete flag

• Rising or falling active clock edge

Rev. 1.00 146 December 27, 2019 Rev. 1.00 147 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The status of the SPI interface pins is determined by a number of factors such as whether the device is
in the master or slave mode and upon the condition of certain control bits such as CSEN and SIMEN.

SCK

SPI Master

SDO

SDI

SCS

SCK

SPI Slave

SDI

SDO

SCS

SPI Master/Slave Connection

SIMD

TX/RX Shift RegisterSDI Pin

Clock
Edge/Polarity

Control

CKEG

CKPOLB

Clock
Source
Select

fSYS

fSUB

PTM0 CCRP match frequency/2

SCK Pin

CSEN

Busy
Status

SDO Pin

SCS Pin

Data Bus

WCOL
TRF
SIMICF

SPI Block Diagram

SPI Registers
There are three internal registers which control the overall operation of the SPI interface. These are
the SIMD data register and two registers SIMC0 and SIMC2. Note that the SIMC1 register is only
used by the I2C interface.

Register
Name

Bit
7 6 5 4 3 2 1 0

SIMC0 SIM2 SIM1 SIM0 — SIMDEB1 SIMDEB0 SIMEN SIMICF
SIMC2 D7 D6 CKPOLB CKEG MLS CSEN WCOL TRF
SIMD D7 D6 D5 D4 D3 D2 D1 D0

SPI Registers List

SIMD Register
The SIMD register is used to store the data being transmitted and received. The same register is used
by both the SPI and I2C functions. Before the device writes data to the SPI bus, the actual data to
be transmitted must be placed in the SIMD register. After the data is received from the SPI bus, the
device can read it from the SIMD register. Any transmission or reception of data from the SPI bus
must be made via the SIMD register.

Rev. 1.00 146 December 27, 2019 Rev. 1.00 147 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 7 6 5 4 3 2 1 0
Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x”: unknown
There are also two control registers for the SPI interface, SIMC0 and SIMC2. Note that the SIMC2
register also has the name SIMA which is used by the I2C function. The SIMC1 register is not used
by the SPI function, only by the I2C function. Register SIMC0 is used to control the enable/disable
function and to set the data transmission clock frequency. Register SIMC2 is used for other control
functions such as LSB/MSB selection, write collision flag, etc.

• SIMC0 Register
Bit 7 6 5 4 3 2 1 0

Name SIM2 SIM1 SIM0 — SIMDEB1 SIMDEB0 SIMEN SIMICF
R/W R/W R/W R/W — R/W R/W R/W R/W
POR 1 1 1 — 0 0 0 0

Bit 7~5 SIM2~SIM0: SIM Operating Mode Control
000: SPI master mode; SPI clock is fSYS/4
001: SPI master mode; SPI clock is fSYS/16
010: SPI master mode; SPI clock is fSYS/64
011: SPI master mode; SPI clock is fSUB

100: SPI master mode; SPI clock is PTM0 CCRP match frequency/2
101: SPI slave mode
110: I2C slave mode
111: Non SIM function

These bits setup the overall operating mode of the SIM function. As well as selecting
if the I2C or SPI function, they are used to control the SPI Master/Slave selection and
the SPI Master clock frequency. The SPI clock is a function of the system clock but
can also be chosen to be sourced from PTM0. If the SPI Slave Mode is selected then
the clock will be supplied by an external Master device.

Bit 4 Unimplemented, read as “0”
Bit 3~2 SIMDEB1~SIMDEB0: I2C Debounce Time Selection

The SIMDEB1~SIMDEB0 bits are only used in the I2C mode and the detailed
definition is described in the I2C section.

Bit 1 SIMEN: SIM Enable Control
0: Disable
1: Enable

The bit is the overall on/off control for the SIM interface. When the SIMEN bit is
cleared to zero to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and
SCL lines will lose their SPI or I2C function and the SIM operating current will be
reduced to a minimum value. When the bit is high the SIM interface is enabled. The
SIM configuration option must have first enabled the SIM interface for this bit to be
effective. If the SIM is configured to operate as an SPI interface via the SIM2~SIM0
bits, the contents of the SPI control registers will remain at the previous settings when
the SIMEN bit changes from low to high and should therefore be first initialised by
the application program. If the SIM is configured to operate as an I2C interface via the
SIM2~SIM0 bits and the SIMEN bit changes from low to high, the contents of the I2C
control bits such as HTX and TXAK will remain at the previous settings and should
therefore be first initialised by the application program while the relevant I2C flags
such as HCF, HAAS, HBB, SRW and RXAK will be set to their default states.

Bit 0 SIMICF: SIM SPI slave mode Incomplete Transfer Flag
0: SIM SPI slave mode incomplete condition not occurred
1: SIM SPI slave mode incomplete condition occurred

Rev. 1.00 148 December 27, 2019 Rev. 1.00 149 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

This bit is only available when the SIM is configured to operate in an SPI slave mode.
If the SPI operates in the slave mode with the SIMEN and CSEN bits both being set
to 1 but the SCS line is pulled high by the external master device before the SPI data
transfer is completely finished, the SIMICF bit will be set to 1 together with the TRF
bit. When this condition occurs, the corresponding interrupt will occur if the interrupt
function is enabled. However, the TRF bit will not be set to 1 if the SIMICF bit is set
to 1 by software application program.

• SIMC2 Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 CKPOLB CKEG MLS CSEN WCOL TRF
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 D7~D6: Undefined bits
These bits can be read or written by the application program

Bit 5 CKPOLB: SPI clock line base condition selection
0: The SCK line will be high when the clock is inactive
1: The SCK line will be low when the clock is inactive

The CKPOLB bit determines the base condition of the clock line, if the bit is high,
then the SCK line will be low when the clock is inactive. When the CKPOLB bit is
low, then the SCK line will be high when the clock is inactive.

Bit 4 CKEG: SPI SCK clock active edge type selection
CKPOLB=0

0: SCK is high base level and data capture at SCK rising edge
1: SCK is high base level and data capture at SCK falling edge

CKPOLB=1
0: SCK is low base level and data capture at SCK falling edge
1: SCK is low base level and data capture at SCK rising edge

The CKEG and CKPOLB bits are used to setup the way that the clock signal outputs
and inputs data on the SPI bus. These two bits must be configured before data transfer
is executed otherwise an erroneous clock edge may be generated. The CKPOLB bit
determines the base condition of the clock line, if the bit is high, then the SCK line
will be low when the clock is inactive. When the CKPOLB bit is low, then the SCK
line will be high when the clock is inactive. The CKEG bit determines active clock
edge type which depends upon the condition of CKPOLB bit.

Bit 3 MLS: SPI data shift order
0: LSB first
1: MSB first

This is the data shift select bit and is used to select how the data is transferred, either
MSB or LSB first. Setting the bit high will select MSB first and low for LSB first.

Bit 2 CSEN: SPI SCS pin control
0: Disable
1: Enable

The CSEN bit is used as an enable/disable for the SCS pin. If this bit is low, then the
SCS pin will be disabled and placed into I/O pin or other pin-shared functions. If the
bit is high, the SCS pin will be enabled and used as a select pin.

Bit 1 WCOL: SPI write collision flag
0: No collision
1: Collision

The WCOL flag is used to detect whether a data collision has occurred or not. If this
bit is high, it means that data has been attempted to be written to the SIMD register
during a data transfer operation. This writing operation will be ignored if data is being
transferred. This bit can be cleared by the application program.

Rev. 1.00 148 December 27, 2019 Rev. 1.00 149 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 0 TRF: SPI Transmit/Receive complete flag
0: SPI data is being transferred
1: SPI data transfer is completed

The TRF bit is the Transmit/Receive Complete flag and is set to 1 automatically when
an SPI data transfer is completed, but must cleared to 0 by the application program. It
can be used to generate an interrupt.

SPI Communication
After the SPI interface is enabled by setting the SIMEN bit high, then in the Master Mode, when
data is written to the SIMD register, transmission/reception will begin simultaneously. When the
data transfer is complete, the TRF flag will be set automatically, but must be cleared using the
application program. In the Slave Mode, when the clock signal from the master has been received,
any data in the SIMD register will be transmitted and any data on the SDI pin will be shifted into
the SIMD register. The master should output a SCS signal to enable the slave devices before a
clock signal is provided. The slave data to be transferred should be well prepared at the appropriate
moment relative to the SCS signal depending upon the configurations of the CKPOLB bit and CKEG
bit. The accompanying timing diagram shows the relationship between the slave data and SCS signal
for various configurations of the CKPOLB and CKEG bits.

The SPI will continue to function even in certain IDLE Modes if the SPI clock source is active.

SCK (CKPOLB=1, CKEG=0)

SCK (CKPOLB=0, CKEG=0)

SCK (CKPOLB=1, CKEG=1)

SCK (CKPOLB=0, CKEG=1)

SCS

SDO (CKEG=0)

SDO (CKEG=1)

SDI Data Capture
Write to SIMD

SIMEN, CSEN=1
SIMEN=1, CSEN=0 (External Pull-high)

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPI Master Mode Timing

SCK (CKPOLB=1)

SCK (CKPOLB=0)

SCS

SDO

SDI Data Capture

Write to SIMD
(SDO does not change until first SCK edge)

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPI Slave Mode Timing – CKEG = 0

Rev. 1.00 150 December 27, 2019 Rev. 1.00 151 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

SCK (CKPOLB=1)

SCK (CKPOLB=0)

SCS

SDO

SDI Data Capture

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

Write to SIMD
(SDO changes as soon as writing occurs; SDO is floating if SCS=1)

Note: For SPI slave mode, if SIMEN=1 and CSEN=0, SPI is always
enabled and ignores the SCS level.

SPI Slave Mode Timing – CKEG = 1

Clear WCOL Write Data
into SIMD

WCOL=1?

Transmission
completed?
(TRF=1?)

Read Data
from SIMD

Clear TRF

END

Transfer
finished?

ASPI Transfer

Master or Slave
?

SIMEN=1

Configure CKPOLB,
CKEG, CSEN and MLS

A

SIM[2:0]=000, 001,
010, 011 or 100 SIM[2:0]=101

Master Slave

Y

Y

N

N

N

Y

SPI Transfer Control Flow Chart

Rev. 1.00 150 December 27, 2019 Rev. 1.00 151 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

I2C Interface
The I2C interface is used to communicate with external peripheral devices such as sensors,
EEPROM memory etc. Originally developed by Philips, it is a two line low speed serial interface
for synchronous serial data transfer. The advantage of only two lines for communication, relatively
simple communication protocol and the ability to accommodate multiple devices on the same bus
has made it an extremely popular interface type for many applications.

Device
Slave

Device
Master

Device
Slave

VDD

SDA
SCL

I2C Master Slave Bus Connection

I2C interface Operation
The I2C serial interface is a two line interface, a serial data line, SDA, and serial clock line, SCL. As
many devices may be connected together on the same bus, their outputs are both open drain types.
For this reason it is necessary that external pull-high resistors are connected to these outputs. Note
that no chip select line exists, as each device on the I2C bus is identified by a unique address which
will be transmitted and received on the I2C bus.

When two devices communicate with each other on the bidirectional I2C bus, one is known as the
master device and one as the slave device. Both master and slave can transmit and receive data;
however, it is the master device that has overall control of the bus. For these devices, which only
operate in slave mode, there are two methods of transferring data on the I2C bus, the slave transmit
mode and the slave receive mode. The pull-high control function pin-shared with SCL/SDA pin is
still applicable even if the I2C device is activated and the related internal pull-high register could be
controlled by its corresponding pull-high control register.

Shift Register

Transmit/
Receive

Control Unit

fSYS

fSUB

Data Bus

I2C Address Register
(SIMA)

I2C Data Register
(SIMD)

Address
Comparator

Read/Write Slave SRW

Detect Start or Stop HBB

Time-out
Control

SIMTOF

Address Match–HAAS
I2C Interrupt

Debounce
Circuitry

SCL Pin

M
U
X TXAK

Data out MSB

SIMTOEN

Address Match

SIMDEB[1:0]

SDA Pin
Data in MSB

Direction ControlHTX

8-bit Data Transfer Complete–HCF

I2C Block Diagram

Rev. 1.00 152 December 27, 2019 Rev. 1.00 153 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

START signal
from Master

Send slave address
and R/W bit from Master

Acknowledge
from slave

Send data byte
from Master

Acknowledge
from slave

STOP signal
from Master

I2C Operation

The SIMDEB1 and SIMDEB0 bits determine the debounce time of the I2C interface. This uses
the system clock to in effect add a debounce time to the external clock to reduce the possibility
of glitches on the clock line causing erroneous operation. The debounce time, if selected, can be
chosen to be either 2 or 4 system clocks. To achieve the required I2C data transfer speed, there
exists a relationship between the system clock, fSYS, and the I2C debounce time. For either the I2C
Standard or Fast mode operation, users must take care of the selected system clock frequency and
the configured debounce time to match the criterion shown in the following table.

I2C Debounce Time Selection I2C Standard Mode (100kHz) I2C Fast Mode (400kHz)
No Devounce fSYS > 2MHz fSYS > 5MHz
2 system clock debounce fSYS > 4MHz fSYS > 10MHz
4 system clock debounce fSYS > 8MHz fSYS > 20MHz

I2C Minimum fSYS Frequency Requirement

I2C Registers
There are three control registers associated with the I2C bus, SIMC0, SIMC1 and SIMA, and one
data register, SIMD. The SIMD register, which is shown in the above SPI section, is used to store
the data being transmitted and received on the I2C bus. Before the microcontroller writes data to
the I2C bus, the actual data to be transmitted must be placed in the SIMD register. After the data is
received from the I2C bus, the microcontroller can read it from the SIMD register. Any transmission
or reception of data from the I2C bus must be made via the SIMD register.

Note that the SIMA register also has the name SIMC2 which is used by the SPI function. Bit SIMEN
and bits SIM2~SIM0 in register SIMC0 are used by the I2C interface.

Register
Name

Bit
7 6 5 4 3 2 1 0

SIMC0 SIM2 SIM1 SIM0 — SIMDEB1 SIMDEB0 SIMEN SIMICF
SIMC1 HCF HAAS HBB HTX TXAK SRW IAMWU RXAK
SIMA SIMA6 SIMA5 SIMA4 SIMA3 SIMA2 SIMA1 SIMA0 —
SIMD D7 D6 D5 D4 D3 D2 D1 D0

SIMTOC SIMTOEN SIMTOF SIMTOS5 SIMTOS4 SIMTOS3 SIMTOS2 SIMTOS1 SIMTOS0

I2C Registers List

Rev. 1.00 152 December 27, 2019 Rev. 1.00 153 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• SIMD Register
The SIMD register is used to store the data being transmitted and received. The same register is used
by both the SPI and I2C functions. Before the device writes data to the I2C bus, the actual data to
be transmitted must be placed in the SIMD register. After the data is received from the I2C bus, the
device can read it from the SIMD register. Any transmission or reception of data from the I2C bus
must be made via the SIMD register.

Bit 7 6 5 4 3 2 1 0
Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

 “x”: unknown

• SIMA Register
The SIMA register is also used by the SPI interface but has the name SIMC2. The SIMA register is
the location where the 7-bit slave address of the slave device is stored. Bits 7~1 of the SIMA register
define the device slave address. Bit 0 is not implemented.
When a master device, which is connected to the I2C bus, sends out an address, which matches the
slave address in the SIMA register, the slave device will be selected. Note that the SIMA register is
the same register address as SIMC2 which is used by the SPI interface.

Bit 7 6 5 4 3 2 1 0
Name SIMA6 SIMA5 SIMA4 SIMA3 SIMA2 SIMA1 SIMA0 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x 0

“x”: unknown
Bit 7~1 SIMA6~SIMA0: I2C slave address

SIMA6~SIMA0 is the I2C slave address bit 6 ~ bit 0
Bit 0 D0: reserved, can be read/written by application program

There are also two control registers for the I2C interface, SIMC0 and SIMC1. The register SIMC0
is used to control the enable/disable function and to set the data transmission clock frequency. The
SIMC1 register contains the relevant flags which are used to indicate the I2C communication status.

• SIMC0 Register
Bit 7 6 5 4 3 2 1 0

Name SIM2 SIM1 SIM0 — SIMDEB1 SIMDEB0 SIMEN SIMICF
R/W R/W R/W R/W — R/W R/W R/W R/W
POR 1 1 1 — 0 0 0 0

Bit 7~5 SIM2~SIM0: SIM Operating Mode Control
000: SPI master mode; SPI clock is fSYS/4
001: SPI master mode; SPI clock is fSYS/16
010: SPI master mode; SPI clock is fSYS/64
011: SPI master mode; SPI clock is fSUB

100: SPI master mode; SPI clock is PTM0 CCRP match frequency/2
101: SPI slave mode
110: I2C slave mode
111: Non SIM function

These bits setup the overall operating mode of the SIM function. As well as selecting
if the I2C or SPI function, they are used to control the SPI Master/Slave selection and
the SPI Master clock frequency. The SPI clock is a function of the system clock but
can also be chosen to be sourced from PTM0. If the SPI Slave Mode is selected then
the clock will be supplied by an external Master device.

Rev. 1.00 154 December 27, 2019 Rev. 1.00 155 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 4 Unimplemented, read as “0”
Bit 3~2 SIMDEB1~SIMDEB0: I2C Debounce Time Selection

00: No debounce
01: 2 system clock debounce
1x: 4 system clock debounce

These bits are used to select the I2C debounce time when the SIM is configured as the
I2C interface function by setting the SIM2~SIM0 bits to “110”.

Bit 1 SIMEN: SIM Enable Control
0: Disable
1: Enable

The bit is the overall on/off control for the SIM interface. When the SIMEN bit is
cleared to zero to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and
SCL lines will lose their SPI or I2C function and the SIM operating current will be
reduced to a minimum value. When the bit is high the SIM interface is enabled. The
SIM configuration option must have first enabled the SIM interface for this bit to be
effective.If the SIM is configured to operate as an SPI interface via the SIM2~SIM0
bits, the contents of the SPI control registers will remain at the previous settings when
the SIMEN bit changes from low to high and should therefore be first initialised by
the application program. If the SIM is configured to operate as an I2C interface via the
SIM2~SIM0 bits and the SIMEN bit changes from low to high, the contents of the I2C
control bits such as HTX and TXAK will remain at the previous settings and should
therefore be first initialised by the application program while the relevant I2C flags
such as HCF, HAAS, HBB, SRW and RXAK will be set to their default states.

Bit 0 SIMICF: SIM SPI Incomplete Flag
The SIMICF bit is only used in the SPI mode and the detailed definition is described
in the SPI section.

• SIMC1 Register
Bit 7 6 5 4 3 2 1 0

Name HCF HAAS HBB HTX TXAK SRW IAMWU RXAK
R/W R R R R/W R/W R/W R/W R
POR 1 0 0 0 0 0 0 1

Bit 7 HCF: I2C Bus data transfer completion flag
0: Data is being transferred
1: Completion of an 8-bit data transfer

The HCF flag is the data transfer flag. This flag will be zero when data is being
transferred. Upon completion of an 8-bit data transfer the flag will go high and an
interrupt will be generated.

Bit 6 HAAS: I2C Bus data transfer completion flag
0: Not address match
1: Address match

The HAAS flag is the address match flag. This flag is used to determine if the slave
device address is the same as the master transmit address. If the addresses match then
this bit will be high, if there is no match then the flag will be low.

Bit 5 HBB: I2C Bus busy flag
0: I2C Bus is not busy
1: I2C Bus is busy

The HBB flag is the I2C busy flag. This flag will be “1” when the I2C bus is busy
which will occur when a START signal is detected. The flag will be set to “0” when
the bus is free which will occur when a STOP signal is detected.

Bit 4 HTX: I2C slave device transmitter/receiver selection
0: Slave device is the receiver
1: Slave device is the transmitter

Rev. 1.00 154 December 27, 2019 Rev. 1.00 155 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 3 TXAK: I2C bus transmit acknowledge flag
0: Slave send acknowledge flag
1: Slave does not send acknowledge flag

The TXAK bit is the transmit acknowledge flag. After the slave device receipt of 8-bits
of data, this bit will be transmitted to the bus on the 9th clock from the slave device.
The slave device must always set TXAK bit to “0” before further data is received.

Bit 2 SRW: I2C slave read/write flag
0: Slave device should be in receive mode
1: Slave device should be in transmit mode

The SRW flag is the I2C Slave Read/Write flag. This flag determines whether
the master device wishes to transmit or receive data from the I2C bus. When the
transmitted address and slave address is match, that is when the HAAS flag is set high,
the slave device will check the SRW flag to determine whether it should be in transmit
mode or receive mode. If the SRW flag is high, the master is requesting to read data
from the bus, so the slave device should be in transmit mode. When the SRW flag
is zero, the master will write data to the bus, therefore the slave device should be in
receive mode to read this data.

Bit 1 IAMWU: I2C Address Match Wake-Up control
0: Disable
1: Enable – must be cleared by the application program after wake-up

This bit should be set to 1 to enable the I2C address match wake up from the SLEEP
or IDLE Mode. If the IAMWU bit has been set before entering either the SLEEP or
IDLE mode to enable the I2C address match wake up, then this bit must be cleared by
the application program after wake-up to ensure correction device operation.

Bit 0 RXAK: I2C bus receive acknowledge flag
0: Slave receives acknowledge flag
1: Slave does not receive acknowledge flag

The RXAK flag is the receiver acknowledge flag. When the RXAK flag is “0”, it
means that a acknowledge signal has been received at the 9th clock, after 8 bits of data
have been transmitted. When the slave device in the transmit mode, the slave device
checks the RXAK flag to determine if the master receiver wishes to receive the next
byte. The slave transmitter will therefore continue sending out data until the RXAK
flag is “1”. When this occurs, the slave transmitter will release the SDA line to allow
the master to send a STOP signal to release the I2C Bus.

I2C Bus Communication
Communication on the I2C bus requires four separate steps, a START signal, a slave device address
transmission, a data transmission and finally a STOP signal. When a START signal is placed on
the I2C bus, all devices on the bus will receive this signal and be notified of the imminent arrival of
data on the bus. The first seven bits of the data will be the slave address with the first bit being the
MSB. If the address of the slave device matches that of the transmitted address, the HAAS bit in the
SIMC1 register will be set and an I2C interrupt will be generated. After entering the interrupt service
routine, the slave device must first check the condition of the HAAS and SIMTOF bits to determine
whether the interrupt source originates from an address match, 8-bit data transfer completion or
I2C bus time-out occurrence. During a data transfer, note that after the 7-bit slave address has been
transmitted, the following bit, which is the 8th bit, is the read/write bit whose value will be placed in
the SRW bit. This bit will be checked by the slave device to determine whether to go into transmit or
receive mode. Before any transfer of data to or from the I2C bus, the microcontroller must initialise
the bus; the following are steps to achieve this:

• Step 1
Set the SIM2~SIM0 bits to “110” and SIMEN bit to “1” in the SIMC0 register to enable the I2C
bus.

Rev. 1.00 156 December 27, 2019 Rev. 1.00 157 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• Step 2
Write the slave address of the device to the I2C bus address register SIMA.

• Step 3
Set the SIME and the related Multi-Function interrupt enable bit of the interrupt control register
to enable the SIM interrupt and Multi-function interrupt.

Set SIM[2:0]=110
Set SIMEN

Write Slave
Address to SIMA

I2C Bus
Interrupt=?

CLR SIME
Poll SIMF to decide when

to go to I2C Bus ISR

No Yes

SET SIME and MFnE
Wait for Interrupt

Goto Main Program Goto Main Program

Start

I2C Bus Initialisation Flow Chart

I2C Bus Start Signal
The START signal can only be generated by the master device connected to the I2C bus and not by
the slave device. This START signal will be detected by all devices connected to the I2C bus. When
detected, this indicates that the I2C bus is busy and therefore the HBB bit will be set. A START
condition occurs when a high to low transition on the SDA line takes place when the SCL line
remains high.

I2C Slave Address
The transmission of a START signal by the master will be detected by all devices on the I2C bus.
To determine which slave device the master wishes to communicate with, the address of the slave
device will be sent out immediately following the START signal. All slave devices, after receiving
this 7-bit address data, will compare it with their own 7-bit slave address. If the address sent out by
the master matches the internal address of the microcontroller slave device, then an internal I2C bus
interrupt signal will be generated. The next bit following the address, which is the 8th bit, defines the
read/write status and will be saved to the SRW bit of the SIMC1 register. The slave device will then
transmit an acknowledge bit, which is a low level, as the 9th bit. The slave device will also set the
status flag HAAS when the addresses match.

As an SIM I2C bus interrupt can come from three sources, when the program enters the interrupt
subroutine, the HAAS and SIMTOF bits should be examined to see whether the interrupt source has
come from a matching slave address, the completion of a data byte transfer or the I2C bus time-out
occurrence. When a slave address is matched, the devices must be placed in either the transmit mode
and then write data to the SIMD register, or in the receive mode where it must implement a dummy
read from the SIMD register to release the SCL line.

Rev. 1.00 156 December 27, 2019 Rev. 1.00 157 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

I2C Bus Read/Write Signal
The SRW bit in the SIMC1 register defines whether the master device wishes to read data from the
I2C bus or write data to the I2C bus. The slave device should examine this bit to determine if it is to
be a transmitter or a receiver. If the SRW flag is “1” then this indicates that the master device wishes
to read data from the I2C bus, therefore the slave device must be setup to send data to the I2C bus as
a transmitter. If the SRW flag is “0” then this indicates that the master wishes to send data to the I2C
bus, therefore the slave device must be setup to read data from the I2C bus as a receiver.

I2C Bus Slave Address Acknowledge Signal
After the master has transmitted a calling address, any slave device on the I2C bus, whose
own internal address matches the calling address, must generate an acknowledge signal. The
acknowledge signal will inform the master that a slave device has accepted its calling address. If no
acknowledge signal is received by the master then a STOP signal must be transmitted by the master
to end the communication. When the HAAS flag is high, the addresses have matched and the slave
device must check the SRW flag to determine if it is to be a transmitter or a receiver. If the SRW flag
is high, the slave device should be setup to be a transmitter so the HTX bit in the SIMC1 register
should be set to “1”. If the SRW flag is low, then the microcontroller slave device should be setup as
a receiver and the HTX bit in the SIMC1 register should be set to “0”.

I2C Bus Data and Acknowledge Signal
The transmitted data is 8-bits wide and is transmitted after the slave device has acknowledged
receipt of its slave address. The order of serial bit transmission is the MSB first and the LSB last.
After receipt of 8-bits of data, the receiver must transmit an acknowledge signal, level “0”, before
it can receive the next data byte. If the slave transmitter does not receive an acknowledge bit signal
from the master receiver, then the slave transmitter will release the SDA line to allow the master
to send a STOP signal to release the I2C Bus. The corresponding data will be stored in the SIMD
register. If setup as a transmitter, the slave device must first write the data to be transmitted into the
SIMD register. If setup as a receiver, the slave device must read the transmitted data from the SIMD
register.

When the slave receiver receives the data byte, it must generate an acknowledge bit, known as
TXAK, on the 9th clock. The slave device, which is setup as a transmitter will check the RXAK bit
in the SIMC1 register to determine if it is to send another data byte, if not then it will release the
SDA line and await the receipt of a STOP signal from the master.

Rev. 1.00 158 December 27, 2019 Rev. 1.00 159 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Start
SCL

SDA

SCL

SDA

1

S=Start (1 bit)
SA=Slave Address (7 bits)
SR=SRW bit (1 bit)
M=Slave device send acknowledge bit (1 bit)
D=Data (8 bits)
A=ACK (RXAK bit for transmitter, TXAK bit for receiver, 1 bit)
P=Stop (1 bit)

0

ACKSlave Address SRW

StopData ACK

1 1 0 1 0 1 0

1 0 0 1 0 1 0 0

S SA SR M D A D A …… S SA SR M D A D A …… P

Note: *When a slave address is matched, the devices must be placed in either the transmit mode
and then write data to the SIMD register, or in the receive mode where it must implement a
dummy read from the SIMD register to release the SCL line.

I2C Communication Timing Diagram

Start

SIMTOF=1?

SET SIMTOEN
CLR SIMTOF

RETI

HAAS=1?

HTX=1? SRW=1?

Read from SIMD to
release SCL Line

RETI

RXAK=1?

Write data to SIMD to
release SCL Line

CLR HTX
CLR TXAK

Dummy read from SIMD
to release SCL Line RETI

RETI

SET HTX

Write data to SIMD to
release SCL Line

RETI

CLR HTX
CLR TXAK

Dummy read from SIMD
to release SCL Line

RETI

YesNo

No Yes

Yes NoYesNo

No

Yes

I2C Bus ISR Flow Chart

Rev. 1.00 158 December 27, 2019 Rev. 1.00 159 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

I2C Time-out Control
In order to reduce the I2C lockup problem due to reception of erroneous clock sources, a time-out
function is provided. If the clock source connected to the I2C bus is not received for a while, then the
I2C circuitry and registers will be reset after a certain time-out period. The time-out counter starts
to count on an I2C bus “START” & “address match” condition, and is cleared by an SCL falling
edge. Before the next SCL falling edge arrives, if the time elapsed is greater than the time-out period
specified by the SIMTOC register, then a time-out condition will occur. The time-out function will
stop when an I2C “STOP” condition occurs.

Start
SCL

SDA

SCL

SDA

1 0

ACKSlave Address SRW

Stop

1 1 0 1 0 1 0

1 0 0 1 0 1 0 0

I2C time-out
counter start

I2C time-out counter reset
on SCL negative transition

I2C Time-out

When an I2C time-out counter overflow occurs, the counter will stop and the SIMTOEN bit will
be cleared to zero and the SIMTOF bit will be set high to indicate that a time-out condition has
occurred. The time-out condition will also generate an interrupt which uses the SIM interrupt vector.
When an I2C time-out occurs, the I2C internal circuitry will be reset and the registers will be reset
into the following condition:

Register After I2C Time-out
SIMD, SIMA, SIMC0 No change
SIMC1 Reset to POR condition

I2C Register after Time-out

The SIMTOF flag can be cleared by the application program. There are 64 time-out period selections
which can be selected using the SIMTOS bits in the SIMTOC register. The time-out duration is
calculated by the formula: ((1~64) × (32/fSUB)). This gives a time-out period which ranges from
about 1ms to 64ms.

• SIMTOC Register
Bit 7 6 5 4 3 2 1 0

Name SIMTOEN SIMTOF SIMTOS5 SIMTOS4 SIMTOS3 SIMTOS2 SIMTOS1 SIMTOS0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 SIMTOEN: SIM I2C Time-out control
0: Disable
1: Enable

Rev. 1.00 160 December 27, 2019 Rev. 1.00 161 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 6 SIMTOF: SIM I2C Time-out flag
0: No time-out occurred
1: Time-out occurred

Bit 5~0 SIMTOS5~SIMTOS0: SIM I2C Time-out period selection
I2C Time-out clock source is fSUB/32

I2C Time-out period is equal to (SIMTOS[5:0] + 1) × 32
fSUB

Serial Interface – SPIA
The device contains an independent SPI function. It is important not to confuse this independent SPI
function with the additional one contained within the combined SIM function, which is described
in another section of this datasheet. This independent SPI function will carry the name SPIA to
distinguish it from the other one in the SIM.
This SPIA interface is often used to communicate with external peripheral devices such as sensors,
Flash or EEPROM memory devices, etc. Originally developed by Motorola, the four line SPI
interface is a synchronous serial data interface that has a relatively simple communication protocol
simplifying the programming requirements when communicating with external hardware devices.
The communication is full duplex and operates as a slave/master type, where the device can be
either master or slave. Although the SPIA interface specification can control multiple slave devices
from a single master, this device is provided only one SCSA pin. If the master needs to control
multiple slave devices from a single master, the master can use I/O pins to select the slave devices.

SPIA Interface Operation
The SPIA interface is a full duplex synchronous serial data link. It is a four line interface with pin
names SDIA, SDOA, SCKA and SCSA. Pins SDIA and SDOA are the Serial Data Input and Serial
Data Output lines, SCKA is the Serial Clock line and SCSA is the Slave Select line. As the SPIA
interface pins are pin-shared with other functions, the SPIA interface pins must first be selected
by configuring the corresponding selection bits in the pin-shared function selection registers.
The SPIA interface function is disabled or enabled using the SPIAEN bit in the SPIAC0 register.
Communication between devices connected to the SPIA interface is carried out in a slave/master
mode with all data transfer initiations being implemented by the master. The master also controls the
clock/signal. As the device only contains a single SCSA pin only one slave device can be utilised.
The SCSA pin is controlled by the application program, set the SACSEN bit to “1” to enable the
SCSA pin function and clear the SACSEN bit to “0” to place the SCSA pin into an floating state.

SCKA

SPIA Master

SDOA

SDIA

SCSA

SCKA

SPIA Slave

SDOA

SDIA

SCSA

SPIA Master/Slave Connection

The SPIA Serial Interface function includes the following features:

• Full-duplex synchronous data transfer
• Both Master and Slave mode
• LSB first or MSB first data transmission modes
• Transmission complete flag
• Rising or falling active clock edge

Rev. 1.00 160 December 27, 2019 Rev. 1.00 161 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The status of the SPIA interface pins is determined by a number of factors such as whether the
device is in the master or slave mode and upon the condition of certain control bits such as SACSEN
and SPIAEN.

SPIAD

TX/RX Shift RegisterSDIA Pin

Clock
Edge/Polarity

Control

SACKEG

SACKPOLB

Clock
Source
Select

fSYS

fSUB

PTM0 CCRP match frequency/2

SCKA Pin

SACSEN

Busy
Status

SDOA Pin

SCSA Pin

Data Bus

SAWCOL
SATRF
SPIAICF

SPIA Block Diagram

SPIA Registers
There are three internal registers which control the overall operation of the SPIA interface. These are
the SPIAD data register and two registers SPIAC0 and SPIAC1.

Register
Name

Bit
7 6 5 4 3 2 1 0

SPIAC0 SASPI2 SASPI1 SASPI0 — — — SPIAEN SPIAICF
SPIAC1 — — SACKPOLB SACKEG SAMLS SACSEN SAWCOL SATRF
SPIAD D7 D6 D5 D4 D3 D2 D1 D0

SPIA Registers List

SPIAD Register
The SPIAD register is used to store the data being transmitted and received. Before the device
writes data to the SPIA bus, the actual data to be transmitted must be placed in the SPIAD register.
After the data is received from the SPIA bus, the device can read it from the SPIAD register. Any
transmission or reception of data from the SPIA bus must be made via the SPIAD register.

Bit 7 6 5 4 3 2 1 0
Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x”: unknown
There are also two control registers for the SPIA interface, SPIAC0 and SPIAC1. Register SPIAC0
is used to control the enable/disable function and to set the data transmission clock frequency.
Register SPIAC1 is used for other control functions such as LSB/MSB selection, write collision
flag, etc.

Rev. 1.00 162 December 27, 2019 Rev. 1.00 163 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• SPIAC0 Register
Bit 7 6 5 4 3 2 1 0

Name SASPI2 SASPI1 SASPI0 — — — SPIAEN SPIAICF
R/W R/W R/W R/W — — — R/W R/W
POR 1 1 1 — — — 0 0

Bit 7~5 SASPI2~SASPI0: SPIA Master/Slave clock select
000: SPIA master mode with clock fSYS/4
001: SPIA master mode with clock fSYS/16
010: SPIA master mode with clock fSYS/64
011: SPIA master mode with clock fSUB

100: SPIA master mode with clock PTM0 CCRP match frequency/2
101: SPIA slave mode
11x: SPIA disable

These bits setup the SPIA Master/Slave mode and select the SPIA Master clock
frequency. The SPIA clock is a function of the system clock but can also be chosen
to be sourced from PTM0. If the SPIA Slave Mode is selected then the clock will be
supplied by an external Master device.

Bit 4~2 Unimplemented, read as “0”
Bit 1 SPIAEN: SPIIA Enable Control

0: Disable
1: Enable

The bit is the overall on/off control for the SPIA interface. When the SPIAEN bit
is cleared to zero to disable the SPIA interface, the SDIA, SDOA, SCKA and SCSA
lines will lose the SPI function and the SPIA operating current will be reduced to a
minimum value. When the bit is high the SPIA interface is enabled.

Bit 0 SPIAICF: SPIA Incomplete Flag
0: SPIA incomplete condition not occurred
1: SPIA incomplete condition occurred

This bit is only available when the SPIA is configured to operate in an SPIA slave
mode. If the SPIA operates in the slave mode with the SPIAEN and SACSEN bits
both being set to 1 but the SCSA line is pulled high by the external master device
before the SPIA data transfer is completely finished, the SPIAICF bit will be set to 1
together with the SATRF bit. When this condition occurs, the corresponding interrupt
will occur if the interrupt function is enabled. However, the SATRF bit will not be set
to 1 if the SPIAICF bit is set to 1 by software application program.

• SPIAC1 Register
Bit 7 6 5 4 3 2 1 0

Name — — SACKPOLB SACKEG SAMLS SACSEN SAWCOL SATRF
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 0 0 0 0

Bit 7~6 Unimplemented, read as “0”
Bit 5 SACKPOLB: SPIA clock line base condition selection

0: The SCKA line will be high when the clock is inactive.
1: The SCKA line will be low when the clock is inactive.

The SACKPOLB bit determines the base condition of the clock line, if the bit is high,
then the SCKA line will be low when the clock is inactive. When the SACKPOLB bit
is low, then the SCKA line will be high when the clock is inactive.

Bit 4 SACKEG: SPIA SCKA clock active edge type selection
SACKPOLB=0

0: SCKA is high base level and data capture at SCKA rising edge
1: SCKA is high base level and data capture at SCKA falling edge

Rev. 1.00 162 December 27, 2019 Rev. 1.00 163 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

SACKPOLB=1
0: SCKA is low base level and data capture at SCKA falling edge
1: SCKA is low base level and data capture at SCKA rising edge

The SACKEG and SACKPOLB bits are used to setup the way that the clock signal
outputs and inputs data on the SPIA bus. These two bits must be configured before
data transfer is executed otherwise an erroneous clock edge may be generated. The
SACKPOLB bit determines the base condition of the clock line, if the bit is high, then
the SCKA line will be low when the clock is inactive. When the SACKPOLB bit is
low, then the SCKA line will be high when the clock is inactive. The SACKEG bit
determines active clock edge type which depends upon the condition of SACKPOLB
bit.

Bit 3 SAMLS: SPIA data shift order
0: LSB first
1: MSB first

This is the data shift select bit and is used to select how the data is transferred, either
MSB or LSB first. Setting the bit high will select MSB first and low for LSB first.

Bit 2 SACSEN: SPIA SCSA pin control
0: Disable
1: Enable

The SACSEN bit is used as an enable/disable for the SCSA pin. If this bit is low, then
the SCSA pin function will be disabled and can be placed into I/O pin or other pin-
shared functions. If the bit is high, the SCSA pin will be enabled and used as a select
pin.

Bit 1 SAWCOL: SPIA write collision flag
0: No collision
1: Collision

The SAWCOL flag is used to detect whether a data collision has occurred or not.
If this bit is high, it means that data has been attempted to be written to the SPIAD
register during a data transfer operation. This writing operation will be ignored if data
is being transferred. This bit can be cleared by the application program.

Bit 0 SATRF: SPIA Transmit/Receive complete flag
0: SPIA data is being transferred
1: SPIA data transfer is completed

The SATRF bit is the Transmit/Receive Complete flag and is set to 1 automatically
when an SPIA data transfer is completed, but must cleared to 0 by the application
program. It can be used to generate an interrupt.

SPIA Communication
After the SPIA interface is enabled by setting the SPIAEN bit high, then in the Master Mode, when
data is written to the SPIAD register, transmission/reception will begin simultaneously. When the
data transfer is complete, the SATRF flag will be set automatically, but must be cleared using the
application program. In the Slave Mode, when the clock signal from the master has been received,
any data in the SPIAD register will be transmitted and any data on the SDIA pin will be shifted into
the SPIAD registers.

The master should output a SCSA signal to enable the slave device before a clock signal is provided.
The slave data to be transferred should be well prepared at the appropriate moment relative to the
SCSA signal depending upon the configurations of the SACKPOLB bit and SACKEG bit. The
accompanying timing diagram shows the relationship between the slave data and SCSA signal for
various configurations of the SACKPOLB and SACKEG bits. The SPIA will continue to function in
certain IDLE Modes if the SPIA clock source is active.

Rev. 1.00 164 December 27, 2019 Rev. 1.00 165 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

SCKA (SACKPOLB=1, SACKEG=0)

SCKA (SACKPOLB=0, SACKEG=0)

SCKA (SACKPOLB=1, SACKEG=1)

SCKA (SACKPOLB=0, SACKEG=1)

SCSA

SDOA (SACKEG=0)

SDOA (SACKEG=1)

SDIA Data Capture
Write to SPIAD

SPIAEN, SACSEN=1
SPIAEN=1, SACSEN=0 (External Pull-high)

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPIA Master Mode Timing

SCKA (SACKPOLB=1)

SCKA (SACKPOLB=0)

SCSA

SDOA

SDIA Data Capture

Write to SPIAD
(SDOA does not change until first SCKA edge)

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

SPIA Slave Mode Timing – SACKEG=0

SCKA (SACKPOLB=1)

SCKA (SACKPOLB=0)

SCSA

SDOA

SDIA Data Capture

D7/D0 D6/D1 D5/D2 D4/D3 D3/D4 D2/D5 D1/D6 D0/D7

Write to SPIAD
(SDOA changes as soon as writing occurs; SDOA is floating if SCSA=1)

Note: For SPIA slave mode, if SPIAEN=1 and SACSEN=0, SPIA is always
enabled and ignores the SCSA level.

SPIA Slave Mode Timing – SACKEG=1

Rev. 1.00 164 December 27, 2019 Rev. 1.00 165 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Clear SAWCOL Write Data
into SPIAD

SAWCOL=1?

Transmission
completed?
(SATRF=1?)

Read Data
from SPIAD

Clear SATRF

END

Transfer
finished?

ASPIA Transfer

Master or Slave
?

SPIAEN=1

Configure SACKPOLB,
SACKEG, SACSEN and SAMLS

A

SASPI[2:0]=000,
001, 010, 011 or 100 SASPI[2:0]=101

Master Slave

Y

Y

N

N

N

Y

SPIA Transfer Control Flow Chart

SPIA Bus Enable/Disable
To enable the SPIA bus, set SACSEN=1 and SCSA=0, then wait for data to be written into the
SPIAD (TXRX buffer) register. For the Master Mode, after data has been written to the SPIAD
(TXRX buffer) register, then transmission or reception will start automatically. When all the data has
been transferred the SATRF bit should be set. For the Slave Mode, when clock pulses are received
on SCKA, data in the TXRX buffer will be shifted out or data on SDIA will be shifted in.

When the SPIA bus is disabled, the SCKA, SDIA, SDOA and SCSA pins can become I/O pins or
other pin-shared functions using the corresponding pin-shared function selection bits.

SPIA Operation
All communication is carried out using the 4-line interface for either Master or Slave Mode.

The SACSEN bit in the SPIAC1 register controls the overall function of the SPIA interface. Setting
this bit high will enable the SPIA interface by allowing the SCSA line to be active, which can then
be used to control the SPIA interface. If the SACSEN bit is low, the SPIA interface will be disabled
and the SCSA line will be floating and can therefore not be used for control of the SPIA interface. If
the SACSEN bit and the SPIAEN bit in the SPIAC0 register are set high, this will place the SDIA

Rev. 1.00 166 December 27, 2019 Rev. 1.00 167 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

line in a floating condition and the SDOA line high. If in Master Mode the SCKA line will be either
high or low depending upon the clock polarity selection bit SACKPOLB in the SPIAC1 register.
If in Slave Mode the SCKA line will be in a floating condition. If SPIAEN is low, then the bus will
be disabled and SCSA, SDIA, SDOA and SCKA pins will all become I/O pins or other pin-shared
functions using the corresponding pin-shared function selection bits. In the Master Mode the Master
will always generate the clock signal. The clock and data transmission will be initiated after data has
been written into the SPIAD register. In the Slave Mode, the clock signal will be received from an
external master device for both data transmission and reception. The following sequences show the
order to be followed for data transfer in both Master and Slave Mode.

Master Mode
• Step 1

Select the clock source and Master mode using the SASPI2~SASPI0 bits in the SPIAC0 control
register.

• Step 2
Setup the SACSEN bit and setup the SAMLS bit to choose if the data is MSB or LSB shifted
first, this must be same as the Slave device.

• Step 3
Setup the SPIAEN bit in the SPIAC0 control register to enable the SPIA interface.

• Step 4
For write operations: write the data to the SPIAD register, which will actually place the data into
the TXRX buffer. Then use the SCKA and SCSA lines to output the data. After this go to step 5.
For read operations: the data transferred in on the SDIA line will be stored in the TXRX buffer
until all the data has been received at which point it will be latched into the SPIAD register.

• Step 5
Check the SAWCOL bit if set high then a collision error has occurred so return to step 4. If equal
to zero then go to the following step.

• Step 6
Check the SATRF bit or wait for a SPIA serial bus interrupt.

• Step 7
Read data from the SPIAD register.

• Step 8
Clear SATRF.

• Step 9
Go to step 4.

Slave Mode
• Step 1

Select the SPI Slave mode using the SASPI2~SASPI0 bits in the SPIAC0 control register
• Step 2

Setup the SACSEN bit and setup the SAMLS bit to choose if the data is MSB or LSB shifted
first, this setting must be the same with the Master device.

• Step 3
Setup the SPIAEN bit in the SPIAC0 control register to enable the SPIA interface.

• Step 4
For write operations: write the data to the SPIAD register, which will actually place the data into
the TXRX buffer. Then wait for the master clock SCKA and SCSA signal. After this, go to step 5.
For read operations: the data transferred in on the SDIA line will be stored in the TXRX buffer
until all the data has been received at which point it will be latched into the SPIAD register.

Rev. 1.00 166 December 27, 2019 Rev. 1.00 167 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• Step 5
Check the SAWCOL bit if set high then a collision error has occurred so return to step 4. If equal
to zero then go to the following step.

• Step 6
Check the SATRF bit or wait for a SPIA serial bus interrupt.

• Step 7
Read data from the SPIAD register.

• Step 8
Clear SATRF.

• Step 9
Go to step 4.

Error Detection
The SAWCOL bit in the SPIAC1 register is provided to indicate errors during data transfer. The bit
is set by the SPIA serial Interface but must be cleared by the application program. This bit indicates
a data collision has occurred which happens if a write to the SPIAD register takes place during a
data transfer operation and will prevent the write operation from continuing.

UART Interface
The device contains up to three integrated full-duplex asynchronous serial communications UART
interfaces that enable communication with external devices that contain a serial interface. The
UART function has many features and can transmit and receive data serially by transferring a frame
of data with eight or nine data bits per transmission as well as being able to detect errors when the
data is overwritten or incorrectly framed. Each UART function possesses its own internal interrupt
which can be used to indicate when a reception occurs or when a transmission terminates.

Each integrated UART function contains the following features:

• Full-duplex, asynchronous communication

• 8 or 9 bits character length

• Even, odd or no parity options

• One or two stop bits

• Baud rate generator with 8-bit prescaler

• Parity, framing, noise and overrun error detection

• Support for interrupt on address detect (last character bit=1)

• Separately enabled transmitter and receiver

• 2-byte Deep FIFO Receive Data Buffer

• RX pin wake-up function

• Transmit and receive interrupts

• Interrupts can be triggered by the following conditions:
 ♦ Transmitter Empty
 ♦ Transmitter Idle
 ♦ Receiver Full
 ♦ Receiver Overrun
 ♦ Address Mode Detect

Rev. 1.00 168 December 27, 2019 Rev. 1.00 169 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

MSB LSB…………………………

Transmitter Shift Register (TSRn)
MSB LSB…………………………

Receiver Shift Register (RSRn)
TXn Pin RXn Pin

Baud Rate
Generator n

TX Register (TXRn) RX Register (RXRn)

Data to be transmitted Data received

BufferfH

MCU Data Bus

UART Data Transfer Block Diagram (n=0~2)

UART External Pins
To communicate with an external serial interface, the internal UARTn has two external pins known
as TXn and RXn. The TXn and RXn pins are the UARTn transmitter and receiver pins respectively.
The TXn and RXn pin function should first be selected by the corresponding pin-shared function
selection register before the UARTn function is used. Along with the UARTENn bit, the TXENn and
RXENn bits, if set, will automatically setup the TXn and RXn pins to their respective TXn output
and RXn input conditions and disable any pull-high resistor option which may exist on the TXn and
RXn pins. When the TXn or RXn pin function is disabled by clearing the UARTENn, TXENn or
RXENn bit, the TXn or RXn pin will be set to a floating state. At this time whether the internal pull-
high resistor is connected to the TXn or RXn pin or not is determined by the corresponding I/O pull-
high function control bit.

UART Data Transfer Scheme
The above diagram shows the overall data transfer structure arrangement for the UARTn interface.
The actual data to be transmitted from the MCU is first transferred to the TXRn register by the
application program. The data will then be transferred to the Transmit Shift Register from where it
will be shifted out, LSB first, onto the TXn pin at a rate controlled by the Baud Rate Generator n.
Only the TXRn register is mapped onto the MCU Data Memory, the Transmit Shift Register is not
mapped and is therefore inaccessible to the application program.

Data to be received by the UARTn is accepted on the external RXn pin, from where it is shifted in,
LSB first, to the Receiver Shift Register at a rate controlled by the Baud Rate Generator. When the
shift register is full, the data will then be transferred from the shift register to the internal RXRn
register, where it is buffered and can be manipulated by the application program. Only the TXRn
register is mapped onto the MCU Data Memory, the Receiver Shift Register is not mapped and is
therefore inaccessible to the application program.

It should be noted that the actual register for data transmission and reception, although referred to in
the text, and in UARTn block diagram, as separate TXRn and RXRn registers, only exists as a single
shared register in the Data Memory. This shared register known as the TXR_RXRn register is used
for both data transmission and data reception.

Rev. 1.00 168 December 27, 2019 Rev. 1.00 169 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

UART Status and Control Registers
There are five control registers associated with the UARTn function. The UnSR, UnCR1 and UnCR2
registers control the overall function of the UARTn, while the BRGn register controls the Baud rate.
The actual data to be transmitted and received on the serial interface is managed through the TXR_
RXRn data registers.

• TXR_RXRn Register
The TXR_RXRn register is the data register which is used to store the data to be transmitted on the
TXn pin or being received from the RXn pin.

Bit 7 6 5 4 3 2 1 0
Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x”: unknown
Bit 7~0 D7~D0: UARTn Transmit/Receive Data bits

• UnSR Register
The UnSR register is the status register for the UARTn, which can be read by the program to
determine the present status of the UARTn. All flags within the UnSR register are read only and
further explanations are given below.

Bit 7 6 5 4 3 2 1 0
Name PERRn NFn FERRn OERRn RIDLEn RXIFn TIDLEn TXIFn
R/W R R R R R R R R
POR 0 0 0 0 1 0 1 1

Bit 7 PERRn: Parity error flag
0: No parity error is detected
1: Parity error is detected

The PERRn flag is the parity error flag. When this read only flag is “0”, it indicates a
parity error has not been detected. When the flag is “1”, it indicates that the parity of
the received word is incorrect. This error flag is applicable only if Parity mode (odd or
even) is selected. The flag can also be cleared by a software sequence which involves
a read to the status register UnSR followed by an access to the TXR_RXRn data
register.

Bit 6 NFn: Noise flag
0: No noise is detected
1: Noise is detected

The NFn flag is the noise flag. When this read only flag is “0”, it indicates no noise
condition. When the flag is “1”, it indicates that the UARTn has detected noise on the
receiver input. The NFn flag is set during the same cycle as the RXIFn flag but will not
be set in the case of as overrun. The NFn flag can be cleared by a software sequence
which will involve a read to the status register UnSR followed by an access to the
TXR_RXRn data register.

Bit 5 FERRn: Framing error flag
0: No framing error is detected
1: Framing error is detected

The FERRn flag is the framing error flag. When this read only flag is “0”, it indicates
that there is no framing error. When the flag is “1”, it indicates that a framing error
has been detected for the current character. The flag can also be cleared by a software
sequence which will involve a read to the status register UnSR followed by an access
to the TXR_RXRn data register.

Rev. 1.00 170 December 27, 2019 Rev. 1.00 171 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 4 OERRn: Overrun error flag
0: No overrun error is detected
1: Overrun error is detected

The OERRn flag is the overrun error flag which indicates when the receiver buffer has
overflowed. When this read only flag is “0”, it indicates that there is no overrun error.
When the flag is “1”, it indicates that an overrun error occurs which will inhibit further
transfers to the TXR_RXRn receive data register. The flag is cleared by a software
sequence, which is a read to the status register UnSR followed by an access to the
TXR_RXRn data register.

Bit 3 RIDLEn: Receiver status
0: Data reception is in progress (data being received)
1: No data reception is in progress (receiver is idle)

The RIDLEn flag is the receiver status flag. When this read only flag is “0”, it indicates
that the receiver is between the initial detection of the start bit and the completion of
the stop bit. When the flag is “1”, it indicates that the receiver is idle. Between the
completion of the stop bit and the detection of the next start bit, the RIDLEn bit is
“1” indicating that the UARTn receiver is idle and the RXn pin stays in logic high
condition.

Bit 2 RXIFn: Receive TXR_RXRn data register status
0: TXR_RXRn data register is empty
1: TXR_RXRn data register has available data

The RXIFn flag is the receive data register status flag. When this read only flag is “0”,
it indicates that the TXR_RXRn read data register is empty. When the flag is “1”, it
indicates that the TXR_RXRn read data register contains new data. When the contents
of the shift register are transferred to the TXR_RXRn register, an interrupt is generated
if RIEn=1 in the UnCR2 register. If one or more errors are detected in the received
word, the appropriate receive-related flags NFn, FERRn, and/or PERRn are set within
the same clock cycle. The RXIFn flag is will eventually be cleared when the UnSR
register is read with RXIFn set, followed by a read from the TXR_RXRn register, and
if the TXR_RXRn register has no more new data available.

Bit 1 TIDLEn: Transmission status
0: Data transmission is in progress (data being transmitted)
1: No data transmission is in progress (transmitter is idle)

The TIDLEn flag is known as the transmission complete flag. When this read only flag
is “0”, it indicates that a transmission is in progress. This flag will be set to “1” when
the TXIFn flag is “1” and when there is no transmit data or break character being
transmitted. When TIDLEn is equal to 1, the TXn pin becomes idle with the pin state
in logic high condition. The TIDLEn flag is cleared by reading the UnSR register with
TIDLEn set and then writing to the TXR_RXRn register. The flag is not generated
when a data character or a break is queued and ready to be sent.

Bit 0 TXIFn: Transmit TXR data register status
0: Character is not transferred to the transmit shift register
1: Character has transferred to the transmit shift register (TXR_RXRn data register

is empty)
The TXIFn flag is the transmit data register empty flag. When this read only flag is “0”,
it indicates that the character is not transferred to the transmitter shift register. When
the flag is “1”, it indicates that the transmitter shift register has received a character
from the TXR_RXRn data register. The TXIFn flag is cleared by reading the UARTn
status register (UnSR) with TXIFn set and then writing to the TXR_RXRn data
register. Note that when the TXENn bit is set, the TXIFn flag bit will also be set since
the transmit data register is not yet full.

Rev. 1.00 170 December 27, 2019 Rev. 1.00 171 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• UnCR1 Register
The UnCR1 register together with the UnCR2 register are the UARTn control registers that are used
to set the various options for the UARTn function such as overall on/off control, parity control, data
transfer bit length, etc. Further explanation on each of the bits is given below.

Bit 7 6 5 4 3 2 1 0
Name UARTENn BNOn PRENn PRTn STOPSn TXBRKn RX8n TX8n
R/W R/W R/W R/W R/W R/W R/W R W
POR 0 0 0 0 0 0 x 0

“x”: unknown
Bit 7 UARTENn: UARTn function enable control

0: Disable UARTn; TXn and RXn pins are in a floating state.
1: Enable UARTn; TXn and RXn pins function as UARTn pins

The UARTENn bit is the UARTn enable bit. When this bit is equal to “0”, the UARTn
will be disabled and the RXn pin as well as the TXn pin will be set in a floating state.
When the bit is equal to “1”, the UARTn will be enabled and the TXn and RXn pins
will function as defined by the TXENn and RXENn enable control bits. When the
UARTn is disabled, it will empty the buffer so any character remaining in the buffer
will be discarded. In addition, the value of the baud rate counter will be reset. If the
UARTn is disabled, all error and status flags will be reset. Also the TXENn, RXENn,
TXBRKn, RXIFn, OERRn, FERRn, PERRn and NFn bits will be cleared, while the
TIDLEn, TXIFn and RIDLEn bits will be set. Other control bits in UnCR1, UnCR2
and BRGn registers will remain unaffected. If the UARTn is active and the UARTENn
bit is cleared, all pending transmissions and receptions will be terminated and the
module will be reset as defined above. When the UARTn is re-enabled, it will restart
in the same configuration.

Bit 6 BNOn: Number of data transfer bits selection
0: 8-bit data transfer
1: 9-bit data transfer

This bit is used to select the data length format, which can have a choice of either
8-bit or 9-bit format. When this bit is equal to “1”, a 9-bit data length format will be
selected. If the bit is equal to “0”, then an 8-bit data length format will be selected. If
9-bit data length format is selected, then bits RX8n and TX8n will be used to store the
9th bit of the received and transmitted data respectively.

Bit 5 PRENn: Parity function enable control
0: Parity function is disabled
1: Parity function is enabled

This bit is the parity function enable bit. When this bit is equal to 1, the parity function
will be enabled. If the bit is equal to 0, then the parity function will be disabled.

Bit 4 PRTn: Parity type selection bit
0: Even parity for parity generator
1: Odd parity for parity generator

This bit is the parity type selection bit. When this bit is equal to 1, odd parity type will
be selected. If the bit is equal to 0, then even parity type will be selected.

Bit 3 STOPSn: Number of stop bits selection
0: One stop bit format is used
1: Two stop bits format is used

This bit determines if one or two stop bits are to be used. When this bit is equal to “1”,
two stop bits format are used. If the bit is equal to “0”, then only one stop bit format is
used.

Bit 2 TXBRKn: Transmit break character
0: No break character is transmitted
1: Break characters transmit

Rev. 1.00 172 December 27, 2019 Rev. 1.00 173 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The TXBRKn bit is the Transmit Break Character bit. When this bit is equal to “0”,
there are no break characters and the TXn pin operates normally. When the bit is
equal to “1”, there are transmit break characters and the transmitter will send logic
zeros. When this bit is equal to “1”, after the buffered data has been transmitted, the
transmitter output is held low for a minimum of a 13-bit length and until the TXBRKn
bit is reset.

Bit 1 RX8n: Receive data bit 8 for 9-bit data transfer format (read only)
This bit is only used if 9-bit data transfers are used, in which case this bit location
will store the 9th bit of the received data known as RX8n. The BNOn bit is used to
determine whether data transfers are in 8-bit or 9-bit format.

Bit 0 TX8n: Transmit data bit 8 for 9-bit data transfer format (write only)
This bit is only used if 9-bit data transfers are used, in which case this bit location
will store the 9th bit of the transmitted data known as TX8n. The BNOn bit is used to
determine whether data transfers are in 8-bit or 9-bit format.

• UnCR2 Register
The UnCR2 register is the second of the UARTn control registers and serves several purposes.
One of its main functions is to control the basic enable/disable operation if the UARTn Transmitter
and Receiver as well as enabling the various UARTn interrupt sources. The register also serves to
control the baud rate speed, receiver wake-up function enable and the address detect function enable.
Further explanation on each of the bits is given below.

Bit 7 6 5 4 3 2 1 0
Name TXENn RXENn BRGHn ADDENn WAKEn RIEn TIIEn TEIEn
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 TXENn: UARTn Transmitter enable control
0: UARTn Transmitter is disabled
1: UARTn Transmitter is enabled

The TXENn bit is the Transmitter Enable Bit. When this bit is equal to “0”, the
transmitter will be disabled with any pending data transmissions being aborted. In
addition the buffers will be reset. If the TXENn bit is equal to “1” and the UARTENn
bit is also equal to 1, the transmitter will be enabled and the TXn pin will be controlled
by the UARTn. Clearing the TXENn bit during a transmission will cause the data
transmission to be aborted and will reset the transmitter.

Bit 6 RXENn: UARTn Receiver enable control
0: UARTn Receiver is disabled
1: UARTn Receiver is enabled

The RXENn bit is the Receiver Enable Bit. When this bit is equal to “0”, the receiver
will be disabled with any pending data receptions being aborted. In addition the
receiver buffers will be reset. If the RXENn bit is equal to “1” and the UARTENn bit
is also equal to 1, the receiver will be enabled and the RXn pin will be controlled by
the UARTn. Clearing the RXENn bit during a reception will cause the data reception
to be aborted and will reset the receiver.

Bit 5 BRGHn: Baud Rate speed selection
0: Low speed baud rate
1: High speed baud rate

The bit named BRGHn selects the high or low speed mode of the Baud Rate Generator
n. This bit, together with the value placed in the baud rate register, BRGn, controls the
baud rate of the UARTn. If the bit is equal to 0, the low speed mode is selected.

Rev. 1.00 172 December 27, 2019 Rev. 1.00 173 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 4 ADDENn: Address detect function enable control
0: Address detection function is disabled
1: Address detection function is enabled

The bit named ADDENn is the address detection function enable control bit. When
this bit is equal to 1, the address detection function is enabled. When it occurs, if the
8th bit, which corresponds to RX7n if BNO=0, or the 9th bit, which corresponds to
RX8n if BNOn=1, has a value of “1”, then the received word will be identified as an
address, rather than data. If the corresponding interrupt is enabled, an interrupt request
will be generated each time the received word has the address bit set, which is the 8th
or 9th bit depending on the value of the BNOn bit. If the address bit known as the 8th or
9th bit of the received word is “0” with the address detection function being enabled,
an interrupt will not be generated and the received data will be discarded.

Bit 3 WAKEn: RXn pin falling edge wake-up function enable control
0: RXn pin wake-up UARTn function is disabled
1: RXn pin wake-up UARTn function is enabled

The bit is used to control the wake-up UARTn function when a falling edge on the
RXn pin occurs. Note that this bit is only available when the UARTn clock, fH, is
switched off. There will be no RXn pin wake-up UARTn function if the UARTn
clock, fH, exists. If the WAKEn bit is equal to 1 and the UARTn clock, fH, is switched
off, a UARTn wake-up request will be initiated when a falling edge on the RXn pin
occurs. When this request happens and the corresponding interrupt is enabled, an RXn
pin wake-up UARTn interrupt will be generated to inform the MCU to wake up the
UARTn function by switching on the UARTn clock, fH, via the application programs.
Otherwise, the UARTn function can not resume even if there is a falling edge on the
RXn pin when the WAKEn bit is cleared to 0.

Bit 2 RIEn: Receiver interrupt enable control
0: Receiver related interrupt is disabled
1: Receiver related interrupt is enabled

The bit enables or disables the receiver interrupt. If this bit is equal to 1 and when the
receiver overrun flag OERRn or received data available flag RXIFn is set, the UARTn
interrupt request flag will be set. If this bit is equal to 0, the UARTn interrupt request
flag will not be influenced by the condition of the OERRn or RXIFn flags.

Bit 1 TIIEn: Transmitter Idle interrupt enable control
0: Transmitter idle interrupt is disabled
1: Transmitter idle interrupt is enabled

The bit enables or disables the transmitter idle interrupt. If this bit is equal to 1 and
when the transmitter idle flag TIDLEn is set, due to a transmitter idle condition, the
UARTn interrupt request flag will be set. If this bit is equal to 0, the UARTn interrupt
request flag will not be influenced by the condition of the TIDLEn flag.

Bit 0 TEIEn: Transmitter Empty interrupt enable control
0: Transmitter empty interrupt is disabled
1: Transmitter empty interrupt is enabled

The bit enables or disables the transmitter empty interrupt. If this bit is equal to 1 and
when the transmitter empty flag TXIFn is set, due to a transmitter empty condition, the
UARTn interrupt request flag will be set. If this bit is equal to 0, the UARTn interrupt
request flag will not be influenced by the condition of the TXIFn flag.

Rev. 1.00 174 December 27, 2019 Rev. 1.00 175 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Baud Rate Generator
To setup the speed of the serial data communication, the UARTn function contains its own dedicated
baud rate generator. The baud rate is controlled by its own internal free running 8-bit timer, the
period of which is determined by two factors. The first of these is the value placed in the BRGn
register and the second is the value of the BRGHn bit within the UnCR2 control register. The
BRGHn bit decides, if the baud rate generator is to be used in a high speed mode or low speed mode,
which in turn determines the formula that is used to calculate the baud rate. The value in the BRGn
register, N, which is used in the following baud rate calculation formula determines the division
factor. Note that N is the decimal value placed in the BRGn register and has a range of between 0
and 255.

UnCR2 BRGHn Bit 0 1

Baud Rate (BR) fH
[64(N+1)]

fH
[16(N+1)]

By programming the BRGHn bit which allows selection of the related formula and programming
the required value in the BRGn register, the required baud rate can be setup. Note that because the
actual baud rate is determined using a discrete value, N, placed in the BRGn register, there will be
an error associated between the actual and requested value. The following example shows how the
BRGn register value N and the error value can be calculated.

• BRGn Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x”: unknown
Bit 7~0 D7~D0: Baud Rate values

By programming the BRGHn bit in the UnCR2 register which allows selection of the
related formula described above and programming the required value in the BRGn
register, the required baud rate can be setup.

Calculating the Baud Rate and Error Values
For a clock frequency of 4MHz, and with BRGHn set to 0 determine the BRGn register value N, the
actual baud rate and the error value for a desired baud rate of 4800.

From the above table the desired baud rate BR = fH

[64(N+1)]
Re-arranging this equation gives N =

fH

(BR×64) - 1

Giving a value for N =
4000000

(4800×64) - 1 = 12.0208

To obtain the closest value, a decimal value of 12 should be placed into the BRGn register. This
gives an actual or calculated baud rate value of BR = 4000000

[64(12+1)] = 4808

Therefore the error is equal to 4808 - 4800
4800 = 0.16%

Rev. 1.00 174 December 27, 2019 Rev. 1.00 175 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

UART Setup and Control
For data transfer, the UARTn function utilizes a non-return-to-zero, more commonly known as
NRZ, format. This is composed of one start bit, eight or nine data bits and one or two stop bits.
Parity is supported by the UARTn hardware and can be setup to be even, odd or no parity. For the
most common data format, 8 data bits along with no parity and one stop bit, denoted as 8, N, 1,
is used as the default setting, which is the setting at power-on. The number of data bits and stop
bits, along with the parity, are setup by programming the corresponding BNOn, PRTn, PRENn and
STOPSn bits in the UnCR1 register. The baud rate used to transmit and receive data is setup using
the internal 8-bit baud rate generator, while the data is transmitted and received LSB first. Although
the transmitter and receiver of the UARTn are functionally independent, they both use the same data
format and baud rate. In all cases stop bits will be used for data transmission.

Enabling/Disabling the UART Interface
The basic on/off function of the internal UARTn function is controlled using the UARTENn bit in
the UnCR1 register. If the UARTENn, TXENn and RXENn bits are set, then these two UARTn pins
will act as normal TXn output pin and RXn input pin respectively. If no data is being transmitted on
the TXn pin, then it will default to a logic high value.

Clearing the UARTENn bit will disable the TXn and RXn pins and then these two pins can be used
as an I/O or other pin-shared functional pins by properly configurations. When the UARTn function
is disabled, the buffer will be reset to an empty condition, at the same time discarding any remaining
residual data. Disabling the UARTn will also reset the enable control, the error and status flags with
bits TXENn, RXENn, TXBRKn, RXIFn, OERRn, FERRn, PERRn and NFn being cleared while
bits TIDLEn, TXIFn and RIDLEn will be set. The remaining control bits in the UnCR1, UnCR2 and
BRGn registers will remain unaffected. If the UARTENn bit in the UnCR1 register is cleared while
the UARTn is active, then all pending transmissions and receptions will be immediately suspended
and the UARTn will be reset to a condition as defined above. If the UARTn is then subsequently re-
enabled, it will restart again in the same configuration.

Data, Parity and Stop Bit Selection
The format of the data to be transferred is composed of various factors such as data bit length,
parity on/off, parity type, address bits and the number of stop bits. These factors are determined by
the setup of various bits within the UnCR1 register. The BNOn bit controls the number of data bits
which can be set to either 8 or 9. The PRTn bit controls the choice if odd or even parity. The PRENn
bit controls the parity on/off function. The STOPSn bit decides whether one or two stop bits are to
be used. The following table shows various formats for data transmission. The address bit, which is
the MSB of the data byte, identifies the frame as an address character or data if the address detect
function is enabled. The number of stop bits, which can be either one or two, is independent of the
data length.

Start Bit Data Bits Address Bits Parity Bit Stop Bit
Example of 8-bit Data Formats

1 8 0 0 1
1 7 0 1 1
1 7 1 0 1

Example of 9-bit Data Formats
1 9 0 0 1
1 8 0 1 1
1 8 1 0 1

Transmitter Receiver Data Format

Rev. 1.00 176 December 27, 2019 Rev. 1.00 177 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The following diagram shows the transmit and receive waveforms for both 8-bit and 9-bit data formats.

Bit 0

8-bit data format

Bit 1 Stop
Bit

Next
Start
Bit

Start
Bit

Parity Bit

Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Bit 0

9-bit data format

Bit 1Start
Bit Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Stop

Bit

Next
Start
Bit

Parity Bit

Bit 8Bit 7

UART Transmitter
Data word lengths of either 8 or 9 bits can be selected by programming the BNOn bit in the UnCR1
register. When BNOn bit is set, the word length will be set to 9 bits. In this case the 9th bit, which
is the MSB, needs to be stored in the TX8n bit in the UnCR1 register. At the transmitter core lies
the Transmitter Shift Register, more commonly known as the TSRn, whose data is obtained from
the transmit data register, which is known as the TXR_RXRn register. The data to be transmitted is
loaded into this TXR_RXRn register by the application program. The TSRn register is not written to
with new data until the stop bit from the previous transmission has been sent out. As soon as this stop
bit has been transmitted, the TSRn can then be loaded with new data from the TXR_RXRn register,
if it is available. It should be noted that the TSRn register, unlike many other registers, is not directly
mapped into the Data Memory area and as such is not available to the application program for direct
read/write operations. An actual transmission of data will normally be enabled when the TXENn bit
is set, but the data will not be transmitted until the TXR_RXRn register has been loaded with data
and the baud rate generator has defined a shift clock source. However, the transmission can also be
initiated by first loading data into the TXR_RXRn register, after which the TXENn bit can be set.
When a transmission of data begins, the TSRn is normally empty, in which case a transfer to the
TXR_RXRn register will result in an immediate transfer to the TSRn. If during a transmission the
TXENn bit is cleared, the transmission will immediately cease and the transmitter will be reset. The
TXn output pin can then return to the I/O or other pin-shared function by properly configurations.

Transmitting Data
When the UARTn is transmitting data, the data is shifted on the TXn pin from the shift register,
with the least significant bit LSB first. In the transmit mode, the TXR_RXRn register forms a buffer
between the internal bus and the transmitter shift register. It should be noted that if 9-bit data format
has been selected, then the MSB will be taken from the TX8n bit in the UnCR1 register. The steps to
initiate a data transfer can be summarized as follows:

• Make the correct selection of the BNOn, PRTn, PRENn and STOPSn bits to define the required
word length, parity type and number of stop bits.

• Setup the BRGn register to select the desired baud rate.

• Set the TXENn bit to ensure that the UARTn transmitter is enabled and the TXn pin is used as a
UARTn transmitter pin.

• Access the UnSR register and write the data that is to be transmitted into the TXR_RXRn
register. Note that this step will clear the TXIFn bit.

This sequence of events can now be repeated to send additional data. It should be noted that when
TXIFn=0, data will be inhibited from being written to the TXR_RXRn register. Clearing the TXIFn
flag is always achieved using the following software sequence:

1. A UnSR register access

2. A TXR_RXRn register write execution

Rev. 1.00 176 December 27, 2019 Rev. 1.00 177 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The read-only TXIFn flag is set by the UARTn hardware and if set indicates that the TXR_RXRn
register is empty and that other data can now be written into the TXR_RXRn register without
overwriting the previous data. If the TEIEn bit is set, then the TXIFn flag will generate an interrupt.
During a data transmission, a write instruction to the TXR_RXRn register will place the data into the
TXR_RXRn register, which will be copied to the shift register at the end of the present transmission.
When there is no data transmission in progress, a write instruction to the TXR_RXRn register will
place the data directly into the shift register, resulting in the commencement of data transmission,
and the TXIFn bit being immediately set. When a frame transmission is complete, which happens
after stop bits are sent or after the break frame, the TIDLEn bit will be set. To clear the TIDLEn bit
the following software sequence is used:

1. A UnSR register access

2. A TXR_RXRn register write execution

Note that both the TXIFn and TIDLEn bits are cleared by the same software sequence.

Transmitting Break
If the TXBRKn bit is set, then the break characters will be sent on the next transmission. Break
character transmission consists of a start bit, followed by 13xN “0” bits, where N=1, 2, etc. If a break
character is to be transmitted, then the TXBRKn bit must be first set by the application program and
then cleared to generate the stop bits. Transmitting a break character will not generate a transmit
interrupt. Note that a break condition length is at least 13 bits long. If the TXBRKn bit is continually
kept at a logic high level, then the transmitter circuitry will transmit continuous break characters.
After the application program has cleared the TXBRKn bit, the transmitter will finish transmitting the
last break character and subsequently send out one or two stop bits. The automatic logic high at the
end of the last break character will ensure that the start bit of the next frame is recognized.

UART Receiver
The UARTn is capable of receiving word lengths of either 8 or 9 bits can be selected by
programming the BNOn bit in the UnCR1 register. When BNOn bit is set, the word length will be
set to 9 bits. In this case the 9th bit, which is the MSB, will be stored in the RX8n bit in the UnCR1
register. At the receiver core lies the Receiver Shift Register more commonly known as the RSRn.
The data which is received on the RXn external input pin is sent to the data recovery block. The data
recovery block operating speed is 16 times that of the baud rate, while the main receive serial shifter
operates at the baud rate. After the RXn pin is sampled for the stop bit, the received data in RSRn
is transferred to the receive data register, if the register is empty. The data which is received on the
external RXn input pin is sampled three times by a majority detect circuit to determine the logic
level that has been placed onto the RXn pin. It should be noted that the RSRn register, unlike many
other registers, is not directly mapped into the Data Memory area and as such is not available to the
application program for direct read/write operations.

Receiving Data
When the UARTn receiver is receiving data, the data is serially shifted in on the external RXn input
pin to the shift register, with the least significant bit LSB first. The TXR_RXRn register is a two
byte deep FIFO data buffer, where two bytes can be held in the FIFO while the 3rd byte can continue
to be received. Note that the application program must ensure that the data is read from TXR_RXRn
before the 3rd byte has been completely shifted in, otherwise the 3rd byte will be discarded and an
overrun error OERRn will be subsequently indicated. The steps to initiate a data transfer can be
summarized as follows:

• Make the correct selection of the BNOn, PRTn, PRENn and STOPSn bits to define the required
word length, parity type and number of stop bits.

Rev. 1.00 178 December 27, 2019 Rev. 1.00 179 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• Setup the BRGn register to select the desired baud rate.

• Set the RXENn bit to ensure that the UARTn receiver is enabled and the RXn pin is used as a
UARTn receiver pin.

At this point the receiver will be enabled which will begin to look for a start bit.

When a character is received, the following sequence of events will occur:

• The RXIFn bit in the UnSR register will be set when the TXR_RXRn register has data available.
There will be at most one more character that can be read.

• When the contents of the shift register have been transferred to the TXR_RXRn register and if
the RIEn bit is set, then an interrupt will be generated.

• If during reception, a frame error, noise error, parity error or an overrun error has been detected,
then the error flags can be set.

The RXIFn bit can be cleared using the following software sequence:

1. A UnSR register access

2. A TXR_RXRn register read execution

Receiving Break
Any break character received by the UARTn will be managed as a framing error. The receiver
will count and expect a certain number of bit times as specified by the values programmed into
the BNOn and STOPSn bits. If the break is much longer than 13 bit times, the reception will be
considered as complete after the number of bit times specified by BNOn and STOPSn. The RXIFn
bit is set, FERRn is set, zeros are loaded into the receive data register, interrupts are generated if
appropriate and the RIDLEn bit is set. A break is regarded as a character that contains only zeros
with the FERRn flag being set. If a long break signal has been detected, the receiver will regard it as
a data frame including a start bit, data bits and the invalid stop bit and the FERRn flag will be set.
The receiver must wait for a valid stop bit before looking for the next start bit. The receiver will not
make the assumption that the break condition on the line is the next start bit. The break character
will be loaded into the buffer and no further data will be received until stop bits are received. It
should be noted that the RIDLEn read only flag will go high when the stop bits have not yet been
received. The reception of a break character on the UARTn registers will result in the following:

• The framing error flag, FERRn, will be set.

• The receive data register, TXR_RXRn, will be cleared.

• The OERRn, NFn, PERRn, RIDLEn or RXIFn flags will possibly be set.

Idle Status
When the receiver is reading data, which means it will be in between the detection of a start bit
and the reading of a stop bit, the receiver status flag in the UnSR register, otherwise known as the
RIDLEn flag, will have a zero value. In between the reception of a stop bit and the detection of
the next start bit, the RIDLEn flag will have a high value, which indicates the receiver is in an idle
condition.

Receiver Interrupt
The read only receive interrupt flag, RXIFn, in the UnSR register is set by an edge generated by the
receiver. An interrupt is generated if RIEn=1, when a word is transferred from the Receive Shift
Register, RSRn, to the Receive Data Register, TXR_RXRn. An overrun error can also generate an
interrupt if RIEn=1.

Rev. 1.00 178 December 27, 2019 Rev. 1.00 179 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Managing Receiver Errors
Several types of reception errors can occur within the UARTn module, the following section
describes the various types and how they are managed by the UARTn.

Overrun Error – OERRn
The TXR_RXRn register is composed of a two byte deep FIFO data buffer, where two bytes can be
held in the FIFO register, while a 3th byte can continue to be received. Before the 3th byte has been
entirely shifted in, the data should be read from the TXR_RXRn register. If this is not done, the
overrun error flag OERRn will be consequently indicated.

In the event of an overrun error occurring, the following will happen:

• The OERRn flag in the UnSR register will be set.

• The TXR_RXRn contents will not be lost.

• The shift register will be overwritten.

• An interrupt will be generated if the RIEn bit is set.

The OERRn flag can be cleared by an access to the UnSR register followed by a read to the TXR_
RXRn register.

Noise Error – NFn
Over-sampling is used for data recovery to identify valid incoming data and noise. If noise is
detected within a frame, the following will occur:

• The read only noise flag, NFn, in the UnSR register will be set on the rising edge of the RXIFn bit.

• Data will be transferred from the shift register to the TXR_RXRn register.

• No interrupt will be generated. However this bit rises at the same time as the RXIFn bit which
itself generates an interrupt.

Note that the NFn flag is reset by an UnSR register read operation followed by a TXR_RXRn
register read operation.

Framing Error – FERRn
The read only framing error flag, FERRn, in the UnSR register, is set if a zero is detected instead of
stop bits. If two stop bits are selected, both stop bits must be high. Otherwise the FERRn flag will be
set. The FERRn flag and the received data will be recorded in the UnSR and TXR_RXRn registers
respectively and the FERRn flag will be cleared in any reset.

Parity Error – PERRn
The read only parity error flag, PERRn, in the UnSR register, is set if the parity of the received
word is incorrect. This error flag is only applicable if the parity function is enabled, PRENn=1, and
if the parity type, odd or even, is selected. The read only PERRn flag and the received data will be
recorded in the UnSR and TXR_RXRn registers respectively and the flag will be cleared on any
reset. It should be noted that the FERRn and PERRn flags in the UnSR register should first be read
by the application programs before reading the data word.

Rev. 1.00 180 December 27, 2019 Rev. 1.00 181 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

UART Interrupt Structure
Several individual UARTn conditions can generate a UARTn interrupt. When these conditions
exist, a low pulse will be generated to get the attention of the microcontroller. These conditions are
a transmitter data register empty, transmitter idle, receiver data available, receiver overrun, address
detect and an RXn pin wake-up. When any of these conditions are created, if its corresponding
interrupt control is enabled and the stack is not full, the program will jump to its corresponding
interrupt vector where it can be serviced before returning to the main program. Four of these
conditions have the corresponding UnSR register flags which will generate a UARTn interrupt if
its associated interrupt enable control bit in the UnCR2 register is set. The two transmitter interrupt
conditions have their own corresponding enable control bits, while the two receiver interrupt
conditions have a shared enable control bit. These enable bits can be used to mask out individual
UARTn interrupt sources.

The address detect condition, which is also a UARTn interrupt source, does not have an associated
flag, but will generate a UARTn interrupt when an address detect condition occurs if its function is
enabled by setting the ADDENn bit in the UnCR2 register. An RXn pin wake-up, which is also a
UARTn interrupt source, does not have an associated flag, but will generate a UARTn interrupt if the
UARTn clock source, fH, is switched off and the WAKEn and RIEn bits in the UnCR2 register are
set when a falling edge on the RXn pin occurs. Note that in the event of an RXn wake-up interrupt
occurring, there will be a certain period of delay, commonly known as the System Start-up Time, for
the oscillator to restart and stabilize before the system resumes normal operation.

Note that the UnSR register flags are read only and cannot be cleared or set by the application
program, neither will they be cleared when the program jumps to the corresponding interrupt
servicing routine, as is the case for some of the other interrupts. The flags will be cleared
automatically when certain actions are taken by the UARTn, the details of which are given in the
UARTn register section. The overall UARTn interrupt can be disabled or enabled by the related
interrupt enable control bits in the interrupt control registers of the microcontroller to decide whether
the interrupt requested by the UARTn module is masked out or allowed.

UnSR Register

Transmitter Empty Flag
TXIFn

0

1

WAKEn

Interrupt
signal to MCU

Transmitter Idle Flag
TIDLEn

Receiver Overrun Flag
OERRn

Receiver Data Available
RXIFn

RXn Pin
Wake-up

UnCR2 Register

OR

0

1

ADDENn

0

1
RIEn

0

1
TIIEn

0

1
TEIEn

0

1
TXR_RXRn.7 if BNO=0
RX8n if BNO=1

UnCR2 Register

UARTn Interrupt
Request Flag

URnF

0

1
URnE 0

1
EMI

UARTn Interrupt Structure

Rev. 1.00 180 December 27, 2019 Rev. 1.00 181 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Address Detect Mode
Setting the Address Detect function enable control bit, ADDENn, in the UnCR2 register, enables this
special function. If this bit is set to 1, then an additional qualifier will be placed on the generation
of a Receiver Data Available interrupt, which is requested by the RXIFn flag. If the ADDENn bit
is equal to 1, then when the data is available, an interrupt will only be generated, if the highest
received bit has a high value. Note that the related interrupt enable control bit and the EMI bit of
the microcontroller must also be enabled for correct interrupt generation. The highest address bit
is the 9th bit if the bit BNOn=1 or the 8th bit if the bit BNOn=0. If the highest bit is high, then the
received word will be defined as an address rather than data. A Data Available interrupt will be
generated every time the last bit of the received word is set. If the ADDENn bit is equal to 0, then a
Receive Data Available interrupt will be generated each time the RXIFn flag is set, irrespective of
the data last bit status. The address detection and parity functions are mutually exclusive functions.
Therefore, if the address detect function is enabled, then to ensure correct operation, the parity
function should be disabled by resetting the parity function enable bit PRENn to zero.

ADDENn Bit 9 if BNOn=1
Bit 8 if BNOn=0

UARTn Interrupt
Generated

0
0 √
1 √

1
0 X
1 √

ADDENn Bit Function

UART Power Down and Wake-up
When the UARTn clock, fH, is switched off, the UARTn will cease to function. If the MCU switches
off the UARTn clock fH and enters the power down mode while a transmission is still in progress,
then the transmission will be paused until the UARTn clock source derived from the microcontroller
is activated. In a similar way, if the MCU switches off the UART clock fH and enters the power
down mode by executing the “HALT” instruction while receiving data, then the reception of data
will likewise be paused. When the MCU enters the power down mode, note that the UnSR, UnCR1,
UnCR2, transmit and receive registers, as well as the BRGn register will not be affected. It is
recommended to make sure first that the UARTn data transmission or reception has been finished
before the microcontroller enters the power down mode.

The UARTn function contains a receiver RXn pin wake-up function, which is enabled or disabled
by the WAKEn bit in the UnCR2 register. If this bit, along with the UARTn enable bit, UARTENn,
the receiver enable bit, RXENn and the receiver interrupt bit, RIEn, are all set before the MCU
enters the power down mode with the UARTn clock fH being switched off, then a falling edge on the
RXn pin will initiate a RXn pin wake-up UARTn interrupt. Note that as it takes certain system clock
cycles after a wake-up, before normal microcontroller operation resumes, any data received during
this time on the RXn pin will be ignored.

For a UARTn wake-up interrupt to occur, in addition to the bits for the wake-up being set, the global
interrupt enable bit, EMI, and the UARTn interrupt enable bit, URnE, must be set. If the EMI and
URnE bits are not set then only a wake up event will occur and no interrupt will be generated.
Note also that as it takes certain system clock cycles after a wake-up before normal microcontroller
resumes, the UARTn interrupt will not be generated until after this time has elapsed.

Rev. 1.00 182 December 27, 2019 Rev. 1.00 183 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

CAN Bus
The device contains a fully integrated CAN (Controller Area Network) Bus interface. It was
originally developed as a vehicle electrical bus standard to implement multiplexed wiring to allow
multiple automotive device hardware and microcontrollers to communicate with each other without
requiring a host computer. Although primarily used in automotive applications the CAN Bus is also
seeing use on other application areas.

The Holtek CAN Module licensed from Bosch, abbreviation C_CAN. The CAN module includes an
area of Message RAM, for which there are two interface control register sets to access the Message
Object Data contained within the Message RAM.

The CAN Bus contains the following features:

• Conforms to ISO11898-1, 2003

• 32 Message Objects

• Each Message Object has its own identifier mask

• Programmable FIFO mode – concatenation of Message Objects

• Maskable interrupt

• Programmable loop-back mode for self-test operation

CAN Bus Overview
The CAN module consists of the CAN Core, Message RAM, Message Handler and Interface
Control Register sets. An additional HT-8 Interface to the C_CAN generic interface is provided by
the CAN module, via which the external 8-bit MCUs can access the C_CAN registers. The CAN
Bus clock fCAN comes from the high frequency fH clock.

Message
Handler

IF
 C

O
N

 R
EG

 1
IF

 C
O

N
 R

EG
 2

G
EN

ER
IC

 I/
F

CANTX

CANRX

can_addr

can_data_in

can_reset

fCAN

can_wr_b

CANINT
can_int

CAN_CORE

fMCLK

can_select

RM1FINT

Message
RAM

32×139 bits

D
i[138:0]

can_w
r

D
o[138:0]

A[4:0]

RXOK
INTPND[1]

RMXFINT

H
T-

08
 I/

F
to

C

_C
AN

 G
EN

ER
IC

 I/
F

M
U
X

RMFD[4:0]

can_rx

can_tx

can_sof

INTPND[32:1] 01
~
32

can_wait_b

C_CAN

5

32

can_wait_b

CANEN

can_clk

SOFINT

can_clk

CAN Module Block Diagram

Rev. 1.00 182 December 27, 2019 Rev. 1.00 183 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

1. C_CAN – CAN Core
Refer to the following Operating Mode Description and Application section for further CAN module
operation details.

• CAN_Core
The CAN_Core performs communication according to the CAN protocol version 2.0 A, B and
ISO 11898-1.

• Registers
All registers are used to control and configure the module.

• Message Handler
The internal State Machine controls the data transfer between the RX/TX Shift Register of the
CAN_Core and the Message RAM as well as the generation of interrupts as programmed in the
Control and Configuration Registers. All functions concerning the handling of messages are
implemented in the Message Handler. Those functions are the acceptance filtering, the transfer
of messages between the CAN Core and the Message RAM and the handling of transmission
requests as well as the generation of the module interrupt.

• Interface Control Registers 1 and 2
The function of the two interface control register sets is identical (except in Basic mode).
The interface control register sets are used for data transfer between the external bus and the
Message RAM.

• Message RAM Interface
Message RAM size: 139-bit × 32

2. Message RAM IP
• Stores 32 Message Objects and Identifier Masks.

• Each Message Object together with Identifier Mask has a length of 139-bit

3. HT-8 Interface to C_CAN Generic Interface
• The external 8-bit microcontroller can access the C_CAN registers through this transform

interface.

• The MCU defines the desired register address in the application program. It is only allowed to
access one register each time. To implement consecutive access operations, the address should be
incremented by one using the application program.

CAN Bus Pins
This device provides two CAN Bus TX and RX pins, namely CANTX and CANRX. The CANTX
and CANRX pins are the CAN Bus digital transmit and receive pins respectively. These pin
functions should first be selected by the correspongding pin-shared function selection register before
the CAN Bus is used.

Rev. 1.00 184 December 27, 2019 Rev. 1.00 185 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

CAN Bus Registers
The CAN Bus is controlled using a series of registers as shown in the following table.

Register
Name

Bit
7 6 5 4 3 2 1 0

CTRLRL TEST CCE DAR — EIE SIE CANIE INIT
STATRL BOFF EWARN EPASS RXOK TXOK LEC2 LEC1 LEC0
ERRCNTL TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0
ERRCNTH RP REC6 REC5 REC4 REC3 REC2 REC1 REC0
BTRL SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
BTRH — TSG2D2 TSG2D1 TSG2D0 TSG1D3 TSG1D2 TSG1D1 TSG1D0
INTRL INTID7 INTID6 INTID5 INTID4 INTID3 INTID2 INTID1 INTID0
INTRH INTID15 INTID14 INTID13 INTID12 INTID11 INTID10 INTID9 INTID8
TESTRL RX TX1 TX0 LBACK SILENT BASIC — —
BRPERL — — — — BRPE3 BRPE2 BRPE1 BRPE0
IF1CREQL — — MSG1N5 MSG1N4 MSG1N3 MSG1N2 MSG1N1 MSG1N0
IF1CREQH BUSY1 — — — — — — —
IF1CMSKL TD1DIR MASK1 ARB1 CTRL1 CINTPND1 TQ1DTA DATA1A DATA1B
IF1MSK1L MSK107 MSK106 MSK105 MSK104 MSK103 MSK102 MSK101 MSK100
IF1MSK1H MSK115 MSK114 MSK113 MSK112 MSK111 MSK110 MSK109 MSK108
IF1MSK2L MSK123 MSK122 MSK121 MSK120 MSK119 MSK118 MSK117 MSK116
IF1MSK2H MXTD1 MDIR1 — MSK128 MSK127 MSK126 MSK125 MSK124
IF1ARB1L ID107 ID106 ID105 ID104 ID103 ID102 ID101 ID100
IF1ARB1H ID115 ID114 ID113 ID112 ID111 ID110 ID109 ID108
IF1ARB2L ID123 ID122 ID121 ID120 ID119 ID118 ID117 ID116
IF1ARB2H MSG1VA XTD1 DIR1 ID128 ID127 ID126 ID125 ID124
IF1MCTRL EOB1 — — — DLC13 DLC12 DLC11 DLC10
IF1MCTRH N1DTA MSG1LST INT1PND UMASK1 TX1IEN RX1IEN RMT1EN T1REQ
IF1DTA1L D7 D6 D5 D4 D3 D2 D1 D0
IF1DTA1H D7 D6 D5 D4 D3 D2 D1 D0
IF1DTA2L D7 D6 D5 D4 D3 D2 D1 D0
IF1DTA2H D7 D6 D5 D4 D3 D2 D1 D0
IF1DTB1L D7 D6 D5 D4 D3 D2 D1 D0
IF1DTB1H D7 D6 D5 D4 D3 D2 D1 D0
IF1DTB2L D7 D6 D5 D4 D3 D2 D1 D0
IF1DTB2H D7 D6 D5 D4 D3 D2 D1 D0
CRLL DAY7 DAY6 DAY5 DAY4 DAY3 DAY2 DAY1 DAY0
CRLH MON7 MON6 MON5 MON4 MON3 MON2 MON1 MON0
CRHL SUBSTEP3 SUBSTEP2 SUBSTEP1 SUBSTEP0 YEAR3 YEAR2 YEAR1 YEAR0
CRHH REL3 REL2 REL1 REL0 STEP3 STEP2 STEP1 STEP0
IF2CREQL — — MSG2N5 MSG2N4 MSG2N3 MSG2N2 MSG2N1 MSG2N0
IF2CREQH BUSY2 — — — — — — —
IF2CMSKL TD2DIR MASK2 ARB2 CTRL2 CINTPND2 TQ2DTA DATA2A DATA2B
IF2MSK1L MSK207 MSK206 MSK205 MSK204 MSK203 MSK202 MSK201 MSK200
IF2MSK1H MSK215 MSK214 MSK213 MSK212 MSK211 MSK210 MSK209 MSK208
IF2MSK2L MSK223 MSK222 MSK221 MSK220 MSK219 MSK218 MSK217 MSK216
IF2MSK2H MXTD2 MDIR2 — MSK228 MSK227 MSK226 MSK225 MSK224
IF2ARB1L ID207 ID206 ID205 ID204 ID203 ID202 ID201 ID200
IF2ARB1H ID215 ID214 ID213 ID212 ID211 ID210 ID209 ID208

Rev. 1.00 184 December 27, 2019 Rev. 1.00 185 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register
Name

Bit
7 6 5 4 3 2 1 0

IF2ARB2L ID223 ID222 ID221 ID220 ID219 ID218 ID217 ID216
IF2ARB2H MSG2VA XTD2 DIR2 ID228 ID227 ID226 ID225 ID224
IF2MCTRL EOB2 — — — DLC23 DLC22 DLC21 DLC20
IF2MCTRH N2DTA MSG2LST INT2PND UMASK2 TX2IEN RX2IEN RMT2EN T2REQ
IF2DTA1L D7 D6 D5 D4 D3 D2 D1 D0
IF2DTA1H D7 D6 D5 D4 D3 D2 D1 D0
IF2DTA2L D7 D6 D5 D4 D3 D2 D1 D0
IF2DTA2H D7 D6 D5 D4 D3 D2 D1 D0
IF2DTB1L D7 D6 D5 D4 D3 D2 D1 D0
IF2DTB1H D7 D6 D5 D4 D3 D2 D1 D0
IF2DTB2L D7 D6 D5 D4 D3 D2 D1 D0
IF2DTB2H D7 D6 D5 D4 D3 D2 D1 D0
TREQR1L TREQ8 TREQ7 TREQ6 TREQ5 TREQ4 TREQ3 TREQ2 TREQ1
TREQR1H TREQ16 TREQ15 TREQ14 TREQ13 TREQ12 TREQ11 TREQ10 TREQ9
TREQR2L TREQ24 TREQ23 TREQ22 TREQ21 TREQ20 TREQ19 TREQ18 TREQ17
TREQR2H TREQ32 TREQ31 TREQ30 TREQ29 TREQ28 TREQ27 TREQ26 TREQ25
NEWDT1L NDTA8 NDTA7 NDTA6 NDTA5 NDTA4 NDTA3 NDTA2 NDTA1
NEWDT1H NDTA16 NDTA15 NDTA14 NDTA13 NDTA12 NDTA11 NDTA10 NDTA9
NEWDT2L NDTA24 NDTA23 NDTA22 NDTA21 NDTA20 NDTA19 NDTA18 NDTA17
NEWDT2H NDTA32 NDTA31 NDTA30 NDTA29 NDTA28 NDTA27 NDTA26 NDTA25
INTPND1L INTPND8 INTPND7 INTPND6 INTPND5 INTPND4 INTPND3 INTPND2 INTPND1
INTPND1H INTPND16 INTPND15 INTPND14 INTPND13 INTPND12 INTPND11 INTPND10 INTPND9
INTPND2L INTPND24 INTPND23 INTPND22 INTPND21 INTPND20 INTPND19 INTPND18 INTPND17
INTPND2H INTPND32 INTPND31 INTPND30 INTPND29 INTPND28 INTPND27 INTPND26 INTPND25
MSGVAL1L MSGVA8 MSGVA7 MSGVA6 MSGVA5 MSGVA4 MSGVA3 MSGVA2 MSGVA1
MSGVAL1H MSGVA16 MSGVA15 MSGVA14 MSGVA13 MSGVA12 MSGVA11 MSGVA10 MSGVA9
MSGVAL2L MSGVA24 MSGVA23 MSGVA22 MSGVA21 MSGVA20 MSGVA19 MSGVA18 MSGVA17
MSGVAL2H MSGVA32 MSGVA31 MSGVA30 MSGVA29 MSGVA28 MSGVA27 MSGVA26 MSGVA25
CANCFG D7 CANEN — RMFD4 RMFD3 RMFD2 RMFD1 RMFD0

“—”: unimplemented, read as “0”

Programmer’s Model
Register Description Note

CTRLRL CAN Control Register —
STATRL Status Register —
ERRCNTH/ERRCNTL Error Counter Read only
BTRH/BTRL Bit Timing Register Write enabled by CCE
INTRH/INTRL Interrupt Register Read only
TESTRL Test Register Write enabled by TEST
BRPERL BRP Extension Register Write enabled by CCE
IF1CREQH/IF1CREQL IF1 Command Request —
IF1CMSKL IF1 Command Mask —
IF1MSK1H/IF1MSK1L IF1 Mask 1 —
IF1MSK2H/IF1MSK2L IF1 Mask 2 —
IF1ARB1H/IF1ARB1L IF1 Arbitration 1 —
IF1ARB2H/IF1ARB2L IF1 Arbitration 2 —
IF1MCTRH/IF1MCTRL IF1 Message Control —

Rev. 1.00 186 December 27, 2019 Rev. 1.00 187 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register Description Note
IF1DTA1H/IF1DTA1L IF1 Data A 1 —
IF1DTA2H/IF1DTA2L IF1 Data A 2 —
IF1DTB1H/IF1DTB1L IF1 Data B 1 —
IF1DTB2H/IF1DTB2L IF1 Data B 2 —
IF2CREQH/IF2CREQL IF2 Command Request —
IF2CMSKL IF2 Command Mask —
IF2MSK1H/IF2MSK1L IF2 Mask 1 —
IF2MSK2H/IF2MSK2L IF2 Mask 2 —
IF2ARB1H/IF2ARB1L IF2 Arbitration 1 —
IF2ARB2H/IF2ARB2L IF2 Arbitration 2 —
IF2MCTRH/IF2MCTRL IF2 Message Control —
IF2DTA1H/IF2DTA1L IF2 Data A 1 —
IF2DTA2H/IF2DTA2L IF2 Data A 2 —
IF2DTB1H/IF2DTB1L IF2 Data B 1 —
IF2DTB2H/IF2DTB2L IF2 Data B 2 —
CRLH/CRLL Core Release Low Read only
CRHH/CRHL Core Release High Read only
TREQR1H/TREQR1L Transmission Request 1 Read only
TREQR2H/TREQR2L Transmission Request 2 Read only
NEWDT1H/NEWDT1L New Data 1 Read only
NEWDT2H/NEWDT2L New Data 2 Read only
INTPND1H/INTPND1L Interrupt Pending 1 Read only
INTPND2H/INTPND2L Interrupt Pending 2 Read only
MSGVAL1H/MSGVAL1L Message Valid 1 Read only
MSGVAL2H/MSGVAL2L Message Valid 2 Read only
CANCFG CAN Module Configuration —

CAN Module Configuration Register

• CANCFG Register
Bit 7 6 5 4 3 2 1 0

Name D7 CANEN — RMFD4 RMFD3 RMFD2 RMFD1 RMFD0
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 1 0 — 0 0 0 0 0

Bit 7 D7: Reserved, must be fixed at “1”
Bit 6 CANEN: CAN Module Core Enable Control

0: Disable
1: Enable

When this bit is cleared to zero, CAN core remains in reset state and cannot be written in.
Bit 5 Unimplemented, read as “0”
Bit 4~0 RMFD4~RMFD0: Set receive FIFO threshold

0x00: Message Object Number 32
0x01~0x1F: Message Object Number 1 ~ Message Object Number 31

These bits are used to select one of the Message Object Number 1 ~ Message Object
Number 32. When the selected Message Object receives a Message successfully, an
interrrupt signal RMXFINT will be generated.

Rev. 1.00 186 December 27, 2019 Rev. 1.00 187 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

CAN Protocol Related Registers
These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

CAN Module Control Register
The contents of the control register are used to change the behavior of the CAN module operation.

• CTRLRL Register
Bit 7 6 5 4 3 2 1 0

Name TEST CCE DAR — EIE SIE CANIE INIT
R/W R/W R/W R/W — R/W R/W R/W R/W
POR 0 0 0 — 0 0 0 1

Bit 7 TEST: Test Mode Enable Control
0: Normal Operation
1: Test Mode

Bit 6 CCE: Configuration Change Enable
0: The CPU has no write access to protected register bits
1: While INIT = ‘1’, the CPU has write access to protected register bits

Bit 5 DAR: Disable Automatic Retransmission
0: Enable Automatic Retransmission of disturbed messages
1: Disable Automatic Retransmission of disturbed messages

Bit 4 Unimplemented, read as “0”
Bit 3 EIE: Error Interrupt Enable

0: Disabled – No Error Status Interrupt will be generated
1: Enabled – A change of bits BOFF or EWARN in the Status Register will cause the

Interrupt Register to be set to Status Interrupt (INTID15~INTID0=0x8000)
Bit 2 SIE: Status Change Interrupt Enable

0: Disabled – No Status Change Interrupt will be generated
1: Enabled – The Interrupt Register will be set to Status Interrupt

(INTID15~INTID0=0x8000) when the CAN module sets LEC[2:0] to a value
other than ‘7’.

Bit 1 CANIE: Module Interrupt Enable
0: Disabled – Module Interrupt can_int is always inactive
1: Enabled – When the Interrupt Register is non-zero, the interrupt line can_int is

set to active. can_int remains active until all interrupts are processed (Interrupt
Register returns to zero)

Bit 0 INIT: Initialisation
0: Normal Operation
1: Initialisation is started

The busoff recovery sequence (see CAN Specification Rev.2.0) cannot be shortened by
setting or resetting INIT. If the device goes busoff, it will set INIT of its own accord,
stopping all bus activities.
Once INIT has been cleared by the CPU, the device will then wait for 129 occurrences
of Bus Idle (129×11 consecutive recessive bits) before resuming normal operations. At
the end of the busoff recovery sequence, the Error Management Counters will be reset.

Rev. 1.00 188 December 27, 2019 Rev. 1.00 189 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Test Register
Write access to the Test Register TESTRL is enabled by setting the bit, TEST, in the CAN Molule
Control Register. Different test functions may be combined, but TX[1:0] ≠ “00” disturbs message
transfer. The TESTRL register should be cleared to zero before exiting the Test Mode.

• TESTRL Register
Bit 7 6 5 4 3 2 1 0

Name RX TX1 TX0 LBACK SILENT BASIC — —
R/W R R/W R/W R/W R/W R/W — —
POR x 0 0 0 0 0 — —

Bit 7 RX: Monitors the actual value of the CANRX Pin
0: The CAN bus is dominant (can_rx = ‘0’)
1: The CAN bus is recessive (can_rx = ‘1’)

Note: The POR value of ‘x’ signifies the actual POR value of the CANRX pin.
Bit 6~5 TX1~TX0: Control of CANTX pin

00: Reset value, CANTX is controlled by the CAN Core
01: Sample Point can be monitored at CANTX pin
10: CANTX pin drives a dominant (‘0’) value
11: CANTX pin drives a recessive (‘1’) value

Bit 4 LBACK: Loop Back Mode Control
0: Loop Back Mode is disabled
1: Loop Back Mode is enabled

Bit 3 SILENT: Silent Mode Control
0: Normal operation
1: The module is in Silent Mode

Bit 2 BASIC: Basic Mode Control
0: Basic Mode disabled
1: Basic Mode, IF1 Registers used as TX Buffer, IF2 Registers used as RX Buffer

Bit 1~0 Unimplemented, read as “0”

Status Register
The content of this register reflects the CAN module status. Some bits can only be read while some
are read/write bits.

• STATRL Register
Bit 7 6 5 4 3 2 1 0

Name BOFF EWARN EPASS RXOK TXOK LEC2 LEC1 LEC0
R/W R R R R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 BOFF: Busoff Status
0: The CAN module is not in the busoff state
1: The CAN module is in the busoff state

Bit 6 EWARN: Error Warning Status
0: Both error counters are below the error warning limit of 96
1: At least one of the error counters in the EML has reached the error warning limit

of 96
Bit 5 EPASS: Error Passive

0: The CAN Core is error active
1: The CAN Core is error passive as defined in the CAN Specification

Rev. 1.00 188 December 27, 2019 Rev. 1.00 189 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 4 RXOK: Received a Message Successfully
0: Since this bit was last reset by the CPU, no message has been successfully received
1: Since this bit was last reset by the CPU, a message has been successfully received

independent of the result of acceptance filtering
This RXOK bit is never reset by the CAN Core.

Bit 3 TXOK: Transmitted a Message Successfully
0: Since this bit was reset by the CPU, no message has been successfully transmitted
1: Since this bit was last reset by the CPU, a message has been successfully

transmitted error free and acknowledged by at least one other node
This TXOK bit is never reset by the CAN Core.

Bit 2~0 LEC2~LEC0: Last Error Code (Type of the last protocol event to occur on the CAN bus)
000: No Error

Message successfully transmitted or received.
001: Stuff Error

More than 5 equal bits in a sequence have occurred in a part of a received
message where this is not allowed.

010: Form Error
Fixed format part of a received frame has the wrong format.

011: Ack Error
CAN Core transmitted message was not acknowledged by another node.

100: Bit1 Error
During the transmission of a message, with the exception of the arbitration
field, the device wished to send a recessive level (bit of logical value ‘1’), but
the monitored bus value was dominant.

101: Bit0 Error
During the transmission of a message or an acknowledge bit, active error flag,
or overload flag, the device wished to send a dominant level (data or identifier
bit of logical value ‘0’), but the monitored Bus value was recessive. During
busoff recovery this status is set each time a sequence of 11 recessive bits
has been monitored. This enables the CPU to monitor the busoff recovery
sequence, indicating that the bus is not stuck at dominant or is continuously
disturbed. During the waiting time after an INIT reset, each time a sequence
of 11 recessive bits has been monitored, a Bit0 Error code is written to the
Status Register. This enables the CPU to readily check up whether the CAN
bus is stuck at dominant or is continuously disturbed and to monitor the busoff
recovery sequence.

110: CRC Error
The CRC check sum was incorrect in the message received, the CRC received
for an incoming message wished to send a recessive level (bit of logical value
‘1’), but the monitored bus value was dominant.

111: No Change
When the LEC bit field shows the value ‘7’, no CAN bus event was detected
since the CPU wrote this value to the LEC bit field.
The LEC field holds a code which indicates the type of the last error to occur
on the CAN bus. This field will be cleared to ‘0’ when a message has been
transferred (reception or transmission) without error. A code ‘7’ may be written
by the CPU to check for updates.

Note: A Status Interrupt is generated by bits BOFF and EWARN (Error Interrupt) or by RXOK,
TXOK and LEC (Status Change Interrupt) assumed that the corresponding enable bits in the
CAN Control Register are set. A change of bit EPASS or a write to RXOK, TXOK or LEC
will never generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (INTID15~INTID0=0x8000)
in the Interrupt Register, if it is pending.

Rev. 1.00 190 December 27, 2019 Rev. 1.00 191 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

CAN Error Counter Registers

• ERRCNTL Register
Bit 7 6 5 4 3 2 1 0

Name TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 TEC7~TEC0: Transmit Error Counter
Actual state of the Transmit Error Counter

• ERRCNTH Register
Bit 7 6 5 4 3 2 1 0

Name RP REC6 REC5 REC4 REC3 REC2 REC1 REC0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7 RP: Receive Error Passive
0: The Receive Error Counter is below the error passive level
1: The Receive Error Counter has reached the error passive level as defined in the

CAN Specification
Bit 6~0 REC6~REC0: Receive Error Counter

Actual state of the Receive Error Counter

Bit Timing Registers
The bit time is divided into four segments which are the Synchronisation Segment, the Propagation
Time Segment, the Phase Buffer Segment 1 and the Phase Buffer Segment 2. Each segment consists
of a specific, programmable number of time quanta. The length of the time quantum (tq), which is
the basic time unit of the bit time, is defined by the CAN module input clock fCAN and the Baud Rate
Prescaler (BRP) and the BRP Extension Register.
• The time quantum is defined as:

tq = (BRPE[3:0] × 0x40 + BRP[5:0] + 1)/fCAN.
Where fCAN = CAN module clock frequency
The contents of the BTRL register define the values of the Baud Rate Prescaler and the (Re)
Synchronisation Jump Width (SJW). The BTRH register bits define the length of the time segment
before and after the sample point. The registers are only writable if bits CCE and INIT in the CAN
Control Register are set.

• BTRL Register
Bit 7 6 5 4 3 2 1 0

Name SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 1

Bit 7~6 SJW1~SJW0: (Re)Synchronisation Jump Width
0x00~0x03: Valid programmed values are 0~3.

The actual interpretation by the hardware of this value is such that one more than the
value programmed here is used.

Bit 5~0 BRP5~BRP0: Baud Rate Prescaler (base value)
0x01~0x3F: The value by which the CAN module system clock frequency is divided

to generate the bit time quanta. The bit time is built up from a multiple
of this time quanta. Valid values for BRP[5:0] are 0~63.

The actual interpretation by the hardware of this value is such that one more than the
programmed value is used.

Rev. 1.00 190 December 27, 2019 Rev. 1.00 191 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• BTRH Register
Bit 7 6 5 4 3 2 1 0

Name — TSG2D2 TSG2D1 TSG2D0 TSG1D3 TSG1D2 TSG1D1 TSG1D0
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 1 0 0 0 1 1

Bit 7 Unimplemented, read as “0”
Bit 6~4 TSG2D2~TSG2D0: The time segment after the sample point

0x00~0x07: Valid values for TSG2D[2:0] are 0~7. The actual interpretation by the
hardware of this value is such that one more than the value programmed
here is used.

Bit 3~0 TSG1D3~TSG1D0: The time segment before the sample point
0x01~0x0F: Valid values for TSG1D[3:0] are 1~15. The actual interpretation by the

hardware of this value is such that one more than the value programmed
here is used.

Note: If fCAN=8MHz, the reset value of BTRL=0x01 and BTRH=0x23 configures the CAN module
for a bit rate of 500kBit/s.

• BRPERL register
This BRPERL register configures the BRP extension for Classic CAN operation. The register is
writable by setting CCE bit.

Bit 7 6 5 4 3 2 1 0
Name — — — — BRPE3 BRPE2 BRPE1 BRPE0
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 0 0 0

Bit 7~4 Unimplemented, read as “0”
Bit 3~0 BRPE3~BRPE0: Baud Rate Prescaler Extension

0x00~0x0F: By programming BRPE[3:0] the Baud Rate Prescaler can be extended
to values up to 1023.

The actual interpretation by the hardware is that one more than the value programmed
by BRPE[3:0] (MSBs) and BRP[5:0] (LSBs) is used.

Message Interface Registers
There are two sets of Interface Registers which are used to control the CPU access to the Message
RAM. The Interface Registers avoid conflicts between CPU access to the Message RAM and CAN
message reception and transmission by buffering the data to be transferred. A complete Message
Object or parts of the Message Object may be transferred between the Message RAM and the IFn
Message Buffer registers in one single transfer.
The function of the two interface register sets is identical, except for the Basic test mode. They can
be used in the way that one set of registers is used for data transfer to the Message RAM while the
other set of registers is used for the data transfer from the Message RAM, allowing both processes to
be interrupted by each other.
Each set of Interface Registers consists of Message Buffer Registers controlled by their own
Command Registers. The Command Mask Register specifies the direction of the data transfer and
which parts of a Message Object will be transferred. The Command Request Register is used to
select a Message Object in the Message RAM as target or source for the transfer and to start the
action specified in the Command Mask Register.

Rev. 1.00 192 December 27, 2019 Rev. 1.00 193 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

IF1 Register Set Description IF2 Register Set Description
IF1CREQH/IF1CREQL IF1 Command Request IF2CREQH/IF2CREQL IF2 Command Request
IF1CMSKL IF1 Command Mask IF2CMSKL IF2 Command Mask
IF1MSK1H/IF1MSK1L IF1 Mask 1 IF2MSK1H/IF2MSK1L IF2 Mask 1
IF1MSK2H/IF1MSK2L IF1 Mask 2 IF2MSK2H/IF2MSK2L IF2 Mask 2
IF1ARB1H/IF1ARB1L IF1 Arbitration 1 IF2ARB1H/IF2ARB1L IF2 Arbitration 1
IF1ARB2H/IF1ARB2L IF1 Arbitration 2 IF2ARB2H/F2ARB2L IF2 Arbitration 2
IF1MCTRH/IF1MCTRL IF1 Message Control IF2MCTRH/IF2MCTRL IF2 Message Control
IF1DTA1H/IF1DTA1L IF1 Data A1 IF2DTA1H/IF2DTA1L IF2 Data A1
IF1DTA2H/IF1DTA2L IF1 Data A2 IF2DTA2H/IF2DTA2L IF2 Data A2
IF1DTB1H/IF1DTB1L IF1 Data B1 IF2DTB1H/IF2DTB1L IF2 Data B1
IF1DTB2H/IF1DTB2L IF1 Data B2 IF2DTB2H/IF2DTB2L IF2 Data B2

IF1 and IF2 Message Interface Register Sets

IFn Command Request Registers
A message transfer is started as soon as the CPU has written the message number to the Command
Request Register. With this write operation the BUSYn bit is automatically set to ‘1’ and output can_
wait_b is activated to notify the CPU that a transfer is in progress. After a wait time of 3 to 6 can_
clk periods, the transfer between the Interface Register and the Message RAM will have completed.
The BUSYn bit is set back to zero and can_wait_b is deactivated (see Module Integration Guide).

• IFnCREQL Register
Bit 7 6 5 4 3 2 1 0

Name — — MSGnN5 MSGnN4 MSGnN3 MSGnN2 MSGnN1 MSGnN0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 0 0 0 1

Bit 7~6 Unimplemented, read as “0”
Bit 5~0 MSGnN5~MSGnN0: Message Number

0x00: Not a valid Message Number – interpreted as 0x20
0x01~0x20: Valid Message Number – the Message Object in the Message RAM is

selected for data transfer.
0x21~0x3F: Not a valid Message Number – interpreted as 0x01-0x1F

Note: When a Message Number that is not valid is written into the Command Request
Register, the Message Number will be transformed into a valid value and that
Message Object will be transferred.

• IFnCREQH Register
Bit 7 6 5 4 3 2 1 0

Name BUSYn — — — — — — —
R/W R/W — — — — — — —
POR 0 — — — — — — —

Bit 7 BUSYn: Busy Flag
0: Reset to zero when a read/write action has finished
1: Set to one when writing to the IFn Command Request Register

Bit 6~0 Unimplemented, read as “0”

Rev. 1.00 192 December 27, 2019 Rev. 1.00 193 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

IFn Command Mask Registers
The control bits of the IFn Command Mask Register specify the transfer direction and select which
of the IFn Message Buffer Registers is to be used as a source or target of the data transfer.

• IFnCMSKL Register
Bit 7 6 5 4 3 2 1 0

Name TDnDIR MASKn ARBn CTRLn CINTPNDn TQnDTA DATAnA DATAnB
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 TDnDIR: Write / Read Selection
0: Read – Transfer data from the Message Object addressed by the Command

Request Register into the selected Message Buffer Registers.
1: Write – Transfer data from the selected Message Buffer Registers to the Message

Object addressed by the Command Request Register.
The other bits of IFn Command MASKn Register have different functions depending on the transfer
direction:
• Direction = Write (TDnDIR=1)

Bit 6 MASKn: Access MASK Bits
0: MASK bits unchanged.
1: Transfer Identifier MASKn + MDIRn + MXTDn to Message Object.

Bit 5 ARBn: Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + DIRn + XTDn + MSGnVA to Message Object.

Bit 4 CTRLn: Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to Message Object.

Bit 3 CINTPNDn: Clear Interrupt Pending Bit
0: INTPND bit remains unchanged.
1: Clear INTPND bit in the Message Object.

Note: When writing to a Message Object, this bit is ignored.
Bit 2 TQnDTA: Access Transmission Request Bit

0: TREQ bit unchanged
1: Set TREQ bit

If a transmission is requested by programming bit TQnDTA in the IFn Command
Mask Register, bit TnREQ in the IFn Message Control Register will be ignored.

Bit 1 DATAnA: Access Data Bytes 0-3
0: Data Bytes 0-3 unchanged.
1: Transfer Data Bytes 0-3 to Message Object.

Bit 0 DATAnB: Access Data Bytes 4-7
0: Data Bytes 4-7 unchanged
1: Transfer Data Bytes 4-7 to Message Object.

Rev. 1.00 194 December 27, 2019 Rev. 1.00 195 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• Direction = Read (TDnDIR=0)
Bit 6 MASKn: Access MASK Bits

0: MASK bits unchanged.
1: Transfer Identifier MASKn + MDIRn + MXTDn to IFn Message Buffer Register.

Bit 5 ARBn: Access Arbitration Bits
0: Arbitration bits unchanged.
1: transfer Identifier + DIRn + XTDn + MSGnVA to IFn Message Buffer Register.

Bit 4 CTRLn: Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to IFn Message Buffer Register.

Bit 3 CINTPNDn: Clear Interrupt Pending Bit
0: INTPND bit remains unchanged.
1: Clear INTPND bit in the Message Object.

Bit 2 TQnDTA: Access New Data Bit
0: NDTA bit remains unchanged.
1: Clear NDTA bit in the Message Object.

Note: A read access to a Message Object can be combined with the reset of the control
bits INTnPND and NnDTA.The values of these bits transferred to the IFn
Message Control Register always reflect the status before resetting these bits.

Bit 1 DATAnA: Access Data Bytes 0-3
0: Data Bytes 0-3 unchanged.
1: Transfer Data Bytes 0-3 to IFn Message Buffer Register.

Bit 0 DATAnB: Access Data Bytes 4-7
0: Data Bytes 4-7 unchanged.
1: Transfer Data Bytes 4-7 to IFn Message Buffer Register.

IFn Message Buffer Registers
The bits of the Message Buffer registers mirror the Message Objects in the Message RAM.

• IFnMSK1L Register
Bit 7 6 5 4 3 2 1 0

Name MSKn07 MSKn06 MSKn05 MSKn04 MSKn03 MSKn02 MSKn01 MSKn00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0 MSKn07~MSKn00: Identifier MASK
0: The corresponding bit in the identifier of the message object cannot inhibit the

match in the acceptance filtering.
1: The corresponding identifier bit is used for acceptance filtering.

• IFnMSK1H Register
Bit 7 6 5 4 3 2 1 0

Name MSKn15 MSKn14 MSKn13 MSKn12 MSKn11 MSKn10 MSKn09 MSKn08
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0 MSKn15~MSKn08: Identifier MASK
0: The corresponding bit in the identifier of the message object cannot inhibit the

match in the acceptance filtering.
1: The corresponding identifier bit is used for acceptance filtering.

Rev. 1.00 194 December 27, 2019 Rev. 1.00 195 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IFnMSK2L Register
Bit 7 6 5 4 3 2 1 0

Name MSKn23 MSKn22 MSKn21 MSKn20 MSKn19 MSKn18 MSKn17 MSKn16
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0 MSKn23~MSKn16: Identifier MASK
0: The corresponding bit in the identifier of the message object cannot inhibit the

match in the acceptance filtering
1: The corresponding identifier bit is used for acceptance filtering

• IFnMSK2H Register
Bit 7 6 5 4 3 2 1 0

Name MXTDn MDIRn — MSKn28 MSKn27 MSKn26 MSKn25 MSKn24
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 1 1 — 1 1 1 1 1

Bit 7 MXTDn: MASK Extended Identifier
0: The extended identifier bit (IDE) has no effect on the acceptance filtering
1: The extended identifier bit (IDE) is used for acceptance filtering

Bit 6 MDIRn: MASK Message Direction
0: The message direction bit (DIR) has no effect on the acceptance filtering
1: The message direction bit (DIR) is used for acceptance filtering

Bit 5 Unimplemented, read as “1”
Bit 4~0 MSKn28~MSKn24: Identifier MASK

0: The corresponding bit in the identifier of the message object cannot inhibit the
match in the acceptance filtering

1: The corresponding identifier bit is used for acceptance filtering

• IFnARB1L Register
Bit 7 6 5 4 3 2 1 0

Name IDn07 IDn06 IDn05 IDn04 IDn03 IDn02 IDn01 IDn00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 IDn07~IDn00: Message Identifier 7~0

• IFnARB1H Register
Bit 7 6 5 4 3 2 1 0

Name IDn15 IDn14 IDn13 IDn12 IDn11 IDn10 IDn09 IDn08
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 IDn15~IDn8: Message Identifier 15~8

• IFnARB2L Register
Bit 7 6 5 4 3 2 1 0

Name IDn23 IDn22 IDn21 IDn20 IDn19 IDn18 IDn17 IDn16
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 IDn23~IDn16: Message Identifier 23~16

Rev. 1.00 196 December 27, 2019 Rev. 1.00 197 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IFnARB2H Register
Bit 7 6 5 4 3 2 1 0

Name MSGnVA XTDn DIRn IDn28 IDn27 IDn26 IDn25 IDn24
R/W RW RW RW R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 MSGnVA: Message Valid Bits – all Message Objects
0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message

Handler
Bit 6 XTDn: Extended Identifier

0: The 11-bit (“standard”) Identifier will be used for this Message Object.
1: The 29-bit (“extended”) Identifier will be used for this Message Object.

Bit 5 DIRn: Message Direction
0: Direction=receive. On TREQ, a Remote Frame with the identifier of this Message

Object is transmitted. On reception of a Data Frame with matching identifier, that
message is stored in this Message Object.

1: Direction=transmit. On TREQ, the respective Message Object is transmitted as a
Data Frame. On reception of a Remote Frame with matching identifier, the TREQ
bit of this Message Object is set if RMTnEN = 1.

Bit 4~0 IDn28~IDn24: Message Identifier 28~24

IFn Message Control Registers

• IFnMCTRL Register
Bit 7 6 5 4 3 2 1 0

Name EOBn — — — DLCn3 DLCn2 DLCn1 DLCn0
R/W R/W — — — R/W R/W R/W R/W
POR 0 — — — 0 0 0 0

Bit 7 EOBn: End of Buffer
0: Message Object belongs to a FIFO Buffer and is not the last Message Object of

that FIFO Buffer.
1: Single Message Object or last Message Object of a FIFO Buffer.

This bit is used to concatenate two or more Message Objects (up to 32) to build a
FIFO Buffer. For single Message Objects not belonging to a FIFO Buffer, this bit must
always be set to one.

Bit 6~4 Unimplemented, read as “0”
Bit 3~0 DLCn3~DLCn0: Data Length Code

0~8: CAN: Frame has 0~8 data bytes
9~15: CAN: Frame has 8 data bytes

The Data Length Code of a Message Object must be defined the same as in all the
corresponding objects with the same identifier at other nodes.
When the Message Handler stores a data frame, it will write the DLCn to the value
given by the received message.

Rev. 1.00 196 December 27, 2019 Rev. 1.00 197 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IFnMCTRH Register
Bit 7 6 5 4 3 2 1 0

Name NnDTA MSGnLST INTnPND UMASKn TXnIEN RXnIEN RMTnEN TnREQ
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 NnDTA: New Data Bits
0: No new data has been written into the data portion of this Message Object by the

Message Handler since the last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object
Bit 6 MSGnLST: Message Lost (only valid for Message Objects with direction = receive)

0: No message lost since the last time this bit was reset by the CPU
1: The Message Handler stored a new message into this object when NDTA was still

set, the CPU has lost a message
Bit 5 INTnPND: Interrupt Pending Bits

0: This message object is not the source of an interrupt
1: This message object is the source of an interrupt. The Interrupt Identifier in the

Interrupt Register will point to this message object if there is no other interrupt
source with a higher priority

Bit 4 UMASKn: Use Acceptance Mask
0: MASK ignored
1: Use MASK (MSKn[28:00], MXTDn, and MDIRn) for acceptance filtering

Bit 3 TXnIEN: Transmit Interrupt Enable
0: INTPND will be left unchanged after the successful transmission of a frame
1: INTPND will be set after a successful transmission of a frame

Bit 2 RXnIEN: Receive Interrupt Enable
0: INTPND will be left unchanged after a successful reception of a frame
1: INTPND will be set after a successful reception of a frame

Bit 1 RMTnEN: Remote Enable
0: At the reception of a Remote Frame, TREQ is left unchanged
1: At the reception of a Remote Frame, TREQ is set

Bit 0 TnREQ: Transmission Request Bits
0: This Message Object is not waiting for transmission
1: The transmission of this Message Object is requested and is not yet completed

IFn Data A and Data B Registers
In a CAN Data Frame Data0 is the first and Data7 is the last byte to be transmitted or received. In a
CAN serial bit stream, the MSB of each byte will be transmitted first.

DATA0: 1st data byte of a CAN Data Frame

DATA1: 2nd data byte of a CAN Data Frame

DATA2: 3rd data byte of a CAN Data Frame

DATA3: 4th data byte of a CAN Data Frame

DATA4: 5th data byte of a CAN Data Frame

DATA5: 6th data byte of a CAN Data Frame

DATA6: 7th data byte of a CAN Data Frame

DATA7: 8th data byte of a CAN Data Frame

The data bytes of CAN messages are stored in the IFn Message Buffer Registers in the following
order:

Rev. 1.00 198 December 27, 2019 Rev. 1.00 199 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IFnDTA1L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA0, 1st data byte of a CAN Data Frame

• IFnDTA1H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA1, 2nd data byte of a CAN Data Frame

• IFnDTA2L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA2, 3rd data byte of a CAN Data Frame

• IFnDTA2H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA3, 4th data byte of a CAN Data Frame

• IFnDTB1L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA4, 5th data byte of a CAN Data Frame

• IFnDTB1H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA5, 6th data byte of a CAN Data Frame

Rev. 1.00 198 December 27, 2019 Rev. 1.00 199 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• IFnDTB2L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA6, 7th data byte of a CAN Data Frame

• IFnDTB2H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: DATA7, 8th data byte of a CAN Data Frame
Note: Byte DATA0 is the first data byte shifted into the shift register of the CAN Core during a

reception and byte DATA7 is the last. When the Message Handler stores a Data Frame, it will
write all the eight data bytes into a Message Object. If the Data Length Code is less than 8, the
remaining bytes of the Message Object will be overwritten by non specified values.

Message Handler Registers
All Message Handler registers are read-only. Their contents, which include the TREQ, NDTA,
INTPND, and MSGVA bits of each Message Object and the Interrupt Identifier are status
information provided by the Message Handler FSM (Finite State Machine).

Interrupt Registers
The interrupt registers allow the identification of an interrupt source. When an interrupt occurs, a
CAN interrupt will be indicated to inform the CPU. The interrupt register appears to the CPU as a
read only memory.

• INTRL Register
Bit 7 6 5 4 3 2 1 0

Name INTID7 INTID6 INTID5 INTID4 INTID3 INTID2 INTID1 INTID0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 INTID7~INTID0: Interrupt Identifier

• INTRH Register
Bit 7 6 5 4 3 2 1 0

Name INTID15 INTID14 INTID13 INTID12 INTID11 INTID10 INTID9 INTID8
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 INTID15~INTID8: Interrupt Identifier
The interrupt identifier INTID[15:0] indicates the source of the interrupt.

Rev. 1.00 200 December 27, 2019 Rev. 1.00 201 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

INTID[15:0] Value Indicated Interrupt
0000H No interrupt is pending
0001H~0020H Number of Message Object which caused the interrupt
0021H~7FFFH Unused
8000H Status Interrupt
8001H~FFFFH Unused

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt with
the highest priority disregarding their chronological order. An interrupt remains pending until the
CPU has cleared it. If INTID15~INTID0 is different from 0x0000 and CANIE is set, the interrupt
line to the CPU, can_int, is active until INTID15~INTID0 is back to value 0x0000. This occurs
when the reason for the interrupt is reset or until CANIE is reset.
The Status Interrupt has the highest priority. Among the message interrupts, the Message Object’s
interrupt priority decreases with increasing message number.
A message interrupt is cleared by clearing the Message Object’s INTPND bit. The Status Interrupt is
cleared by reading the Status Register.
The Status Interrupt value 0x8000 (INTID15~INTID0) indicates that an interrupt is pending because
the CAN Core has updated (not necessarily changed) the Status Register (Error Interrupt or Status
Interrupt). This interrupt has the highest priority. The CPU can update (reset) the Status Register bits
RXOK, TXOK and LEC by writing to the Status Register. A write access by the CPU to the Status
Registers can never generate or reset an interrupt.
All other values indicate that the source of the interrupt is one of the Message Objects. INTID points
to the pending message interrupt with the highest interrupt priority.
The CPU controls whether a change of the Status Registers may cause the Interrupt Register to
be set to INTID Status interrupt (bits EIE and SIE in the CAN Control Register) and whether the
interrupt line becomes active when the Interrupt Register is not equal to zero (bit CANIE in the
CAN Control Register). The Interrupt Register will be updated even when CANIE is not set.
The CPU has two possibilities to follow the source of a message interrupt. First it can follow the
INTID in the Interrupt Register and second it can poll the Interrupt Pending Register.
An interrupt service routine reading the message that is the source of the interrupt may read the
message and reset the Message Object’s INTPND at the same time (bit CINTPNDn in the IFn
Command Mask Register). When INTPND is cleared, the Interrupt Register will point to the next
Message Object with a pending interrupt.

Transmission Request Registers
These registers hold the TREQ bits of the 32 Message Objects. By reading out the TREQ bits, the
CPU can check for which Message Object a Transmission Request is pending. The TREQ bit of a
specific Message Object can be set or reset by the CPU via the IFn Message Interface Registers or
by the Message Handler after reception of a Remote Frame or after a successful transmission.

• TREQR1L Register
Bit 7 6 5 4 3 2 1 0

Name TREQ8 TREQ7 TREQ6 TREQ5 TREQ4 TREQ3 TREQ2 TREQ1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 TREQ8~TREQ1: Transmission Request Bits of Message Object 8 ~ Message Object 1
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet completed.

Rev. 1.00 200 December 27, 2019 Rev. 1.00 201 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• TREQR1H Register
Bit 7 6 5 4 3 2 1 0

Name TREQ16 TREQ15 TREQ14 TREQ13 TREQ12 TREQ11 TREQ10 TREQ9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 TREQ16~TREQ9: Transmission Request Bits of Message Object 16 ~ Message Object 9
0: This Message Object is not waiting for transmission
1: The transmission of this Message Object is requested and is not yet completed

• TREQR2L Register
Bit 7 6 5 4 3 2 1 0

Name TREQ24 TREQ23 TREQ22 TREQ21 TREQ20 TREQ19 TREQ18 TREQ17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 TREQ24~TREQ17: Transmission Request Bits of Message Object 24 ~ Message
Object 17

0: This Message Object is not waiting for transmission
1: The transmission of this Message Object is requested and is not yet completed

• TREQR2H Register
Bit 7 6 5 4 3 2 1 0

Name TREQ32 TREQ31 TREQ30 TREQ29 TREQ28 TREQ27 TREQ26 TREQ25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 TREQ32~TREQ25: Transmission Request Bits of Message Object 32 ~ Message
Object 25

0: This Message Object is not waiting for transmission
1: The transmission of this Message Object is requested and is not yet done

New Data Registers
These registers hold the NDTA bits of the 32 Message Objects. By reading out the NDTA bits, the
CPU can check for which Message Object the data portion was updated. The NDTA bit of a specific
Message Object can be set/reset by the CPU via the IFn Message Interface Registers or by the
Message Handler after reception of a Data Frame or after a successful transmission.

• NEWDT1L Register
Bit 7 6 5 4 3 2 1 0

Name NDTA8 NDTA7 NDTA6 NDTA5 NDTA4 NDTA3 NDTA2 NDTA1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 NDTA8~NDTA1: New Data Bits of Message Object 8 ~ Message Object 1
0: No new data has been written into the data portion of this Message Object by the

Message Handler since the last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

Rev. 1.00 202 December 27, 2019 Rev. 1.00 203 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• NEWDT1H Register
Bit 7 6 5 4 3 2 1 0

Name NDTA16 NDTA15 NDTA14 NDTA13 NDTA12 NDTA11 NDTA10 NDTA9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 NDTA16~NDTA9: New Data Bits of Message Object 16 ~ Message Object 9
0: No new data has been written into the data portion of this Message Object by the

Message Handler since the last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

• NEWDT2L Register
Bit 7 6 5 4 3 2 1 0

Name NDTA24 NDTA23 NDTA22 NDTA21 NDTA20 NDTA19 NDTA18 NDTA17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 NDTA24~NDTA17: New Data Bits of Message Object 24 ~ Message Object 17
0: No new data has been written into the data portion of this Message Object by the

Message Handler since the last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

• NEWDT2H Register
Bit 7 6 5 4 3 2 1 0

Name NDTA32 NDTA31 NDTA30 NDTA29 NDTA28 NDTA27 NDTA26 NDTA25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 NDTA32~NDTA25: New Data Bits of Message Object 32 ~ Message Object 25
0: No new data has been written into the data portion of this Message Object by the

Message Handler since the last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

Interrupt Pending Registers
These registers hold the INTPND bits of the 32 Message Objects. By reading out the INTPND bits,
the CPU can check for which Message Object an interrupt is pending. The INTPND bit of a specific
Message Object can be set/reset by the CPU via the IFn Message Interface Registers or by the
Message Handler after reception or after a successful transmission of a frame. This will also affect
the value of INTID in the Interrupt Register.

• INTPND1L Register
Bit 7 6 5 4 3 2 1 0

Name INTPND8 INTPND7 INTPND6 INTPND5 INTPND4 INTPND3 INTPND2 INTPND1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 INTPND8~INTPND1: Interrupt Pending Bits of Message Object 8 ~ Message Object 1
0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with a higher priority.

Rev. 1.00 202 December 27, 2019 Rev. 1.00 203 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• INTPND1H Register
Bit 7 6 5 4 3 2 1 0

Name INTPND16 INTPND15 INTPND14 INTPND13 INTPND12 INTPND11 INTPND10 INTPND9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 INTPND16~INTPND9: Interrupt Pending Bits of Message Object 16 ~ Message Object 9
0: This message object is not the source of an interrupt
1: This message object is the source of an interrupt

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with a higher priority.

• INTPND2L Register
Bit 7 6 5 4 3 2 1 0

Name INTPND24 INTPND23 INTPND22 INTPND21 INTPND20 INTPND19 INTPND18 INTPND17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 INTPND24~INTPND17: Interrupt Pending Bits of Message Object 24 ~ Message
Object 17

0: This message object is not the source of an interrupt
1: This message object is the source of an interrupt

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with a higher priority.

• INTPND2H Register
Bit 7 6 5 4 3 2 1 0

Name INTPND32 INTPND31 INTPND30 INTPND29 INTPND28 INTPND27 INTPND26 INTPND25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 INTPND32~INTPND25: Interrupt Pending Bits of Message Object 32 ~ Message
Object 25

0: This message object is not the source of an interrupt
1: This message object is the source of an interrupt

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with higher priority.

Message Valid Registers
These registers hold the MSGVA bits of the 32 Message Objects. By reading out the MSGVA bits,
the CPU can check which Message Object is valid. The MSGVA bit of a specific Message Object
can be set/reset by the CPU via the IFn Message Interface Registers.

• MSGVAL1L Register
Bit 7 6 5 4 3 2 1 0

Name MSGVA8 MSGVA7 MSGVA6 MSGVA5 MSGVA4 MSGVA3 MSGVA2 MSGVA1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 MSGVA8~MSGVA1: Message Valid Bits of Message Object 8 ~ Message Object 1
0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message Handler

Rev. 1.00 204 December 27, 2019 Rev. 1.00 205 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• MSGVAL1H Register
Bit 7 6 5 4 3 2 1 0

Name MSGVA16 MSGVA15 MSGVA14 MSGVA13 MSGVA12 MSGVA11 MSGVA10 MSGVA9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 MSGVA16~MSGVA9: Message Valid Bits of Message Object 16 ~ Message Object 9
0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message

Handler

• MSGVAL2L Register
Bit 7 6 5 4 3 2 1 0

Name MSGVA24 MSGVA23 MSGVA22 MSGVA21 MSGVA20 MSGVA19 MSGVA18 MSGVA17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 MSGVA24~MSGVA17: Message Valid Bits of Message Object 24 ~ Message Object
17.

0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message

Handler

• MSGVAL2H Register
Bit 7 6 5 4 3 2 1 0

Name MSGVA32 MSGVA31 MSGVA30 MSGVA29 MSGVA28 MSGVA27 MSGVA26 MSGVA25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0 MSGVA32~MSGVA25: Message Valid Bits of Message Object 32 ~ Message Object 25
0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message

Handler
Note: The CPU must reset the MSGVA bit of all unused Messages Objects during initialisation

before it resets bit INIT in the CAN Control Register. This bit must also be reset before the
identifier IDn[28:00], the control bits XTDn, DIRn, or the Data Length Code DLCn[3:0] are
modified, or if the Messages Object is no longer required.

Core Release Registers
The design step for the CAN Bus implementation can be identified by reading the Core Release
Registers Low/High.

Release Step SubStep Year Month Day Name
2 1 0 5 02 27 Revision 2.1.0, Date 2015/02/27

Example for Coding of Revisions

• CRLL Register
Bit 7 6 5 4 3 2 1 0

Name DAY7 DAY6 DAY5 DAY4 DAY3 DAY2 DAY1 DAY0
R/W R R R R R R R R
POR 0 0 1 0 0 1 1 1

Bit 7~0 DAY7~DAY0: Time Stamp Day
Two digits, BCD-coded.

Rev. 1.00 204 December 27, 2019 Rev. 1.00 205 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• CRLH Register
Bit 7 6 5 4 3 2 1 0

Name MON7 MON6 MON5 MON4 MON3 MON2 MON1 MON0
R/W R R R R R R R R
POR 0 0 0 0 0 0 1 0

Bit 7~0 MON7~MON0: Time Stamp Month
Two digits, BCD-coded.

• CRHL Register
Bit 7 6 5 4 3 2 1 0

Name SUBSTEP3 SUBSTEP2 SUBSTEP1 SUBSTEP0 YEAR3 YEAR2 YEAR1 YEAR0
R/W R R R R R R R R
POR 0 0 0 0 0 1 0 1

Bit 7~4 SUBSTEP3~SUBSTEP0: Core Release Sub-step
One digit, BCD-coded.

Bit 3~0 YEAR3~YEAR0: Time Stamp Year (2010 + digit)
One digit, BCD-coded.

• CRHH Register
Bit 7 6 5 4 3 2 1 0

Name REL3 REL2 REL1 REL0 STEP3 STEP2 STEP1 STEP0
R/W R R R R R R R R
POR 0 0 1 0 0 0 0 1

Bit 7~4 REL3~REL0: Core Release
One digit, BCD-coded.

Bit 3~0 STEP3~STEP0: Step of Core Release
One digit, BCD-coded.

Message RAM and FIFO Buffer Configuration
For communication on a CAN network, individual Message Objects are configured. The Message
Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message
RAM. The CAN module includes a Message Memory capacity of 139-bit × 32 for storing 32
Message Objects and Identifier Masks. A Message Objects and Identifier Masks is 139 bits which is
shown in the following table.

Structure of a Message Object in the Message RAM
MSKn28~00 MXTDn MDIRn UMASKn TXnIEN RXnIEN RMTnEN EOBn
IDn28~00 XTDn DIRn MSGnLST — — — DLCn[3:0]
DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7

MSKn28~00 Identifier Mask
0: The corresponding bit in the identifier of the message object cannot inhibit the

match in the acceptance filtering.
1: The corresponding identifier bit is used for acceptance filtering.

IDn28~00 Message Identifier
IDn28 – IDn00: 29-bit Identifier (“Extended Frame”)
IDn28 – IDn18: 11-bit Identifier (“Standard Frame”)

MXTDn Mask Extended Identifier
0: The extended identifier bit (IDE) has no effect on the acceptance filtering
1: The extended identifier bit (IDE) is used for acceptance filtering

Rev. 1.00 206 December 27, 2019 Rev. 1.00 207 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Note: When 11-bit (“standard”) Identifiers are used for a Message Object, the
identifiers of received Data Frames are written into bits IDn28 to IDn18. For
acceptance filtering, only these bits together with MASK bits MSKn28 to
MSKn18 are considered.

XTDn Extended Identifier
0: The 11-bit (“standard”) Identifier will be used for this Message Object
1: The 29-bit (“extended”) Identifier will be used for this Message Object

MDIRn Mask Message Direction
0: The message direction bit (DIR) has no effect on the acceptance filtering
1: The message direction bit (DIR) is used for acceptance filtering

Note: The Arbitration Registers IDn28-00, XTDn, and DIRn are used to define
the identifier and type of outgoing messages and are used, together with the
mask registers MSKn28-00, MXTDn, and MDIRn, for acceptance filtering
of incoming messages. A received message is stored into the valid Message
Object with matching identifier and Direction=receive (Data Frame) or
Direction=transmit (Remote Frame). Extended frames can be stored only in
Message Objects with XTDn=one, standard frames in Message Objects with
XTDn=zero. If a received message (Data Frame or Remote Frame) matches
with more than one valid Message Object, it is stored into that with the lowest
message number. For details see chapter Acceptance Filtering of Received
Messages.

DIRn Message Direction
0: Direction=receive: On TREQ, a Remote Frame with the identifier of this Message

Object is transmitted. On reception of a Data Frame with matching identifier, that
message is stored in this Message Object.

1: Direction=transmit: On TREQ, the respective Message Object is transmitted as a
Data Frame. On reception of a Remote Frame with matching identifier, the TREQ
bit of this Message Object is set (if RMTnEN=one).

UMASKn Use Acceptance Mask
0: MASK ignored
1: Use MASK (MSKn28~00, MXTDn and MDIRn) for acceptance filtering

If the UMASKn bit is set to one, the Message Object’s mask bits have to be
programmed during initialisation of the Message Object before MSGnVA is set to one.

MSGnLST Message Lost (only valid for Message Objects with direction=receive)
0: No message lost since last time this bit was reset by the CPU
1: The Message Handler stored a new message into this object when NDTA was still

set – the CPU has lost a message
TXnIEN Transmit Interrupt Enable

0: INTPND will be left unchanged after the successful transmission of a frame
1: INTPND will be set after a successful transmission of a frame

RXnIEN Receive Interrupt Enable
0: INTPND will be left unchanged after a successful reception of a frame
1: INTPND will be set after a successful reception of a frame

RMTnEN Remote Enable
0: At the reception of a Remote Frame, TREQ is left unchanged
1: At the reception of a Remote Frame, TREQ is set

EOBn End of Buffer
0: Message Object belongs to a FIFO Buffer and is not the last Message Object of

that FIFO Buffer
1: Single Message Object or last Message Object of a FIFO Buffer

This bit is used to concatenate two ore more Message Objects (up to 32) to build a
FIFO Buffer. For single Message Objects, not belonging to a FIFO Buffer, this bit
must always be set to one.

Rev. 1.00 206 December 27, 2019 Rev. 1.00 207 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

DLCn3~0 Data Length Code
0~8: CAN: Frame has 0-8 data bytes
9~15: CAN: Frame has 8 data bytes

Note: The Data Length Code of a Message Object must be defined the same as in all
the corresponding objects with the same identifier at other nodes. When the
Message Handler stores a data frame, it will write the DLC to the value given
by the received message.

DATA0: 1st data byte of a CAN Data Frame
DATA1: 2nd data byte of a CAN Data Frame
DATA2: 3rd data byte of a CAN Data Frame
DATA3: 4th data byte of a CAN Data Frame
DATA4: 5th data byte of a CAN Data Frame
DATA5: 6th data byte of a CAN Data Frame
DATA6: 7th data byte of a CAN Data Frame
DATA7: 8th data byte of a CAN Data Frame
Note: Byte DATA0 is the first data byte shifted into the shift register of the CAN Core during a

reception and byte DATA7 is the last. When the Message Handler stores a Data Frame, it will
write all the eight data bytes into a Message Object. If the Data Length Code is less than 8, the
remaining bytes of the Message Object will be overwritten by non specified values.

The 32 Message Objects can be configurated to several sets of FIFO buffer. A FIFO buffer can
have a single Message Object or several concatenated Message Objects. The FIFO threshold of the
Message Object number is determined by the RMFD[4:0] bits in the CAN Module Configuration
Register, CANCFG. When the Message Object of the selected number is received successfully, an
interrupt active signal RMXFINT will be generated.

CAN Module Operating Modes
The Operating modes can be controlled by registers. For detailed information regarding the
operating modes refer to the following contents and the related registers.

Software Initialisation
The software initialisation is started by setting the bit INIT in the CAN Control Register CTRLRL,
either by software or with a hardware reset, or by going Bus_Off.

While INIT is set, all message transfered from and to the CAN bus is stopped and the status of
the CAN bus output pin CANTX is recessive, that is HIGH. The EML (Error Management Logic)
counters remain unchanged. Setting INIT does not change any configuration register.

To initialize the CAN Controller, the CPU has to set up the Bit Timing Register and each Message
Object. If a Message Object is not required, it is sufficient to set its MSGnVA bit to not valid.
Otherwise, the whole Message Object has to be initialized.

Access to the Bit Timing Register and to the BRP Extension Register for bit timing configuration is
enabled when both of the INIT and CCE bits in the CAN Control Register are set.

Resetting INIT, by the CPU only, will end the software initialisation. Afterwards the Bit Stream
Processor(BSP) synchronizes itself to the data transfer on the CAN bus by waiting for the
occurrence of a sequence of 11 consecutive recessive bits (=Bus Idle) before it can take part in bus
activities and start the message transfer.

The initialisation of the Message Objects is independent of INIT and can be done on the fly, but
the Message Objects should all be configured to particular identifiers or set to not valid before
the BSP starts the message transfer. To change the configuration of a Message Object during
normal operation, the CPU has to start by setting MSGnVA to not valid. When the configuration is
completed, MSGnVA is set to valid again.

Rev. 1.00 208 December 27, 2019 Rev. 1.00 209 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

CAN Message Transfer
Once the CAN module is initialized and INIT is reset to zero, the CAN Core synchronizes itself to
the CAN bus and starts the message transfer.

Received messages are stored into their appropriate Message Objects if they pass the Message
Handler’s acceptance filtering. The whole message including all arbitration bits, DLC and eight data
bytes is stored into the Message Object. If the Identifier Mask is used, the arbitration bits which are
masked to “don’t care” may be overwritten in the Message Object.

The CPU may read or write each message any time via the Interface Registers, the Message Handler
guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the CPU. If a permanent Message Object (arbitration and
control bits setup during configuration) exists for the message, only the data bytes are updated and
then the TQnDTA bit is set to start the transmission. If several transmit messages are assigned to the
same Message Object (when the number of Message Objects is not sufficient), the whole Message
Object has to be configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time, in which
case they will be transmitted subsequently according to their internal priority. Messages may be
updated or set to not valid any time, even when their requested transmission is still pending. The old
data will be discarded when a message is updated before its pending transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may be
requested autonomously by the reception of a remote frame with a matching identifier.

Note: Remote frames are always transmitted in Classical CAN format.

Disabled Automatic Retransmission
According to the CAN Specification (see ISO11898-1, 6.3.3 Recovery Management), the CAN
module provides a means for automatic retransmission of frames that have lost arbitration or that
have been disturbed by errors during transmission. The frame transmission service will not be
confirmed to the user before the transmission is successfully completed. By default, this means that
automatic retransmission is enabled.

The Disabled Automatic Retransmission mode is enabled by programming bit DAR in the CAN
Control Register to ‘1’. In this operation mode the programmer has to consider the different
behaviour of bits TREQ and NDTA in the Control Registers of the Message Buffers:

• When a transmission starts, bit TREQ of the respective Message Buffer is reset, while bit NnDTA
remains set.

• When the transmission completes successfully bit NDTA is reset.
• When a transmission has failed (lost arbitration or error) bit NDTA remains set.

To restart the transmission the CPU has to set TREQ back to ‘1’.

Test Mode
The Test Mode is entered by setting bit TEST in the CAN Control Register. In the Test Mode the bits
TX1, TX0, LBACK, SILENT and BASIC in the Test Register are writable. Bit RX monitors the state of
pin CANRX and therefore is only readable. All Test Register functions are disabled when bit TEST is
reset to zero. The Test Mode functions as described in the following subsections are intended for device
tests outside normal operation. These functions should be used carefully. Switching between Test Mode
functions and normal operation while communication is running (INIT=‘0’) should be avoided.

Silent Mode
In ISO 11898-1, the Silent Mode is called the Bus Monitoring Mode. The CAN Core can be set to
be in the Silent Mode by programming the Test Register bit SILENT to ‘1’.

Rev. 1.00 208 December 27, 2019 Rev. 1.00 209 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

In the Silent Mode, the CAN module is able to receive valid data frames and valid remote frames,
but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN Core
is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain in
recessive state. The Silent Mode can be used to analyse the traffic on a CAN bus without affecting it
by the transmission of dominant bits (Acknowledge Bits, Error Frames).

CAN Core

TX RX

CANRXCANTX

=1C_CAN

CAN Module Core in Silent Mode

Loop Back Mode
The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBACK to ‘1’.
In the Loop Back Mode, the CAN Core treats its own transmitted messages as received messages
and stores them (if they pass acceptance filtering) into a Receive Buffer.

CAN Core

TX RX

CANRXCANTX

C_CAN

CAN Core in Loop Back Mode

This mode is provided for self-test functions. To be independent from external stimulation, the CAN
Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/remote
frame) in the Loop Back Mode. In this mode the CAN Core performs an internal feedback from its
TX output to its RX input. The actual value of the CANRX input pin is disregarded by the CAN
Core. The transmitted messages can be monitored on the CANTX pin.

Loop Back combined with Silent Mode
It is also possible to combine Loop Back Mode and Silent Mode by programming both bits LBACK
and SILENT to ‘1’ at the same time. This mode can be used for a “Hot Selftest”, meaning the CAN
module can be tested without affecting a running CAN system connected to the pins CANTX and
CANRX. In this mode the CANRX pin is disconnected from the CAN Core and the CANTX pin is
held recessive.

CAN Core

TX RX

CANRXCANTX

C_CAN =1

CAN Core in Loop Back combined with Silent Mode

Rev. 1.00 210 December 27, 2019 Rev. 1.00 211 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Basic Mode
The CAN Core can be set to be in the Basic Mode by programming the Test Register bit BASIC to ‘1’.
In this mode the CAN module runs without the Message RAM.

The IF1 Registers are used as a Transmit Buffer. The transmission of the contents of the IF1
Registers is requested by writing the BUSYn bit of the IF1 Command Request Register to ‘1’. The
IF1 Registers are locked while the BUSYn bit is set. The BUSYn bit indicates that the transmission
is pending. As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the
CAN Core and the transmission is started. When the transmission has completed, the BUSYn bit
is reset and the locked IF1 Registers are released. A pending transmission can be aborted at any
time by resetting the BUSYn bit in the IF1 Command Request Register while the IF1 Registers are
locked. If the CPU has reset the BUSYn bit, a possible retransmission in case of lost arbitration or in
case of an error is disabled.

The IF2 Registers are used as a Receive Buffer. After the reception of a message the contents of
the shift register is stored into the IF2 Registers, without any acceptance filtering. Additionally, the
actual contents of the shift register can be monitored during the message transfer. Each time a read
Message Object is initiated by writing the BUSYn bit of the IF2 Command Request Register to ‘1’,
the contents of the shift register is stored into the IF2 Registers.

In the Basic Mode the evaluation of all Message Object related control and status bits and of
the control bits of the IFn Command Mask Registers is turned off. The message number of the
Command request registers is not evaluated. The NnDTA and MSGnLST bits of the IF2 Message
Control Register retain their function, DLCn3~DLCn0 will show the received DLC (Data Length
Code). The other control bits will be read as ‘0’.

In the Basic Mode the ready output can_wait_b is not active.

Software control of Pin CANTX
Four output functions are available for the CAN transmit pin CANTX. Additionally to its default
function – the serial data output – it can drive the CAN Sample Point signal to monitor the CAN_Core’s
bit timing and it can drive constant dominant or recessive values. The last two functions, combined
with the readable CAN receive pin CANRX, can be used to check the CAN bus physical layer.

The output mode of pin CANTX is selected by programming the Test Register bits TX1 and TX0.
The three test functions for pin CANTX interfere with all CAN protocol functions. CANTX must be
left in its default function when a CAN message transfer or any of the test modes Loop Back Mode,
Silent Mode, or Basic Mode are selected.

CAN Application

Management of Message Objects
The configuration of the Message Objects in the Message RAM will, with the exception of the
bits MSGVA, NDTA, INTPND and TREQ, not be affected by resetting the CAN module. All the
Message Objects must be initialized by the CPU or they must be set as not valid (MSGVA=‘0’). The
bit timing must be configured before the CPU clears the INIT bit in the CAN Control Register.

The configuration of a Message Object is implemented by programming Mask, Arbitration, Control
and Data field of one of the two interface register sets to the desired values. By writing to the
corresponding IFn Command Request Register, the IFn Message Buffer Registers are loaded into
the addressed Message Object in the Message RAM.

When the INIT bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN_Core and the Message Handler State Machine control the CAN module’s
internal data flow. Received messages that pass the acceptance filtering are stored into the Message
RAM, messages with pending transmission request are loaded into the CAN_Core’s Shift Register
and are transmitted via the CAN bus.

Rev. 1.00 210 December 27, 2019 Rev. 1.00 211 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The CPU reads received messages and updates messages to be transmitted via the IFn Interface
Registers. Depending on the configuration, the CPU is interrupted on certain CAN message and
CAN error events.

Message Handler State Machine
The Message Handler controls the data transfer between the RX/TX Shift Register of the CAN Core,
the Message RAM and the IFn Registers.

The Message Handler FSM (Finite State Machine) controls the following functions:

• Data Transfer from the IFn Registers to the Message RAM

• Data Transfer from the Message RAM to the IFn Registers

• Data Transfer from the Shift Register to the Message RAM

• Data Transfer from the Message RAM to Shift Register

• Data Transfer from the Shift Register to the Acceptance Filtering unit

• Scanning of Message RAM for a matching Message Object

• TREQ flag handling

• Interrupt handling

Data Transfer from/to Message RAM
When the CPU initiates a data transfer between the IFn Registers and the Message RAM, the
Message Handler sets the BUSYn bit in the respective IFn Command Request Register to ‘1’. After
the transfer has completed, the BUSYn bit is reset back to ‘0’.
The respective IFn Command Mask Register specifies whether a complete Message Object or only
parts of it will be transferred. Due to the structure of the Message RAM it is not possible to write
single bits/bytes of one Message Object, it is always necessary to write a complete Message Object
to the Message RAM. Therefore the data transfer from the IFn Message Buffer Registers to the
Message RAM (TDnDIR=‘1’) requires a read-modify-write cycle. First those parts of the Message
Object that are not to be changed are read from the Message RAM to the selected IFn Message
Buffer Registers and then the complete contents of the selected IFn Message Buffer Registers are
written to the Message Object.

START

Write Command Request Register

BUSYn = 1

TDnDIR = 1

Read Message Object to IFn

N

Y

Read Message Object to IFn

Write IFn to Message RAM

BUSYn = 0

YN

Data Transfer between IFn Registers and Message RAM

Rev. 1.00 212 December 27, 2019 Rev. 1.00 213 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

After a partial write of a Message Object (TDnDIR=“1”), the IFn Message Buffer Registers that are
not selected by the respective IFn Command Mask Register will be set to the actual contents of the
selected Message Object.
After a partial read of a Message Object (TDnDIR=“0”), the IFn Message Buffer Registers that are
not selected by the respective IFn Command Mask Register will be left unchanged.

Transmission of Messages
If the shift register of the CAN Core cell is ready for loading and if there is no data transfer between
the IFn Registers and Message RAM, the MSGVA bits in the Message Valid Register and the TREQ
bits in the Transmission Request Register are evaluated. The valid Message Object with the highest
priority pending transmission request is loaded into the shift register by the Message Handler and
the transmission is started. The Message Object’s NDTA bit will be reset.
After a successful transmission and if no new data was written to the Message Object (NDTA =‘0’)
since the start of the transmission, the TREQ bit will be reset. If TXnIEN is set, INTPND will be
set after a successful transmission. If the CAN module has lost the arbitration or if an error occurred
during the transmission, the message will be retransmitted as soon as the CAN bus is free again. If
meanwhile the transmission of a message with higher priority has been requested, the messages will
be transmitted in the order of their priority.

Acceptance Filtering of Received Messages
When the arbitration and control field (Identifier+DLC) of an incoming message is completely
shifted into the RX/TX Shift Register of the CAN Core, the Message Handler FSM (Finite State
Machine) starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is loaded
with the arbitration bits from the CAN Core shift register. Then the arbitration and mask fields
(including MSGVA, UMASKn, NDTA, and EOBn) of Message Object 1 are loaded into the
Acceptance Filtering unit and are compared with the arbitration field from the shift register. This is
repeated with each following Message Object until a matching Message Object is found or until the
end of the Message RAM is reached.

If a match occurs, the scanning is stopped and the Message Handler FSM (Finite State Machine)
proceeds depending on the type of frame (Data Frame or Remote Frame) received.

Reception of Data Frame
The Message Handler FSM (Finite State Machine) stores the message from the CAN Core shift
register into the respective Message Object in the Message RAM. Not only the data bytes, but also
all arbitration bits and the Data Length Code are stored into the corresponding Message Object. This
is implemented to keep the data bytes connected with the identifier even if arbitration mask registers
are used.
The NDTA bit is set to indicate that new data (not yet seen by the CPU) has been received. The CPU
should reset NDTA when it reads the Message Object. If at the time of the reception, the NDTA bit
was already set, MSGLST is set to indicate that the previous data (supposedly not seen by the CPU)
is lost. If the RXnIE bit is set, the INTPND bit is set, causing the Interrupt Register to point to this
Message Object.
The TREQ bit of this Message Object is reset to prevent the transmission of a Remote Frame, while
the requested Data Frame has just been received.

Reception of Remote Frame
When a Remote Frame is received, three different configurations of the matching Message Object
have to be considered:
1) DIRn=‘1’ (direction=transmit), RMTnEN=‘1’, UMASKn=‘1’ or ‘0’

Rev. 1.00 212 December 27, 2019 Rev. 1.00 213 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

At the reception of a matching Remote Frame, the TREQ bit of this Message Object is set high.
The rest of the Message Object remains unchanged.

2) DIRn=‘1’ (direction=transmit), RMTnEN=‘0’, UMASKn=‘0’
At the reception of a matching Remote Frame, the TREQ bit of this Message Object remains
unchanged; the Remote Frame is ignored.

3) DIRn=‘1’ (direction=transmit), RMTnEN=‘0’, UMASKn=‘1’
At the reception of a matching Remote Frame, the TREQ bit of this Message Object is reset. The
arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored into
the Message Object in the Message RAM and the NDTA bit of this Message Object is set high.

Note: Remote frames are always transmitted in Classical CAN format.

Receive / Transmit Priority
The receive/transmit priority for the Message Objects is attached to the message number. Message
Object 1 has the highest priority, while Message Object 32 has the lowest priority. If more than one
transmission request is pending, they are serviced according to the priority of the corresponding
Message Object.

Configuration of a Transmit Object
MSGnVA ARBn DATA MASK EOBn DIRn NnDTA

1 appl. appl. appl. 1 1 0
MSGnLST RXnIEN TXnIEN INTnPND RMTnEN TnREQ

0 0 appl. 0 appl. 0

Initialisation of a Transmit Object
Note: “appl.” means by application.

The Arbitration Registers (IDn28~00 and XTDn bit) are given by the application. They define the
identifier and type of the outgoing message. If an 11-bit Identifier (“Standard Frame”) is used, it is
programmed to IDn28~IDn18, IDn17~IDn00 can then be disregarded.

If the TXnIEN bit is set, the INTPND bit will be set after a successful transmission of the Message
Object.

If the RMTnEN bit is set, a matching received Remote Frame will cause the TREQ bit to be set; the
Remote Frame will autonomously be answered by a Data Frame.

The Data Registers (DLCn3-0, DATA0-7) are given by the application, TnREQ and RMTnEN may
not be set before the data is valid.

The Mask Registers (MSKn28-00, UMASKn, MXTDn and MDIRn bits) may be used
(UMASKn=‘1’) to allow groups of Remote Frames with similar identifiers to set the TnREQ bit.
The DIRn bit should not be masked.

Updating a Transmit Object
The CPU may update the data bytes of a Transmit Object any time via the IFn Interface registers,
neither MSGVA nor TREQ have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding IFn DATAnA
Register or IFn DATAnB Register have to be valid before the content of that register is transferred
to the Message Object. Either the CPU has to write all four bytes into the IFn Data Register or the
Message Object is transferred to the IFn Data Register before the CPU writes the new data bytes.

When only the (eight) data bytes are updated, first 0x87 is written to the IFn Command Mask
Register and then the number of the Message Object is written to the IFn Command Request
Register, concurrently updating the data bytes and setting TQnDTA.

Rev. 1.00 214 December 27, 2019 Rev. 1.00 215 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

To prevent the reset of TREQ at the end of a transmission that may already be in progress while the
data is updated, NDTA has to be set together with TREQ.

When NDTA is set together with TREQ, NDTA will be reset as soon as the new transmission has
started.

Configuration of a Receive Object
MSGnVA ARBn DATA MASK EOBn DIRn NnDTA

1 appl. appl. appl. 1 0 0
MSGnLST RXnIEN TXnIEN INTnPND RMTnEN TnREQ

0 appl. 0 0 0 0

Initialisation of a Receive Object

Note: “appl.” means by application.

The Arbitration Registers (IDn[28:00] and XTDn bit) are given by the application. They define the
identifier and type of accepted received messages. If an 11-bit Identifier (“Standard Frame”) is used,
it is programmed to IDn28~IDn18 and IDn17~IDn00 can then be disregarded. When a Data Frame
with an 11-bit Identifier is received, IDn17~IDn00 will be set to ‘0’.

If the RXnIEN bit is set, the INTPND bit will be set when a received Data Frame is accepted and
stored in the Message Object.

The Data Length Code (DLCn[3:0]) is given by the application. When the Message Handler stores
a Data Frame in the Message Object, it will store the received Data Length Code and eight data
bytes. If the Data Length Code is less than 8, the remaining bytes of the Message Object will be
overwritten by non specified values.

The Mask Registers (MSKn[28:00], UMASKn, MXTDn, and MDIRn bits) may be used
(UMASKn=‘1’) to allow groups of Data Frames with similar identifiers to be accepted . The DIRn
bit should not be masked in typical applications.

Handling of Received Messages
The CPU may read a received message any time via the IFn Interface registers. The data consistency
is guaranteed by the Message Handler state machine.

Typically the CPU will write first 0x7F to the IFn Command Mask Register and then the number of
the Message Object to the IFn Command Request Register. That combination will transfer the whole
received message from the Message RAM into the IFn Message Buffer Register. Additionally, the
bits NDTA and INTPND are cleared in the Message RAM (not in the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of the
matching messages has been received.

The actual value of NDTA shows whether a new message has been received since last time this
Message Object was read. The actual value of MSGLST shows whether more than one message has
been received since last time this Message Object was read. MSGLST will not be automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new data for a
receive object. Setting the TREQ bit of a receive object will cause the transmission of a Remote
Frame with the receive object’s identifier. This Remote Frame triggers the other CAN node to start
the transmission of the matching Data Frame. If the matching Data Frame is received before the
Remote Frame could be transmitted, the TREQ bit is automatically reset.

Rev. 1.00 214 December 27, 2019 Rev. 1.00 215 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Configuration of a FIFO Buffer
With the exception of the EOBn bit, the configuration of Receive Objects belonging to a FIFO
Buffer is the same as the configuration of a (single) Receive Object.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if used)
of these Message Objects have to be programmed to matching values. Due to the implicit priority of
the Message Objects, the Message Object with the lowest number will be the first Message Object
of the FIFO Buffer. The EOBn bit of all Message Objects of a FIFO Buffer except the last have to
be programmed to zero. The EOBn bits of the last Message Object of a FIFO Buffer is set to one,
configuring it as the End of the Block.

Reception of Messages with FIFO Buffers
Received messages with identifiers matching to a FIFO Buffer are stored into a Message Object of
this FIFO Buffer starting with the Message Object with the lowest message number.
When a message is stored into a Message Object of a FIFO Buffer the NDTA bit of this Message
Object is set. By setting NDTA while EOBn is zero the Message Object is locked for further write
accesses by the Message Handler until the CPU has written the NDTA bit back to zero.
Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is reached.
If none of the preceding Message Objects is released by writing NDTA to zero, all further messages
for this FIFO Buffer will be written into the last Message Object of the FIFO Buffer and therefore
overwrite previous messages.

Reading from a FIFO Buffer
When the CPU transfers the contents of Message Object to the IFn Message Buffer Registers by
writing its number to the IFn Command Request Register, the corresponding IFn Command Mask
Register should be programmed the way that bits NDTA and INTPND are reset to zero (TQnDTA=‘1’
and CINTPNDn=‘1’). The values of these bits in the IFn Message Control Registers always reflect
the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read out the Message Objects
starting at the FIFO Object with the lowest message number.

The following figure shows how a set of Message Objects which are concatenated to a FIFO Buffer
can be handled by the CPU.

Rev. 1.00 216 December 27, 2019 Rev. 1.00 217 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

START

Read Interrupt Pointer
(INTRH&INTRL Regs.)

case Interrupt Pointer

MessageNum = INTID

Write MessageNum to IFn Command Request
(Read Message to IFn Registers,

Reset NDTA = 0,
Reset INTPND = 0)

Status Change
Interrupt Handling END

Read IFn Message Control

NDTA = 1

Read Data from IFn DataA,B

EOBn = 1

MessageNum = MessageNum + 1

Message Interrupt

INTID=0x0000h

else

No

Yes

Yes

No

INTID=0x8000h

CPU Handling of a FIFO Buffer

Rev. 1.00 216 December 27, 2019 Rev. 1.00 217 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit Time and Bit Rate
CAN supports bit rates in the range of 1kBit/s to 1000kBit/s. Each member of the CAN network
has its own clock generator, usually a quartz oscillator. The timing parameter of the bit time, i.e. the
reciprocal of the bit rate, can be configured individually for each CAN node, creating a common bit
rate even though the CAN nodes’ oscillator periods (fosc) may be different.

The frequencies of these oscillators are not absolutely stable, as small variations are caused by
changes in temperature or voltage and by deteriorating components. As long as the variations remain
within a specific oscillator tolerance range (dF), the CAN nodes are able to compensate for the
different bit rates by resynchronising to the bit stream.

According to the CAN specification, the bit time is divided into four segments which are the
Synchronisation Segment, the Propagation Time Segment, the Phase Buffer Segment 1 and the
Phase Buffer Segment 2. Each segment consists of a specific, programmable number of time quanta.
The length of the time quantum (tq), which is the basic time unit of the bit time, is defined by the
CAN controller’s system clock fCAN and the Baud Rate Prescaler(BRP): tq=BRP/fCAN. The CAN
module system clock fCAN is the frequency of its can_clk input.

The Synchronisation Segment Sync_Seg is that part of the bit time where edges of the CAN bus
level are expected to occur. The distance between an edge that occurs outside of Sync_Seg and
the Sync_Seg is called the phase error of that edge. The Propagation Time Segment Prop_Seg is
intended to compensate for the physical delay times within the CAN network. The Phase Buffer
Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point. The (Re-) Synchronisation Jump
Width (SJW) defines how far a resynchronisation may move the Sample Point inside the limits
defined by the Phase Buffer Segments to compensate for edge phase errors.

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

Nominal CAN Bit Time

1 Time Quantum
(tq) Sample Point

Bit Timing

Rev. 1.00 218 December 27, 2019 Rev. 1.00 219 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Parameter Range Remark
BRP [1 .. 32] Defines the length of the time quantum tq

Sync_Seg 1 tq Fixed length, synchronisation of bus input to CAN system clock
Prop_Seg [1 .. 8] tq Compensates for the physical delay times
Phase_Seg1 [1 .. 8] tq May be lengthened temporarily by synchronisation
Phase_Seg2 [1 .. 8] tq May be shortened temporarily by synchronisation
SJW [1 .. 4] tq May not be longer than either Phase Buffer Segment
This table describes the minimum programmable ranges required by the CAN protocol

mtq (minimum time quantum) = CAN system clock period = 1/fCAN

tq (time quantum) = (BRPE[3:0] × 0x40 + BRP[5:0] + 1) × mtq

SYNC_SEG = 1 tq

SEG1 = PROP_SEG + PHASE_SEG1

Bit Time = tSYNC_SEG + tSEG1 + tPHASE_SEG2

For example:

fCAN = 8MHz , Bit Rate = 500Kbps , PROP_SEG = 0 , Sample point = 50% , SYNC_SEG = 1 tq, then
to calculate the SEG1 & PHASE_SEG2 values.

Sol: mtq = 1/fCAN = 1/8MHz = 0.125μs

set Baud Rate Prescaler (BRP) = 1 → BRP[5:0] = (1-1) = 0 #

tq = (BRPE[3:0] × 0x40 + BRP[5:0] + 1) × mtq = 1 × mtq = 0.125μs

Bit Time = 1/Bit Rate = 1/500Kbps = 0.002ms = 2μs

Nominal Bit Time = Bit Rate / tq = 2µs / (0.125µs) = 16 tq

(1) PHASE_SEG2 = Nominal Bit Time – (Nominal Bit Time • Sample point)

= 16tq – (16tq • 50%) = 16tq – 8tq = 8tq

TSG2D[2:0] = (8 – 1) = 7 #

(2) SEG1 = (Nominal Bit Time – SYNC_SEG – PHASE_SEG2) = (16tq – 1tq – 8tq) = 7tq

TSG1D[3:0] = (7 – 1) = 6 #

CAN Bus Interrupt Structure
The CAN Bus interrupt contains four interrupt sources, namely CAN controller interrupt, Message
Object 1 Successful Message Reception Interrupt, Message Object x Successful Message Reception
Interrupt and SOF interrupt.

Several individual conditions can generate a CAN controller interrupt. When these conditions exist,
an interrupt will be generated to get the attention of the microcontroller. These conditions are a CAN
module busoff state, an error limit warning, a successfull message reception, a successfull message
transmission or a CAN bus status change. When any of these conditions is created, if the CAN
Module interrupt enable bit CANIE is set, the corresponding interrupt control is enabled and the
stack is not full, the program will jump to its corresponding interrupt vector where it can be serviced
before returning to the main program. Three of these conditions will generate a CAN Controller
interrupt if its associated interrupt enable control bit in the CAN control register is set and bit
CANIE is set. While the transmittion interrupt and the receive interrupt conditions will also generate
a CAN controller interrupt if the CANIE bit is set high. These enable bits can be used to mask out
individual CAN controller interrupt sources.

The CAN module includes 32 Message Objects, which can be scheduled for multiple sets of FIFO,
where a single set of FIFO depth can be a single Message Object or multiple Message Objects in

Rev. 1.00 218 December 27, 2019 Rev. 1.00 219 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

series. When the Message Object 1 successfully receives a Message, bit RXOK is set and INTPND1
will be high, an interrupt signal will be sent to inform the MCU. The FIFO threshold can be set
using the RMFD[4:0] to select the Message Object number. When the selected Message Object
successfully receives a Message, bit RXOK is set, an interrupt signal will not be sent to inform the
MCU until the INTPND[n] bit is high.

When a Message is start to be transferred (reception or transmission), a start of frame signal will
be detected, an SOF interrupt signal will then be sent to inform MCU. This SOF signal is used as
hardware synchronizing signal.

The overall CAN Bus interrupts can be disabled or enabled by the related interrupt enable control
bits in the interrupt control registers of the microcontroller to decide whether the interrupt requested
by the CAN module is masked out or allowed.

Error interrupt
EIE

Status Change
Interrupt: SIE

Bus_off
BOFF

Error CNT≥96
EWARN

LEC[2:0]≠7

Status
Interrupt

RFMD[4:0] RXOK=1
&INTPND[n]=1

SOF InterruptSOFBus Idle

CAN Controller
Interrupt

0

1

CANCTLF

MO1 RX OK Interrupt

MOx RX OK Interrupt

Interrupt signal
to MCU

0

1

EMI

0

1

CANCTLE

0

1

RXMO1F
0

1

RXMO1E

0

1

RXMOXF
0

1

RXMOXE

Start of Frame Interrupt
0

1

SOFF
0

1

SOFE

INTID[15:0]=
0x8000

Message Receive
Interrupt

0

1

CANIE

CAN Controller
Interrupt

Message Receive
Interrupt

SOF Interrupt

CAN Controller
Interrupt

RXOK=1

TXOK=1

CAN Bus Interrupt Structure

Rev. 1.00 220 December 27, 2019 Rev. 1.00 221 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Comparators
Two independent analog conparators are contained in the device. The comparator functions offer
flexibility via their register controlled features such as power-down, polarity select, response time,
etc. In sharing their pins with normal I/O pins the comparators do not waste precious I/O pins if the
comparator functions are otherwise unused.

+

−

CnEN
CnPOL

CnOUT

One Shot CnINT

CnX

Pin-shared
selection

Pin-shared
selection

Cn-

Cn+

Comparators (n=0~1)

Comparator Operation
The device contains two comparator functions which are used to compare two analog voltages
and provide an output based on their difference. Full control over the two internal comparators is
provided via the control register, CP0C and CP1C, one assigned to each comparator. The comparator
output is recorded via a bit in the control register, but can also be transferred out onto a shared I/O
pin. Additional comparator functions include output polarity, response time and power down control.

Any pull-high resistors connected to the shared comparator input pins will be automatically
disconnected when the comparator is enabled. As the comparator inputs approach their switching
level, some spurious output signals may be generated on the comparator output due to the slow
rising or falling nature of the input signals. This can be minimised by the hysteresis function which
will apply a small amount of positive feedback to the comparator. When the comparator operates
in the normal mode, the hysteresis function will automatically be enabled. However, the hysteresis
function will be disabled when the comparator operates in the input offset calibration mode.

Ideally the comparator should switch at the point where the positive and negative inputs signals are
at the same voltage level. However, unavoidable input offsets introduce some uncertainties here. The
offset calibration function, if executed, will minimise the switching offset value. The comparator
also provides the output response time select function using the CNVTn1~CNVTn0 bits in the
CPnC register.

Comparator Registers
There are four registers for overall comparator operation, two registers, CPnC and CPnVOS, for
each comparator. As corresponding bits in these registers have identical functions, the following
register table applies to the registers.

Register
Name

Bit
7 6 5 4 3 2 1 0

CPnC — CnEN CnPOL CnOUT CNVTn1 CNVTn0 — —
CPnVOS — CnOFM CnRSP CnOF4 CnOF3 CnOF2 CnOF1 CnOF0

Comparator Registers List (n = 0~1)

Rev. 1.00 220 December 27, 2019 Rev. 1.00 221 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• CPnC Register
Bit 7 6 5 4 3 2 1 0

Name — CnEN CnPOL CnOUT CNVTn1 CNVTn0 — —
R/W — R/W R/W R R/W R/W — —
POR — 0 0 0 0 0 — —

Bit 7 Unimplemented, read as “0”
Bit 6 CnEN: Comparator enable control

0: Disable
1: Enable

This bit is used to enable the comparator function. If this bit is cleared to zero, the
comparator will be switched off and no power consumed even if analog voltages are
applied to its inputs. When the comparator function is disabled, the comparator output
will be set to zero.

Bit 5 CnPOL: Comparator output polarity selection
0: Non-invert
1: Invert

If this bit is cleared to zero, the CnOUT bit will reflect the non-inverted output
condition of the comparator. If this bit is set high, the CnOUT bit will be inverted.

Bit 4 CnOUT: Comparator output bit
CnPOL=0

0: Cn+ < Cn–
1: Cn+ > Cn–

CnPOL=1
0: Cn+ > Cn–
1: Cn+ < Cn–

This bit is used to store the comparator output bit. The polarity of this bit is determined
by the voltages on the comparator inputs and by the condition of the CnPOL bit.

Bit 3~2 CNVTn1~CNVTn0: Comparator response time selection
00: Response time 0 (max.)
01: Response time 1
10: Response time 2
11: Response time 3 (min.)

These bits are used to select the comparator response time. The detailed response time
specifications are listed in the Comparator Characteristics.

Bit 1~0 Unimplemented, read as “0”

• CPnVOS Register
Bit 7 6 5 4 3 2 1 0

Name — CnOFM CnRSP CnOF4 CnOF3 CnOF2 CnOF1 CnOF0
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 1 0 0 0 0

Bit 7 Unimplemented, read as “0”
Bit 6 CnOFM: Comparator normal operation or input offset calibration mode selection

0: Normal operation mode
1: Input offset calibration mode

This bit is used to enable the comparator input offset calibration function. Refer to the
“Input Offset Calibration” section for the detailed input offset calibration procedures.

Bit 5 CnRSP: Comparator input offset calibration reference input selection
0: Cn– is selected as reference input
1: Cn+ is selected as reference input

Bit 4~0 CnOF4~CnOF0: Comparator input offset calibration value
This 5-bit field is used to perform the comparator input offset calibration operation and
the value after the input offset calibration can be restored into this bit field. Refer to
the “Input Offset Calibration” section for more detailed information.

Rev. 1.00 222 December 27, 2019 Rev. 1.00 223 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Input Offset Calibration
To operate in the input offset calibration mode, the comparator input pins to be used should first be
selected by properly configuring the corresponding pin-shared function selection bits followed by
setting the CnOFM bit high. The procedure is described in the following.

Step 1. Set CnOFM = 1 to enable the comparator input offset calibration mode.

Step 2. Set CnOF [4:0] = 00000 and read the CnOUT bit.

Step 3. Increase the CnOF [4:0] value by 1 and then read the CnOUT bit.

If the CnOUT bit state does not changed, then repeat Step 3 until the CnOUT bit state
changes.

If the CnOUT bit state changes, record the CnOF field value as VCnOS1 and then go to Step 4.

Step 4. Set CnOF [4:0] = 11111 and read the CnOUT bit.

Step 5. Decrease the CnOF [4:0] value by 1 and then read the CnOUT bit.

If the CnOUT bit state does not changed, then repeat Step 5 until the CnOUT bit state
changes.

If the CnOUT bit state changes, record the CnOF field value as VCnOS2 and then go to Step 6.

Step 6. Restore the comparator input offset calibration value VCnOS into the CnOF [4:0] bit field.
The offset calibration procedure is now finished.

Where VCnOS = VCnOS1 + VCnOS2
2

Comparator Interrupt
Each comparator possesses its own interrupt function. When the comparator output bit changes state,
its relevant interrupt flag will be set, and if the corresponding interrupt enable bit is set, then a jump
to its relevant interrupt vector will be executed. Note that it is the changing state of the CnOUT bit
and not the output pin which generates an interrupt. If the microcontroller is in the SLEEP or IDLE
Mode and the Comparator is enabled, then if the external input lines cause the Comparator output to
change state, the resulting generated interrupt flag will also generate a wake-up. If it is required to
disable a wake-up from occurring, then the interrupt flag should be first set high before entering the
SLEEP or IDLE Mode.

Programming Considerations
If the comparator is enabled, it will remain active when the microcontroller enters the SLEEP or
IDLE Mode, however as it will consume a certain amount of power, the user may wish to consider
disabling it before the SLEEP or IDLE Mode is entered. As comparator pins are shared with normal
I/O pins the I/O data bits for these pins will be read as zero regardless of the port control register bit
value due to normal I/O path being switched off if the comparator function is enabled.

Software Controlled LCD Driver
The device has the capability of driving external LCD panels. The common pins, SCOM0~SCOM3,
for LCD driving are pin-shared with certain pins on the I/O ports. The LCD signals (COM and SEG)
are generated using the application program.

LCD Operation
An external LCD panel can be driven using the device by configuring the I/O pins as common pins
and segment pins. The LCD driver function is controlled using the LCD control register which
in addition to controlling the overall on/off function also controls the R-type bias current on the

Rev. 1.00 222 December 27, 2019 Rev. 1.00 223 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

SCOMn pins. This enables the LCD COM driver to generate the necessary voltage levels, VSS,
VDD/2 and VDD, for LCD 1/2 bias operation.

The SCOMEN bit in the SCOMC register is the overall master control for the LCD driver. The
SCOMn pin is selected to be used for LCD driving by the corresponding pin-shared function
selection bits. Note that the corresponding Port Control register does not need to first setup the pins
as outputs to enable the LCD driver operation.

VDD

VDD/2

SCOMEN

ISEL[1:0]

SCOMn

Pin-shared
Selection

Software Controlled LCD Driver Structure

LCD Bias Current Control
The LCD COM driver enables a range of selections to be provided to suit the requirement of the
LCD panel which is being used. The bias current choice is implemented using the ISEL1 and ISEL0
bits in the SCOMC register. All COM pins are pin-shared with I/O pins and selected as SCOM pins
using the corresponding pin-shared function selection bits.

• SCOMC Register
Bit 7 6 5 4 3 2 1 0

Name — ISEL1 ISEL0 SCOMEN — — — —
R/W — R/W R/W R/W — — — —
POR — 0 0 0 — — — —

Bit 7 Unimplemented, read as “0”
Bit 6~5 ISEL1~ISEL0: SCOM typical bias current selection (@VDD=5V)

00: 25μA
01: 50μA
10: 100μA
11: 200μA

Bit 4 SCOMEN: Software controlled LCD Driver enable control
0: Disable
1: Enable

The SCOMn lines can be enabled using the corresponding pin-shared selection bits if
the SCOMEN bit is set to 1. When the SCOMEN bit is cleared to 0, then the SCOMn
outputs will be fixed at a VDD level. Note that the corresponding pin-shared selection
bits should first be properly configured before the SCOMn function is enabled.

Bit 3~0 Unimplemented, read as “0”

Rev. 1.00 224 December 27, 2019 Rev. 1.00 225 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

16-bit Multiplication Division Unit – MDU
The device has a 16-bit Multiplication Division Unit, MDU, which integrates a 16-bit unsigned
multiplier and a 32-bit/16-bit divider. The MDU, in replacing the software multiplication and
division operations, can therefore save large amounts of computing time as well as the Program and
Data Memory space. It also reduces the overall microcontroller loading and results in the overall
system performance improvements.

fSYS

MDUWR0
MDUWR1
MDUWR2
MDUWR3

MDUWR4

MDUWR5

16/32-bit Dividend
/

16-bit Multiplicand

16-bit Divisor
/

16-bit Multiplier

Shift Control

MDWEF
MDWOV

+/-

16-Bit MDU Block Diagram

MDU Registers
The multiplication and division operations are implemented in a specific way, a specific write
access sequence of a series of MDU data registers. The status register, MDUWCTRL, provides the
indications for the MDU operation. The data register each is used to store the data regarded as the
different operand corresponding to different MDU operations.

Register
Name

Bit
7 6 5 4 3 2 1 0

MDUWR0 D7 D6 D5 D4 D3 D2 D1 D0
MDUWR1 D7 D6 D5 D4 D3 D2 D1 D0
MDUWR2 D7 D6 D5 D4 D3 D2 D1 D0
MDUWR3 D7 D6 D5 D4 D3 D2 D1 D0
MDUWR4 D7 D6 D5 D4 D3 D2 D1 D0
MDUWR5 D7 D6 D5 D4 D3 D2 D1 D0

MDUWCTRL MDWEF MDWOV — — — — — —

MDU Registers List

• MDUWRn Register (n=0~5)
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x”: unknown
Bit 7~0 D7~D0: 16-bit MDU data register n

Rev. 1.00 224 December 27, 2019 Rev. 1.00 225 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• MDUWCTRL Register
Bit 7 6 5 4 3 2 1 0

Name MDWEF MDWOV — — — — — —
R/W R R — — — — — —
POR 0 0 — — — — — —

Bit 7 MDWEF: 16-bit MDU error flag
0: Normal
1: Abnormal

This bit will be set to 1 if the data register MDUWRn is written or read as the MDU
operation is executing. This bit should be cleared to 0 by reading the MDUWCTRL
register if it is equal to 1 and the MDU operation is completed.

Bit 6 MDWOV: 16-bit MDU overflow flag
0: No overflow occurs
1: Multiplication product > FFFFH or Divisor = 0

When an operation is completed, this bit will be updated by hardware to a new value
corresponding to the current operation situation.

Bit 5~0 Unimplemented, read as “0”

MDU Operation
For this MDU the multiplication or division operation is carried out in a specific way and is
determined by the write access sequence of the six MDU data registers, MDUWR0~MDUWR5. The
low byte data, regardless of the dividend, multiplicand, divisor or multiplier, must first be written
into the corresponding MDU data register followed by the high byte data. All MDU operations
will be executed after the MDUWR5 register is write-accessed together with the correct specific
write access sequence of the MDUWRn. Note that it is not necessary to consecutively write data
into the MDU data registers but must be in a correct write access sequence. Therefore, a non-write
MDUWRn instruction or an interrupt, etc., can be inserted into the correct write access sequence
without destroying the write operation. The relationship between the write access sequence and the
MDU operation is shown in the following.

• 32-bit/16-bit division operation: Write data sequentially into the six MDU data registers from
MDUWR0 to MDUWR5.

• 16-bit/16-bit division operation: Write data sequentially into the specific four MDU data registers
in a sequence of MDUWR0, MDUWR1, MDUWR4 and MDUWR5 with no write access to
MDUWR2 and MDUWR3.

• 16-bit × 16-bit multiplication operation: Write data sequentially into the specific four MDU data
register in a sequence of MDUWR0, MDUWR4, MDUWR1 and MDUWR5 with no write access
to MDUWR2 and MDUWR3.

After the specific write access sequence is determined, the MDU will start to perform the
corresponding operation. The calculation time necessary for these MDU operations are different.
During the calculation time any read/write access to the six MDU data registers is forbidden. After
the completion of each operation, it is necessary to check the operation status in the MDUWCTRL
register to make sure that whether the operation is correct or not. Then the operation result can
be read out from the corresponding MDU data registers in a specific read access sequence if the
operation is correctly finished. The necessary calculation time for different MDU operations is listed
in the following.

• 32-bit/16-bit division operation: 17 × tSYS

• 16-bit/16-bit division operation: 9 × tSYS

• 16-bit × 16-bit multiplication operation: 11 × tSYS

Rev. 1.00 226 December 27, 2019 Rev. 1.00 227 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

The operation results will be stored in the corresponding MDU data registers and should be read
out from the MDU data registers in a specific read access sequence after the operation is completed.
Noe that it is not necessary to consecutively read data out from the MDU data registers but must be
in a correct read access sequence. Therefore, a non-read MDUWRn instruction or an interrupt, etc.,
can be inserted into the correct read access sequence without destroying the read operation. The
relationship between the operation result read access sequence and the MDU operation is shown in
the following.

• 32-bit/16-bit division operation: Read the quotient from MDUWR0 to MDUWR3 and remainder
from MDUWR4 and MDUWR5 sequentially.

• 16-bit/6-bit division operation: Read the quotient from MDUWR0 and MDUWR1 and remainder
from MDUWR4 and MDUWR5 sequentially.

• 16-bit × 16-bit multiplication operation: Read the product sequentially from MDUWR0 to
MDUWR3.

The overall important points for the MDU read/write access sequence and calculation time are
summarized in the following table. Note that the device should not enter the IDLE or SLEEP mode
until the MDU operation is totally completed, otherwise the MDU operation will fail.

Operations
Items 32-bit / 16-bit Division 16-bit / 16-bit Division 16-bit × 16-bit Multiplication

Write Sequence
First write

↓
↓
↓
↓

Last write

Dividend Byte 0 written to MDUWR0
Dividend Byte 1 written to MDUWR1
Dividend Byte 2 written to MDUWR2
Dividend Byte 3 written to MDUWR3
Divisor Byte 0 written to MDUWR4
Divisor Byte 1 written to MDUWR5

Dividend Byte 0 written to MDUWR0
Dividend Byte 1 written to MDUWR1
Divisor Byte 0 written to MDUWR4
Divisor Byte 1 written to MDUWR5

Multiplicand Byte 0 written to MDUWR0
Multiplier Byte 0 written to MDUWR4
Multiplicand Byte 1 written to MDUWR1
Multiplier Byte 1 written to MDUWR5

Calculation Time 17 × tSYS 9 × tSYS 11 × tSYS

Read Sequence
First read

↓
↓
↓
↓

Last read

Quotient Byte 0 read from MDUWR0
Quotient Byte 1 read from MDUWR1
Quotient Byte 2 read from MDUWR2
Quotient Byte 3 read from MDUWR3
Remainder Byte 0 read from MDUWR4
Remainder Byte 1 read from MDUWR5

Quotient Byte 0 read from MDUWR0
Quotient Byte 1 read from MDUWR1
Remainder Byte 0 read from MDUWR4
Remainder Byte 1 read from MDUWR5

Product Byte 0 read from MDUWR0
Product Byte 1 read from MDUWR1
Product Byte 2 read from MDUWR2
Product Byte 3 read from MDUWR3

MDU Operations Summary

Rev. 1.00 226 December 27, 2019 Rev. 1.00 227 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Cyclic Redundancy Check – CRC
The Cyclic Redundancy Check, CRC, calculation unit is an error detection technique test algorithm
and uses to verify data transmission or storage data correctness. A CRC calculation takes a data
stream or a block of data as input and generates a 16-bit output remainder. Ordinarily, a data stream
is suffixed by a CRC code which is used as a checksum when the data stream is sent or stored.
Therefore, the received or restored data stream is calculated by the same generator polynomial as
described in the following section.

CCITT-16
POLY

CRCDL
CRCDH

POLY

CRC-16
POLY

CRCIN

CRC Block Diagram

CRC Registers
The CRC generator contains an 8-bit CRC data input register, CRCIN, and a CRC checksum
register pair, CRCDH and CRCDL. The CRCIN register is used to input new data and the CRCDH
and CRCDL registers are used to hold the previous CRC calculation result. A CRC control register,
CRCCR, is used to select which CRC generating polynomial is used.

Register
Name

Bit
7 6 5 4 3 2 1 0

CRCIN D7 D6 D5 D4 D3 D2 D1 D0
CRCDL D7 D6 D5 D4 D3 D2 D1 D0
CRCDH D7 D6 D5 D4 D3 D2 D1 D0
CRCCR — — — — — — — POLY

CRC Registers List

• CRCIN Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: CRC input data register

• CRCDL Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: 16-bit CRC checksum low byte data register

Rev. 1.00 228 December 27, 2019 Rev. 1.00 229 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• CRCDH Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0 D7~D0: 16-bit CRC checksum high byte data register

• CRCCR Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — — POLY
R/W — — — — — — — R/W
POR — — — — — — — 0

Bit 7~1 Unimplemented, read as “0”
Bit 0 POLY: 16-bit CRC generating polynomial selection

0: CRC-CCITT: X16 + X12 + X5 + 1
1: CRC-16: X16 + X15 + X2 + 1

CRC Operation
The CRC generator provides the 16-bit CRC result calculation based on the CRC16 and CCITT
CRC16 polynomials. In this CRC generator, there are only these two polynomials available for
the numeric values calculation. It can not support the 16-bit CRC calculations based on any other
polynomials.

The following two expressions can be used for the CRC generating polynomial which is determined
using the POLY bit in the CRC control register, CRCCR. The CRC calculation result is called as the
CRC checksum, CRCSUM, and stored in the CRC checksum register pair, CRCDH and CRCDL.

• CRC-CCITT: X16 + X12 + X5 + 1

• CRC-16: X16 + X15 + X2 + 1

CRC Computation
Each write operation to the CRCIN register creates a combination of the previous CRC value stored
in the CRCDH and CRCDL registers and the new data input. The CRC unit calculates the CRC data
register value byte by byte. It will take one MCU instruction cycle to calculate the CRC checksum.

CRC Calculation Procedures
1. Clear the checksum register pair, CRCDH and CRCDL.

2. Execute an “Exclusive OR” operation with the 8-bit input data byte and the 16-bit CRCSUM high
byte. The result is called the temporary CRCSUM.

3. Shift the temporary CRCSUM value left by one bit and move a “0” into the LSB.

4. Check the shifted temporary CRCSUM value after procedure 3.

If the MSB is 0, then this shifted temporary CRCSUM will be considered as a new temporary
CRCSUM.

Otherwise, execute an “Exclusive OR” operation with the shifted temporary CRCSUM in
procedure 3 and a data “8005H”. Then the operation result will be regarded as the new temporary
CRCSUM.

Note that the data to be perform an “Exclusive OR” operation is “8005H” for the CRC-16
polynomial while for the CRC-CCITT polynomial the data is “1021H”.

Rev. 1.00 228 December 27, 2019 Rev. 1.00 229 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

5. Repeat the procedure 3 ~ procedure 4 until all bits of the input data byte are completely
calculated.

6. Repeat the procedure 2 ~ procedure 5 until all of the input data bytes are completely calculated.
Then, the latest calculated result is the final CRC checksum, CRCSUM.

CRC Calculation Examples
1. Write 1 byte input data into the CRCIN register and the corresponding CRC checksum are

individually calculated as the following table shown.

CRC Data Input
CRC Polynomial 00H 01H 02H 03H 04H 05H 06H 07H

CRC-CCITT (X16+X12+X5+1) 0000H 1021H 2042H 3063H 4084H 50A5H 60C6H 70E7H
CRC-16 (X16+X15+X2+1) 0000H 8005H 800FH 000AH 801BH 001EH 0014H 8011H

Note: The initial value of the CRC checksum register pair, CRCDH and CRCDL, is zero before each
CRC input data is written into the CRCIN register.

2. Write 4 bytes input data into the CRCIN register sequentially and the CRC checksum are
sequentially listed in the following table.

CRC Data Input
CRC Polynomial CRCIN = 78h→56h→34h→12h

CRC-CCITT (X16+X12+X5+1) (CRCDH, CRCDL) = FF9FH→BBC3H→A367H→D0FAH
CRC-16 (X16+X15+X2+1) (CRCDH, CRCDL) = 0110h→91F1h→F2DEh→5C43h

Note: The initial value of the CRC checksum register pair, CRCDH and CRCDL, is zero before the
sequential CRC data input operation.

Program Memory CRC Checksum Calculation Example
1. Clear the checksum register pair, CRCDH and CRCDL.

2. Select the CRC-CCITT or CRC-16 polynomial as the generating polynomial using the POLY bit
in the CRCCR register.

3. Execute the table read instruction to read the program memory data value.

4. Write the table data low byte into the CRCIN register and execute the CRC calculation with the
current CRCSUM value. Then a new CRCSUM result will be obtained and stored in the CRC
checksum register pair, CRCDH and CRCDL.

5. Write the table data high byte into the CRCIN register and execute the CRC calculation with the
current CRCSUM value. Then a new CRCSUM result will be obtained and stored in the CRC
checksum register pair, CRCDH and CRCDL.

6. Repeat the procedure 3 ~ procedure 5 to read the next program memory data value and execute
the CRC calculation until all program memory data are read followed by the sequential CRC
calculation. Then the value in the CRC checksum register pair is the final CRC calculation result.

Rev. 1.00 230 December 27, 2019 Rev. 1.00 231 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Interrupts
Interrupts are an important part of any microcontroller system. When an external event or an
internal function such as a Timer Module or an A/D converter requires microcontroller attention,
their corresponding interrupt will enforce a temporary suspension of the main program allowing the
microcontroller to direct attention to their respective needs. The device contains several external
interrupt and internal interrupt functions. The external interrupts are generated by the action of the
external INT0~INT3 pins, while the internal interrupts are generated by various internal functions
such as the Timer Module (TM), Time Bases, Low Voltage Detector (LVD), EEPROM, UART, SIM,
Comparator, CAN Bus and the A/D converter.

Interrupt Registers
Overall interrupt control, which basically means the setting of request flags when certain
microcontroller conditions occur and the setting of interrupt enable bits by the application program,
is controlled by a series of registers, located in the Special Purpose Data Memory. The registers fall
into three categories. The first is the INTC0~INTC3 registers which setup the primary interrupts,
the second is the MFI0~MFI7 registers which setup the Multi-function interrupts. Finally there is an
INTEG register to setup the external interrupts trigger edge type.

Each register contains a number of enable bits to enable or disable individual registers as well as
interrupt flags to indicate the presence of an interrupt request. The naming convention of these
follows a specific pattern. First is listed an abbreviated interrupt type, then the (optional) number of
that interrupt followed by either an “E” for enable/disable bit or “F” for request flag.

Function Enable Bit Request Flag Notes
Global EMI — —
INTn Pin INTnE INTnF n=0~3
A/D Converter ADE ADF —
Multi-function MFnE MFnF n=0~7
Time Base TBnE TBnF n=0~1
LVD LVE LVF —
EEPROM DEE DEF —
SIM SIME SIMF —
SPIA SPIAE SPIAF —
UART URnE URnF n=0~2
Comparator CPnE CPnF n=0~1

CAN Bus

RXMO1E RXMO1F —
RXMOXE RXMOXF —
CANCTLE CANCTLF —

SOFE SOFF —

TM

STMnPE STMnPF
n=0~1

STMnAE STMnAF
PTMnPE PTMnPF

n=0~3
PTMnAE PTMnAF

Interrupt Register Bit Naming Conventions

Rev. 1.00 230 December 27, 2019 Rev. 1.00 231 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Register
Name

Bit
7 6 5 4 3 2 1 0

INTEG INT3S1 INT3S0 INT2S1 INT2S0 INT1S1 INT1S0 INT0S1 INT0S0
INTC0 — CP0F INT1F INT0F CP0E INT1E INT0E EMI
INTC1 ADF MF1F MF0F CP1F ADE MF1E MF0E CP1E
INTC2 MF3F MF7F MF6F MF2F MF3E MF7E MF6E MF2E
INTC3 MF5F MF4F INT3F INT2F MF5E MF4E INT3E INT2E
MFI0 STM0AF STM0PF PTM0AF PTM0PF STM0AE STM0PE PTM0AE PTM0PE
MFI1 STM1AF STM1PF PTM1AF PTM1PF STM1AE STM1PE PTM1AE PTM1PE
MFI2 — — PTM2AF PTM2PF — — PTM2AE PTM2PE
MFI3 SIMF SPIAF DEF LVF SIME SPIAE DEE LVE
MFI4 STM2AF STM2PF PTM3AF PTM3PF STM2AE STM2PE PTM3AE PTM3PE
MFI5 — UR2F UR1F UR0F — UR2E UR1E UR0E
MFI6 — — TB1F TB0F — — TB1E TB0E
MFI7 SOFF RXMOXF RXMO1F CANCTLF SOFE RXMOXE RXMO1E CANCTLE

Interrupt Register List

• INTEG Register
Bit 7 6 5 4 3 2 1 0

Name INT3S1 INT3S0 INT2S1 INT2S0 INT1S1 INT1S0 INT0S1 INT0S0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6 INT3S1~INT3S0: Interrupt Edge Control for INT3 Pin
00: Disable
01: Rising edge
10: Falling edge
11: Rising and falling edges

Bit 5~4 INT5S1~INT4S0: Interrupt Edge Control for INT2 Pin
00: Disable
01: Rising edge
10: Falling edge
11: Rising and falling edges

Bit 3~2 INT1S1~INT1S0: Interrupt Edge Control for INT1 Pin
00: Disable
01: Rising edge
10: Falling edge
11: Rising and falling edges

Bit 1~0 INT0S1~INT0S0: Interrupt Edge Control for INT0 Pin
00: Disable
01: Rising edge
10: Falling edge
11: Rising and falling edges

Rev. 1.00 232 December 27, 2019 Rev. 1.00 233 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• INTC0 Register
Bit 7 6 5 4 3 2 1 0

Name — CP0F INT1F INT0F CP0E INT1E INT0E EMI
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit 7 Unimplemented, read as “0”
Bit 6 CP0F: Comparator 0 Interrupt Request Flag

0: No request
1: Interrupt request

Bit 5 INT1F: External Interrupt 1 Request Flag
0: No request
1: Interrupt request

Bit 4 INT0F: External Interrupt 0 Request Flag
0: No request
1: Interrupt request

Bit 3 CP0E: Comparator 0 Interrupt Control
0: Disable
1: Enable

Bit 2 INT1E: External Interrupt 1 Control
0: Disable
1: Enable

Bit 1 INT0E: External Interrupt 0 Control
0: Disable
1: Enable

Bit 0 EMI: Global Interrupt Control
0: Disable
1: Enable

• INTC1 Register
Bit 7 6 5 4 3 2 1 0

Name ADF MF1F MF0F CP1F ADE MF1E MF0E CP1E
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 ADF: A/D Converter Interrupt Request Flag
0: No request
1: Interrupt request

Bit 6 MF1F: Multi-function Interrupt 1 Request Flag
0: No request
1: Interrupt request

Bit 5 MF0F: Multi-function Interrupt 0 Request Flag
0: No request
1: Interrupt request

Bit 4 CP1F: Comparator 1 Interrupt Request Flag
0: No request
1: Interrupt request

Bit 3 ADF: A/D Converter Interrupt Control
0: Disable
1: Enable

Bit 2 MF1E: Multi-function Interrupt 1 Control
0: Disable
1: Enable

Rev. 1.00 232 December 27, 2019 Rev. 1.00 233 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 1 MF0E: Multi-function Interrupt 0 Control
0: Disable
1: Enable

Bit 0 CP1E: Comparator 1 Interrupt Control
0: Disable
1: Enable

• INTC2 Register
Bit 7 6 5 4 3 2 1 0

Name MF3F MF7F MF6F MF2F MF3E MF7E MF6E MF2E
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 MF3F: Multi-function Interrupt 3 Request Flag
0: No request
1: Interrupt request

Bit 6 MF7F: Multi-function Interrupt 7 Request Flag
0: No request
1: Interrupt request

Bit 5 MF6F: Multi-function Interrupt 6 Request Flag
0: No request
1: Interrupt request

Bit 4 MF2F: Multi-function Interrupt 2 Request Flag
0: No request
1: Interrupt request

Bit 3 MF3E: Multi-function Interrupt 3 Control
0: Disable
1: Enable

Bit 2 MF7E: Multi-function Interrupt 7 Control
0: Disable
1: Enable

Bit 1 MF6E: Multi-function Interrupt 6 Control
0: Disable
1: Enable

Bit 0 MF2E: Multi-function Interrupt 2 Control
0: Disable
1: Enable

• INTC3 Register
Bit 7 6 5 4 3 2 1 0

Name MF5F MF4F INT3F INT2F MF5E MF4E INT3E INT2E
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 MF5F: Multi-function Interrupt 5 Request Flag
0: No request
1: Interrupt request

Bit 6 MF4F: Multi-function Interrupt 4 Request Flag
0: No request
1: Interrupt request

Bit 5 INT3F: External interrupt 3 Request Flag
0: No request
1: Interrupt request

Rev. 1.00 234 December 27, 2019 Rev. 1.00 235 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 4 INT2F: External interrupt 2 Request Flag
0: No request
1: Interrupt request

Bit 3 MF5E: Multi-function Interrupt 5 Control
0: Disable
1: Enable

Bit 2 MF4E: Multi-function Interrupt 4 Control
0: Disable
1: Enable

Bit 1 INT3E: External interrupt 3 Control
0: Disable
1: Enable

Bit 0 INT2E: External interrupt 2 Control
0: Disable
1: Enable

• MFI0 Register
Bit 7 6 5 4 3 2 1 0

Name STM0AF STM0PF PTM0AF PTM0PF STM0AE STM0PE PTM0AE PTM0PE
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 STM0AF: STM0 Comparator A match interrupt request flag
0: No request
1: Interrupt request

Bit 6 STM0PF: STM0 Comparator P match interrupt request flag
0: No request
1: Interrupt request

Bit 5 PTM0AF: PTM0 Comparator A match interrupt request flag
0: No request
1: Interrupt request

Bit 4 PTM0PF: PTM0 Comparator P match interrupt request flag
0: No request
1: Interrupt request

Bit 3 STM0AE: STM0 Comparator A match interrupt control
0: Disable
1: Enable

Bit 2 STM0PE: STM0 Comparator P match interrupt control
0: Disable
1: Enable

Bit 1 PTM0AE: PTM0 Comparator A match interrupt control
0: Disable
1: Enable

Bit 0 PTM0PE: PTM0 Comparator P match interrupt control
0: Disable
1: Enable

Rev. 1.00 234 December 27, 2019 Rev. 1.00 235 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• MFI1 Register
Bit 7 6 5 4 3 2 1 0

Name STM1AF STM1PF PTM1AF PTM1PF STM1AE STM1PE PTM1AE PTM1PE
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 STM1AF: STM1 Comparator A match interrupt request flag
0: No request
1: Interrupt request

Bit 6 STM1PF: STM1 Comparator P match interrupt request flag
0: No request
1: Interrupt request

Bit 5 PTM1AF: PTM1 Comparator A match interrupt request flag
0: No request
1: Interrupt request

Bit 4 PTM1PF: PTM1 Comparator P match interrupt request flag
0: No request
1: Interrupt request

Bit 3 STM1AE: STM1 Comparator A match interrupt control
0: Disable
1: Enable

Bit 2 STM1PE: STM1 Comparator P match interrupt control
0: Disable
1: Enable

Bit 1 PTM1AE: PTM1 Comparator A match interrupt control
0: Disable
1: Enable

Bit 0 PTM1PE: PTM1 Comparator P match interrupt control
0: Disable
1: Enable

• MFI2 Register
Bit 7 6 5 4 3 2 1 0

Name — — PTM2AF PTM2PF — — PTM2AE PTM2PE
R/W — — R/W R/W — — R/W R/W
POR — — 0 0 — — 0 0

Bit 7~6 Unimplemented, read as “0”
Bit 5 PTM2AF: PTM2 Comparator A match interrupt request flag

0: No request
1: Interrupt request

Bit 4 PTM2PF: PTM2 Comparator P match interrupt request flag
0: No request
1: Interrupt request

Bit 3~2 Unimplemented, read as “0”
Bit 1 PTM2AE: PTM2 Comparator A match interrupt control

0: Disable
1: Enable

Bit 0 PTM2PE: PTM2 Comparator P match interrupt control
0: Disable
1: Enable

Rev. 1.00 236 December 27, 2019 Rev. 1.00 237 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• MFI3 Register
Bit 7 6 5 4 3 2 1 0

Name SIMF SPIAF DEF LVF SIME SPIAE DEE LVE
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 SIMF: SIM interrupt request flag
0: No request
1: Interrupt request

Bit 6 SPIAF: SPIA interrupt request flag
0: No request
1: Interrupt request

Bit 5 DEF: Data EEPROM interrupt request flag
0: No request
1: Interrupt request

Bit 4 LVF: LVD interrupt request flag
0: No request
1: Interrupt request

Bit 3 SIME: SIM interrupt control
0: Disable
1: Enable

Bit 2 SPIAE: SPIA interrupt control
0: Disable
1: Enable

Bit 1 DEE: Data EEPROM interrupt control
0: Disable
1: Enable

Bit 0 LVE: LVD interrupt control
0: Disable
1: Enable

• MFI4 Register
Bit 7 6 5 4 3 2 1 0

Name STM2AF STM2PF PTM3AF PTM3PF STM2AE STM2PE PTM3AE PTM3PE
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 STM2AF: STM2 Comparator A match interrupt request flag
0: No request
1: Interrupt request

Bit 6 STM2PF: STM2 Comparator P match interrupt request flag
0: No request
1: Interrupt request

Bit 5 PTM3AF: PTM3 Comparator A match interrupt request flag
0: No request
1: Interrupt request

Bit 4 PTM3PF: PTM3 Comparator P match interrupt request flag
0: No request
1: Interrupt request

Bit 3 STM2AE: STM2 Comparator A match interrupt control
0: Disable
1: Enable

Bit 2 STM2PE: STM2 Comparator P match interrupt control
0: Disable
1: Enable

Rev. 1.00 236 December 27, 2019 Rev. 1.00 237 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Bit 1 PTM3AE: PTM3 Comparator A match interrupt control
0: Disable
1: Enable

Bit 0 PTM3PE: PTM3 Comparator P match interrupt control
0: Disable
1: Enable

• MFI5 Register
Bit 7 6 5 4 3 2 1 0

Name — UR2F UR1F UR0F — UR2E UR1E UR0E
R/W — R/W R/W R/W — R/W R/W R/W
POR — 0 0 0 — 0 0 0

Bit 7 Unimplemented, read as “0”
Bit 6 UR2F: UART2 interrupt request flag

0: No request
1: Interrupt request

Bit 5 UR1F: UART1 interrupt request flag
0: No request
1: Interrupt request

Bit 4 UR0F: UART0 interrupt request flag
0: No request
1: Interrupt request

Bit 3 Unimplemented, read as “0”
Bit 2 UR2E: UART2 interrupt control

0: No request
1: Interrupt request

Bit 1 UR1E: UART1 interrupt control
0: Disable
1: Enable

Bit 0 UR0E: UART0 interrupt control
0: Disable
1: Enable

• MFI6 Register
Bit 7 6 5 4 3 2 1 0

Name — — TB1F TB0F — — TB1E TB0E
R/W — — R/W R/W — — R/W R/W
POR — — 0 0 — — 0 0

Bit 7~6 Unimplemented, read as “0”
Bit 5 TB1F: Time Base 1 interrupt request flag

0: No request
1: Interrupt request

Bit 4 TB0F: Time Base 0 interrupt request flag
0: No request
1: Interrupt request

Bit 3~2 Unimplemented, read as “0”
Bit 1 TB1E: Time Base 1 interrupt control

0: Disable
1: Enable

Bit 0 TB0E: Time Base 0 interrupt control
0: Disable
1: Enable

Rev. 1.00 238 December 27, 2019 Rev. 1.00 239 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• MFI7 Register
Bit 7 6 5 4 3 2 1 0

Name SOFF RXMOXF RXMO1F CANCTLF SOFE RXMOXE RXMO1E CANCTLE
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 SOFF: Start of frame interrupt request flag
0: No request
1: Interrupt request

Bit 6 RXMOXF: MOx successful message reception interrupt request flag
0: No request
1: Interrupt request

Bit 5 RXMO1F: MO1 successful message reception interrupt request flag
0: No request
1: Interrupt request

Bit 4 CANCTLF: CAN Controller interrupt request flag
0: No request
1: Interrupt request

Bit 3 SOFE: Start of frame interrupt control
0: Disable
1: Enable

Bit 2 RXMOXE: MOx successful message reception interrupt control
0: Disable
1: Enable

Bit 1 RXMO1E: MO1 successful message reception interrupt control
0: Disable
1: Enable

Bit 0 CANCTLE: CAN Controller interrupt control
0: Disable
1: Enable

Rev. 1.00 238 December 27, 2019 Rev. 1.00 239 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Interrupt Operation
When the conditions for an interrupt event occur, such as a TM Comparator P, Comparator A
match or A/D conversion completion etc., the relevant interrupt request flag will be set. Whether
the request flag actually generates a program jump to the relevant interrupt vector is determined by
the condition of the interrupt enable bit. If the enable bit is set high then the program will jump to
its relevant vector; if the enable bit is zero then although the interrupt request flag is set an actual
interrupt will not be generated and the program will not jump to the relevant interrupt vector. The
global interrupt enable bit, if cleared to zero, will disable all interrupts.

When an interrupt is generated, the Program Counter, which stores the address of the next instruction
to be executed, will be transferred onto the stack. The Program Counter will then be loaded with a
new address which will be the value of the corresponding interrupt vector. The microcontroller will
then fetch its next instruction from this interrupt vector. The instruction at this vector will usually
be a “JMP” which will jump to another section of program which is known as the interrupt service
routine. Here is located the code to control the appropriate interrupt. The interrupt service routine
must be terminated with a “RETI”, which retrieves the original Program Counter address from
the stack and allows the microcontroller to continue with normal execution at the point where the
interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the
accompanying diagrams with their order of priority. Some interrupt sources have their own
individual vector while others share the same multi-function interrupt vector. Once an interrupt
subroutine is serviced, all the other interrupts will be blocked, as the global interrupt enable bit,
EMI bit will be cleared automatically. This will prevent any further interrupt nesting from occurring.
However, if other interrupt requests occur during this interval, although the interrupt will not be
immediately serviced, the request flag will still be recorded.

If an interrupt requires immediate servicing while the program is already in another interrupt service
routine, the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack
is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until
the Stack Pointer is decremented. If immediate service is desired, the stack must be prevented from
becoming full. In case of simultaneous requests, the accompanying diagram shows the priority that
is applied. All of the interrupt request flags when set will wake-up the device if it is in SLEEP or
IDLE Mode, however to prevent a wake-up from occurring the corresponding flag should be set
before the device is in SLEEP or IDLE Mode.

Rev. 1.00 240 December 27, 2019 Rev. 1.00 241 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

EMI 04H

EMI 08H

EMI 0CH

EMI 10H

EMI 14H

M. Funct. 6 MF6F MF6E

EMI 18H

LVD LVF LVE

EMI 1CH

Interrupt Name Request
Flags Enable Bits Master

Enable Vector

EMI auto disabled in ISR

Priority

High

Low

M. Funct. 1 MF1F MF1E

Interrupts contained within
Multi-Function Interrupts

EMI 20H

A/D ADF ADE

EMI 24H

M. Funct. 2 MF2F MF2E

M. Funct. 7 MF7F MF7E

M. Funct. 3 MF3F MF3EEEPROM DEF DEE

SIM SIMF SIME

UART2 UR2F UR2E

EMI 28H

EMI 2CH

STM0 P STM0PF STM0PE

STM0 A STM0AF STM0AE

PTM0 P PTM0PF PTM0PE

PTM0 A PTM0AF PTM0AE

M. Funct. 0 MF0F MF0E

INT0 Pin

INT1 Pin

INT0F

INT1F

INT0E

INT1E

PTM1 P PTM1PF PTM1PE

PTM1 A PTM1AF PTM1AE

SPIA SPIAF SPIAE

Enable Bits

Request Flag, auto reset in ISR

Legend
Request Flag, no auto reset in ISRxxF

xxF

xxE

Comp. 0 CP0F CP0E

Comp. 1 CP1F CP1E

EMI 30H

EMI 34H

EMI 38H

EMI 3CH

INT2 Pin

INT3 Pin

INT2F

INT3F

INT2E

INT3E

M. Funct. 4 MF4F MF4E

M. Funct. 5 MF5F MF5EUART1 UR1F UR1E

STM2 P STM2PF STM2PE

STM2 A STM2AF STM2AE

STM1 P STM1PF STM1PE

STM1 A STM1AF STM1AE

PTM2 P PTM2PF PTM2PE

PTM2 A PTM2AF PTM2AE

PTM3 P PTM3PF PTM3PE

PTM3 A PTM3AF PTM3AE

UART0 UR0F UR0E

Time Base 0 TB0F TB0E

Time Base 1 TB1F TB1E

SOF SOFF SOFE

RXMOX RXMOXF RXMOXE

CANCTL CANCTLF CANCTLE

RXMO1 RXMO1F RXMO1E

Interrupt Structure

Rev. 1.00 240 December 27, 2019 Rev. 1.00 241 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

External Interrupts
The external interrupts are controlled by signal transitions on the pins INT0~INT3. An external
interrupt request will take place when the external interrupt request flags, INT0F~INT3F, are set,
which will occur when a transition, whose type is chosen by the edge select bits, appears on the
external interrupt pins. To allow the program to branch to its respective interrupt vector address,
the global interrupt enable bit, EMI, and respective external interrupt enable bit, INT0E~INT3E,
must first be set. Additionally the correct interrupt edge type must be selected using the INTEG
register to enable the external interrupt function and to choose the trigger edge type. As the external
interrupt pins are pin-shared with I/O pins, they can only be configured as external interrupt pins if
their external interrupt enable bit in the corresponding interrupt register has been set and the external
interrupt pin is selected by the corresponding pin-shared function selection bits. The pin must also
be setup as an input by setting the corresponding bit in the port control register.

When the interrupt is enabled, the stack is not full and the correct transition type appears on the
external interrupt pin, a subroutine call to the external interrupt vector, will take place. When the
interrupt is serviced, the external interrupt request flags, INT0F~INT3F, will be automatically
reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-
high resistor selections on the external interrupt pins will remain valid even if the pin is used as an
external interrupt input. The INTEG register is used to select the type of active edge that will trigger
the external interrupt. A choice of either rising or falling or both edge types can be chosen to trigger
an external interrupt. Note that the INTEG register can also be used to disable the external interrupt
function.

Comparator Interrupts
The comparator interrupts are controlled by the two internal comparators. A comparator interrupt
request will take place when the comparator interrupt request flags, CP0F or CP1F, are set, a situation
that will occur when the comparator output bit changes state. To allow the program to branch to its
respective interrupt vector address, the global interrupt enable bit, EMI, and comparator interrupt
enable bit, CP0E or CP1E, must first be set. When the interrupt is enabled, the stack is not full and
the comparator inputs generate a comparator output bit transition, a subroutine call to the comparator
interrupt cector, will take place. When the interrupt is serviced, the comparator interrupt request flag
will be automatically reset and the EMI bit will also be automatically cleared to disable other interrupts.

Multi-function Interrupts
Within the device there are seven Multi-function interrupts. Unlike the other independent interrupts,
these interrupts have no independent source, but rather are formed from other existing interrupt
sources, namely the TM interrupts, LVD interrupt, EEPROM write operation interrupt, CAN Bus,
SIM interface, SPIA interface and UART interface interrupts.

A Multi-function interrupt request will take place when any of the Multi-function interrupt request
flags MFnF are set. The Multi-function interrupt flags will be set when any of their included
functions generate an interrupt request flag. When the Multi-function interrupt is enabled and the
stack is not full, and either one of the interrupts contained within each of Multi-function interrupt
occurs, a subroutine call to one of the Multi-function interrupt vectors will take place. When the
interrupt is serviced, the related Multi-Function request flag will be automatically reset and the EMI
bit will be automatically cleared to disable other interrupts.

However, it must be noted that, although the Multi-function Interrupt request flags will be
automatically reset when the interrupt is serviced, the request flags from the original source of
the Multi-function interrupts will not be automatically reset and must be manually reset by the
application program.

Rev. 1.00 242 December 27, 2019 Rev. 1.00 243 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

A/D Converter Interrupt
The A/D Converter Interrupt is controlled by the termination of an A/D conversion process. An A/D
Converter Interrupt request will take place when the A/D Converter Interrupt request flag, ADF, is
set, which occurs when the A/D conversion process finishes. To allow the program to branch to its
respective interrupt vector address, the global interrupt enable bit, EMI, and A/D Interrupt enable bit,
ADE, must first be set. When the interrupt is enabled, the stack is not full and the A/D conversion
process has ended, a subroutine call to the A/D Converter Interrupt vector, will take place. When the
interrupt is serviced, the A/D Converter Interrupt flag, ADF, will be automatically cleared. The EMI
bit will also be automatically cleared to disable other interrupts.

Time Base Interrupts
The Time Base Interrupt is contained within the Multi-function Interrupt. The function of the
Time Base Interrupts is to provide regular time signal in the form of an internal interrupt. They are
controlled by the overflow signals from their respective timer functions. When these happens their
respective interrupt request flags, TB0F or TB1F will be set. To allow the program to branch to
their respective interrupt vector addresses, the global interrupt enable bit, EMI, Time Base enable
bits, TB0E or TB1E, and associated Multi-function interrupt enable bit, must first be set. When
the interrupt is enabled, the stack is not full and the Time Base overflows, a subroutine call to the
revelant Multi-function Interrupt vector locations will take place. When the interrupt is serviced, the
EMI bit will be automatically cleared to disable other interrupts, however only the Multi-function
interrupt request flag will be also automatically cleared. As the respective interrupt request flag,
TB0F or TB1F, will not be automatically cleared, it has to be cleared by the application program.

The purpose of the Time Base Interrupt is to provide an interrupt signal at fixed time periods. Its
clock source, fPSC0 or fPSC1, originates from the internal clock source fSYS, fSYS/4 or fSUB and then
passes through a divider, the division ratio of which is selected by programming the appropriate bits
in the TB0C and TB1C registers to obtain longer interrupt periods whose value ranges. The clock
source which in turn controls the Time Base interrupt period is selected using the CLKSEL0[1:0]
and CLKSEL1[1:0] bits in the PSC0R and PSC1R register respectively.

M
U
X

fSYS/4
fSYS

fSUB

Prescaler 0

CLKSEL0[1:0]

fPSC0 fPSC0/28 ~ fPSC0/215 M
U
X

M
U
X

TB0[2:0]

TB1[2:0]

Time Base 0 Interrupt

Time Base 1 Interrupt

TB0ON

TB1ON

M
U
X

fSYS/4
fSYS

fSUB

Prescaler 1

CLKSEL1[1:0]

fPSC1 fPSC1/28 ~ fPSC1/215

Time Base Interrupt

• PSC0R Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — CLKSEL01 CLKSEL00
R/W — — — — — — R/W R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 CLKSEL01~CLKSEL00: Prescaler 0 clock source selection

00: fSYS

01: fSYS/4
1x: fSUB

Rev. 1.00 242 December 27, 2019 Rev. 1.00 243 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

• PSC1R Register
Bit 7 6 5 4 3 2 1 0

Name — — — — — — CLKSEL11 CLKSEL10
R/W — — — — — — R/W R/W
POR — — — — — — 0 0

Bit 7~2 Unimplemented, read as “0”
Bit 1~0 CLKSEL11~CLKSEL10: Prescaler 1 clock source selection

00: fSYS

01: fSYS/4
1x: fSUB

• TB0C Register
Bit 7 6 5 4 3 2 1 0

Name TB0ON — — — — TB02 TB01 TB00
R/W R/W — — — — R/W R/W R/W
POR 0 — — — — 0 0 0

Bit 7 TB0ON: Time Base 0 Control
0: Disable
1: Enable

Bit 6~3 Unimplemented, read as “0”
Bit 2~0 TB02~TB00: Select Time Base 0 Time-out Period

000: 28/fPSC0

001: 29/fPSC0

010: 210/fPSC0

011: 211/fPSC0

100: 212/fPSC0

101: 213/fPSC0

110: 214/fPSC0

111: 215/fPSC0

• TB1C Register
Bit 7 6 5 4 3 2 1 0

Name TB1ON — — — — TB12 TB11 TB10
R/W R/W — — — — R/W R/W R/W
POR 0 — — — — 0 0 0

Bit 7 TB1ON: Time Base 1 Control
0: Disable
1: Enable

Bit 6~3 Unimplemented, read as “0”
Bit 2~0 TB12~TB10: Select Time Base 1 Time-out Period

000: 28/fPSC1

001: 29/fPSC1

010: 210/fPSC1

011: 211/fPSC1

100: 212/fPSC1

101: 213/fPSC1

110: 214/fPSC1

111: 215/fPSC1

Rev. 1.00 244 December 27, 2019 Rev. 1.00 245 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Timer Module Interrupts
The Standard and Periodic TMs each have two interrupts, one comes from the comparator A match
situation and the other comes from the comparator P match situation. All of the TM interrupts
are contained within the Multi-function Interrupts. For all of the TM types there are two interrupt
request flags and two enable control bits. A TM interrupt request will take place when any of the
TM request flags are set, a situation which occurs when a TM comparator P or A match situation
happens.

To allow the program to branch to its respective interrupt vector address, the global interrupt enable
bit, EMI, respective TM Interrupt enable bit, and relevant Multi-function Interrupt enable bit, MFnE,
must first be set. When the interrupt is enabled, the stack is not full and a TM comparator match
situation occurs, a subroutine call to the relevant Multi-function Interrupt vector locations, will take
place. When the TM interrupt is serviced, the EMI bit will be automatically cleared to disable other
interrupts. However, only the related MFnF flag will be automatically cleared. As the TM interrupt
request flags will not be automatically cleared, they have to be cleared by the application program.

LVD Interrupt
The Low Voltage Detector Interrupt is contained within the Multi-function Interrupt. An LVD
Interrupt request will take place when the LVD Interrupt request flag, LVF, is set, which occurs
when the Low Voltage Detector function detects a low power supply voltage. To allow the program
to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, Low Voltage
Interrupt enable bit, LVE, and associated Multi-function interrupt enable bit, must first be set. When
the interrupt is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to
the Multi-function Interrupt vector, will take place. When the Low Voltage Interrupt is serviced, the
EMI bit will be automatically cleared to disable other interrupts, however only the Multi-function
interrupt request flag will be also automatically cleared. As the LVF flag will not be automatically
cleared, it has to be cleared by the application program.

EEPROM Interrupt
The EEPROM Interrupt is contained within the Multi-function Interrupt. An EEPROM Interrupt
request will take place when the EEPROM Interrupt request flag, DEF, is set, which occurs
when an EEPROM Write cycle ends. To allow the program to branch to its respective interrupt
vector address, the global interrupt enable bit, EMI, and EEPROM Interrupt enable bit, DEE, and
associated Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the
stack is not full and an EEPROM Write cycle ends, a subroutine call to the respective EEPROM
Interrupt vector will take place. When the EEPROM Interrupt is serviced, the EMI bit will be
automatically cleared to disable other interrupts, however only the Multi-function interrupt request
flag will be also automatically cleared. As the DEF flag will not be automatically cleared, it has to be
cleared by the application program.

Serial Interface Module Interrupt
The Serial Interface Module Interrupt, also known as the SIM interrupt, is contained within the
Multi-function Interrupt. A SIM Interrupt request will take place when the SIM Interrupt request
flag, SIMF, is set, which occurs when a byte of data has been received or transmitted by the SIM
interface, an I2C slave address match or I2C bus time-out occurrence. To allow the program to
branch to its respective interrupt vector address, the global interrupt enable bit, EMI, the Serial
Interface Interrupt enable bit, SIME, and Multi-function interrupt enable bit must first be set. When
the interrupt is enabled, the stack is not full and any of the above described situations occurs, a
subroutine call to the respective Multi-function Interrupt vector, will take place. When the Serial

Rev. 1.00 244 December 27, 2019 Rev. 1.00 245 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Interface Interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts,
however only the Multi-function interrupt request flag will be also automatically cleared. As the
SIMF flag will not be automatically cleared, it has to be cleared by the application program.

SPIA Interface Interrupt
The SPIA Interface Module Interrupt is contained within the Multi-function Interrupt. A SPIA
Interrupt request will take place when the SPIA Interrupt request flag, SPIAF, is set, which occurs
when a byte of data has been received or transmitted by the SPIA interface. To allow the program
to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, the Serial
Interface Interrupt enable bit, SPIAE, and Multi-function interrupt enable bit must first be set. When
the interrupt is enabled, the stack is not full and a byte of data has been transmitted or received by
the SPIA interface, a subroutine call to the respective Multi-function Interrupt vector, will take place.
When the SPIA Interface Interrupt is serviced, the EMI bit will be automatically cleared to disable
other interrupts. However, only the Multi-function interrupt request flag will be also automatically
cleared. As the SPIAF flag will not be automatically cleared, it has to be cleared by the application
program.

UART Interrupts
The UARTn Transfer Interrupt is contained within the Multi-function interrupt and controlled by
several UARTn transfer conditions. When one of these conditions occurs, an interrupt pulse will
be generated to get the attention of the microcontroller. These conditions are a transmitter data
register empty, transmitter idle, receiver data available, receiver overrun, address detect and an RXn
pin wake-up. To allow the program to branch to its respective interrupt vector address, the global
interrupt enable bit, EMI, the UART Interrupt enable bit, URnE, and Multi-function interrupt enable
bit must first be set. When the interrupt is enabled, the stack is not full and any of the conditions
described above occurs, a subroutine call to the relevant Multi-function Interrupt vector, will take
place. When the UARTn interrupt is serviced, the EMI bit will be automatically cleared to disable
other interrupts. However, only the Multi-function interrupt request flag will be automatically
cleared. As the UARTn Interrupt flag, URnF, will not be automatically cleared, it has to be cleared
by the application program.

CAN Interrupts
The CAN module has four interrupt sources to be used to indicate different conditions, which
are all contained within the Multi-function Interrupt. More details are described in the following
subsections.

SOF Interrupt
An SOF Interrupt request will take place when the correspongding interrupt request flag, SOFF,
is set, which occurs when a start of frame signal is detected. To allow the program to branch to its
respective interrupt vector address, the global interrupt enable bit, EMI, and SOF Interrupt enable
bit, SOFE, and associated Multi-function interrupt enable bit, must first be set. When the interrupt
is enabled, the stack is not full and a start of frame signal is detected, a subroutine call to the
respective interrupt vector will take place. When the SOF Interrupt is serviced, the EMI bit will be
automatically cleared to disable other interrupts, however only the Multi-function interrupt request
flag will be also automatically cleared. As the SOFF flag will not be automatically cleared, it has to
be cleared by the application program.

Rev. 1.00 246 December 27, 2019 Rev. 1.00 247 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

CAN Controller Interrupt
The CAN Controller Interrupt is generated by several individual conditions. When these conditions
exist, an interrupt will be generated to get the attention of the microcontroller. These conditions are
a CAN module busoff state, an error limit warning, a successfull message reception, a successfull
message transmission or a CAN bus status change. To allow the program to branch to its respective
interrupt vector address, the global interrupt enable bit, EMI, and CAN Controller Interrupt
enable bit, CANCTLE, and associated Multi-function interrupt enable bit, must first be set. When
the interrupt is enabled, the stack is not full and any of the conditions described above occurs, a
subroutine call to the respective interrupt vector will take place. When the CAN Controller Interrupt
is serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the
Multi-function interrupt request flag will be also automatically cleared. As the CANCTLF flag will
not be automatically cleared, it has to be cleared by the application program.

Message Object 1 Successful Message Reception Interrupt
A Message Object 1 Successful Message Reception Interrupt request will take place when the
Interrupt request flag, RXMO1F, is set, which occurs when a Message is received into Message
Object 1 successfully. To allow the program to branch to its respective interrupt vector address, the
global interrupt enable bit, EMI, and corresponding Interrupt enable bit, RXMO1E, and associated
Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not
full and a Message is received into Message Object 1 successfully, a subroutine call to the respective
Interrupt vector will take place. When the Interrupt is serviced, the EMI bit will be automatically
cleared to disable other interrupts, however only the Multi-function interrupt request flag will be also
automatically cleared. As the RXMO1F flag will not be automatically cleared, it has to be cleared by
the application program.

Message Object x Successful Message Reception Interrupt
A Message Object x Successful Message Reception Interrupt request will take place when the
Interrupt request flag, RXMOXF, is set, which occurs when a Message is received into Message
Object x successfully. To allow the program to branch to its respective interrupt vector address, the
global interrupt enable bit, EMI, and corresponding Interrupt enable bit, RXMOXE, and associated
Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not
full and a Message is received into Message Object x successfully, a subroutine call to the respective
Interrupt vector will take place. When the Interrupt is serviced, the EMI bit will be automatically
cleared to disable other interrupts, however only the Multi-function interrupt request flag will be also
automatically cleared. As the RXMOXF flag will not be automatically cleared, it has to be cleared
by the application program.

Interrupt Wake-up Function
Each of the interrupt functions has the capability of waking up the microcontroller when in the
SLEEP or IDLE Mode. A wake-up is generated when an interrupt request flag changes from low to
high and is independent of whether the interrupt is enabled or not. Therefore, even though the device
is in the SLEEP or IDLE Mode and its system oscillator stopped, situations such as external edge
transitions on the external interrupt pins or a low power supply voltage may cause their respective
interrupt flag to be set high and consequently generate an interrupt. Care must therefore be taken if
spurious wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then
the corresponding interrupt request flag should be set high before the device enters the SLEEP or
IDLE Mode. The interrupt enable bits have no effect on the interrupt wake-up function.

Rev. 1.00 246 December 27, 2019 Rev. 1.00 247 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Programming Considerations
By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being
serviced, however, once an interrupt request flag is set, it will remain in this condition in the
interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by
the application program.

Where a certain interrupt is contained within a Multi-function interrupt, then when the interrupt
service routine is executed, as only the Multi-function interrupt request flags, MFnF, will be
automatically cleared, the individual request flag for the function needs to be cleared by the
application program.

It is recommended that programs do not use the “CALL” instruction within the interrupt service
subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately.
If only one stack is left and the interrupt is not well controlled, the original control sequence will be
damaged once a CALL subroutine is executed in the interrupt subroutine.

Every interrupt has the capability of waking up the microcontroller when it is in SLEEP or IDLE
Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is
required to prevent a certain interrupt from waking up the microcontroller then its respective request
flag should be first set high before enter SLEEP or IDLE Mode.

As only the Program Counter is pushed onto the stack, then when the interrupt is serviced, if the
contents of the accumulator, status register or other registers are altered by the interrupt service
program, their contents should be saved to the memory at the beginning of the interrupt service
routine. To return from an interrupt subroutine, either a RET or RETI instruction may be executed.
The RETI instruction in addition to executing a return to the main program also automatically sets
the EMI bit high to allow further interrupts. The RET instruction however only executes a return to
the main program leaving the EMI bit in its present zero state and therefore disabling the execution
of further interrupts.

Rev. 1.00 248 December 27, 2019 Rev. 1.00 249 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Low Voltage Detector – LVD
The device has a Low Voltage Detector function, also known as LVD. This enables the device to
monitor the power supply voltage, VDD, and provide a warning signal should it fall below a certain
level. This function may be especially useful in battery applications where the supply voltage will
gradually reduce as the battery ages, as it allows an early warning battery low signal to be generated.
The Low Voltage Detector also has the capability of generating an interrupt signal.

LVD Register
The Low Voltage Detector function is controlled using a single register with the name LVDC. Three
bits in this register, VLVD2~VLVD0, are used to select one of eight fixed voltages below which
a low voltage condition will be determined. A low voltage condition is indicated when the LVDO
bit is set. If the LVDO bit is low, this indicates that the VDD voltage is above the preset low voltage
value. The LVDEN bit is used to control the overall on/off function of the low voltage detector.
Setting the bit high will enable the low voltage detector. Clearing the bit to zero will switch off the
internal low voltage detector circuits. As the low voltage detector will consume a certain amount of
power, it may be desirable to switch off the circuit when not in use, an important consideration in
power sensitive battery powered applications.

• LVDC Register
Bit 7 6 5 4 3 2 1 0

Name — — LVDO LVDEN VBGEN VLVD2 VLVD1 VLVD0
R/W — — R R/W R/W R/W R/W R/W
POR — — 0 0 0 0 0 0

Bit 7~6 Unimplemented, read as “0”
Bit 5 LVDO: LVD Output Flag

0: No Low Voltage Detect
1: Low Voltage Detect

Bit 4 LVDEN: Low Voltage Detector Control
0: Disable
1: Enable

Bit 3 VBGEN: Bandgap Buffer Control
0: Disable
1: Enable

Note that the Bandgap circuit is enabled when the LVD or LVR function is enabled or
when the VBGEN bit is set to 1.

Bit 2~0 VLVD2~VLVD0: Select LVD Voltage
000: 2.0V
001: 2.2V
010: 2.4V
011: 2.7V
100: 3.0V
101: 3.3V
110: 3.6V
111: 4.0V

Rev. 1.00 248 December 27, 2019 Rev. 1.00 249 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LVD Operation
The Low Voltage Detector function operates by comparing the power supply voltage, VDD, with a
pre-specified voltage level stored in the LVDC register. This has a range of between 2.0V and 4.0V.
When the power supply voltage, VDD, falls below this pre-determined value, the LVDO bit will be
set high indicating a low power supply voltage condition. When the device is in the SLEEP mode,
the low voltage detector will be disabled even if the LVDEN bit is high. After enabling the Low
Voltage Detector, a time delay tLVDS should be allowed for the circuitry to stabilise before reading the
LVDO bit. Note also that as the VDD voltage may rise and fall rather slowly, at the voltage nears that
of VLVD, there may be multiple bit LVDO transitions.

VDD

LVDEN

LVDO

VLVD

tLVDS

LVD Operation

The Low Voltage Detector also has its own interrupt which is contained within one of the Multi-
function interrupts, providing an alternative means of low voltage detection, in addition to polling
the LVDO bit. The interrupt will only be generated after a delay of tLVD after the LVDO bit has been
set high by a low voltage condition. In this case, the LVF interrupt request flag will be set, causing
an interrupt to be generated if VDD falls below the preset LVD voltage. This will cause the device to
wake-up from the IDLE Mode, however if the Low Voltage Detector wake up function is not required
then the LVF flag should be first set high before the device enters the IDLE Mode.

Application Circuits

For CAN Application Reference

HT66F3370H

Transceiver

CANTX

CANRX

RESETB

16MHz

VDD

VDD

5V

120Ω 120Ω

CANH CANL

Node2

VSS

OSC1

OSC2

CAN Bus

Node1

Terminating
Resistor

Rev. 1.00 250 December 27, 2019 Rev. 1.00 251 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Instruction Set

Introduction
Central to the successful operation of any microcontroller is its instruction set, which is a set of
program instruction codes that directs the microcontroller to perform certain operations. In the case
of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to
enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several
functional groupings.

Instruction Timing
Most instructions are implemented within one instruction cycle. The exceptions to this are branch,
call, or table read instructions where two instruction cycles are required. One instruction cycle is
equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions
would be implemented within 0.5μs and branch or call instructions would be implemented within
1μs. Although instructions which require one more cycle to implement are generally limited to
the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other
instructions which involve manipulation of the Program Counter Low register or PCL will also take
one more cycle to implement. As instructions which change the contents of the PCL will imply a
direct jump to that new address, one more cycle will be required. Examples of such instructions
would be “CLR PCL” or “MOV PCL, A”. For the case of skip instructions, it must be noted that if
the result of the comparison involves a skip operation then this will also take one more cycle, if no
skip is involved then only one cycle is required.

Moving and Transferring Data
The transfer of data within the microcontroller program is one of the most frequently used
operations. Making use of several kinds of MOV instructions, data can be transferred from registers
to the Accumulator and vice-versa as well as being able to move specific immediate data directly
into the Accumulator. One of the most important data transfer applications is to receive data from
the input ports and transfer data to the output ports.

Arithmetic Operations
The ability to perform certain arithmetic operations and data manipulation is a necessary feature of
most microcontroller applications. Within the Holtek microcontroller instruction set are a range of
add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care
must be taken to ensure correct handling of carry and borrow data when results exceed 255 for
addition and less than 0 for subtraction. The increment and decrement instructions such as INC,
INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the
values in the destination specified.

Rev. 1.00 250 December 27, 2019 Rev. 1.00 251 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Logical and Rotate Operation
The standard logical operations such as AND, OR, XOR and CPL all have their own instruction
within the Holtek microcontroller instruction set. As with the case of most instructions involving
data manipulation, data must pass through the Accumulator which may involve additional
programming steps. In all logical data operations, the zero flag may be set if the result of the
operation is zero. Another form of logical data manipulation comes from the rotate instructions such
as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different
rotate instructions exist depending on program requirements. Rotate instructions are useful for serial
port programming applications where data can be rotated from an internal register into the Carry
bit from where it can be examined and the necessary serial bit set high or low. Another application
which rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer
Program branching takes the form of either jumps to specified locations using the JMP instruction
or to a subroutine using the CALL instruction. They differ in the sense that in the case of a
subroutine call, the program must return to the instruction immediately when the subroutine has
been carried out. This is done by placing a return instruction “RET” in the subroutine which will
cause the program to jump back to the address right after the CALL instruction. In the case of a JMP
instruction, the program simply jumps to the desired location. There is no requirement to jump back
to the original jumping off point as in the case of the CALL instruction. One special and extremely
useful set of branch instructions are the conditional branches. Here a decision is first made regarding
the condition of a certain data memory or individual bits. Depending upon the conditions, the
program will continue with the next instruction or skip over it and jump to the following instruction.
These instructions are the key to decision making and branching within the program perhaps
determined by the condition of certain input switches or by the condition of internal data bits.

Bit Operations
The ability to provide single bit operations on Data Memory is an extremely flexible feature of all
Holtek microcontrollers. This feature is especially useful for output port bit programming where
individual bits or port pins can be directly set high or low using either the “SET [m].i” or “CLR [m].i”
instructions respectively. The feature removes the need for programmers to first read the 8-bit output
port, manipulate the input data to ensure that other bits are not changed and then output the port with
the correct new data. This read-modify-write process is taken care of automatically when these bit
operation instructions are used.

Table Read Operations
Data storage is normally implemented by using registers. However, when working with large
amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in
the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program
Memory to be setup as a table where data can be directly stored. A set of easy to use instructions
provides the means by which this fixed data can be referenced and retrieved from the Program
Memory.

Other Operations
In addition to the above functional instructions, a range of other instructions also exist such as
the “HALT” instruction for Power-down operations and instructions to control the operation of
the Watchdog Timer for reliable program operations under extreme electric or electromagnetic
environments. For their relevant operations, refer to the functional related sections.

Rev. 1.00 252 December 27, 2019 Rev. 1.00 253 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Instruction Set Summary
The instructions related to the data memory access in the following table can be used when the
desired data memory is located in Data Memory sector 0.

Table Conventions
x: Bits immediate data
m: Data Memory address
A: Accumulator
i: 0~7 number of bits
addr: Program memory address

Mnemonic Description Cycles Flag Affected
Arithmetic
ADD A,[m] Add Data Memory to ACC 1 Z, C, AC, OV, SC
ADDM A,[m] Add ACC to Data Memory 1Note Z, C, AC, OV, SC
ADD A,x Add immediate data to ACC 1 Z, C, AC, OV, SC
ADC A,[m] Add Data Memory to ACC with Carry 1 Z, C, AC, OV, SC
ADCM A,[m] Add ACC to Data memory with Carry 1Note Z, C, AC, OV, SC
SUB A,x Subtract immediate data from the ACC 1 Z, C, AC, OV, SC, CZ
SUB A,[m] Subtract Data Memory from ACC 1 Z, C, AC, OV, SC, CZ
SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory 1Note Z, C, AC, OV, SC, CZ
SBC A,x Subtract immediate data from ACC with Carry 1 Z, C, AC, OV, SC, CZ
SBC A,[m] Subtract Data Memory from ACC with Carry 1 Z, C, AC, OV, SC, CZ
SBCM A,[m] Subtract Data Memory from ACC with Carry, result in Data Memory 1Note Z, C, AC, OV, SC, CZ
DAA [m] Decimal adjust ACC for Addition with result in Data Memory 1Note C
Logic Operation
AND A,[m] Logical AND Data Memory to ACC 1 Z
OR A,[m] Logical OR Data Memory to ACC 1 Z
XOR A,[m] Logical XOR Data Memory to ACC 1 Z
ANDM A,[m] Logical AND ACC to Data Memory 1Note Z
ORM A,[m] Logical OR ACC to Data Memory 1Note Z
XORM A,[m] Logical XOR ACC to Data Memory 1Note Z
AND A,x Logical AND immediate Data to ACC 1 Z
OR A,x Logical OR immediate Data to ACC 1 Z
XOR A,x Logical XOR immediate Data to ACC 1 Z
CPL [m] Complement Data Memory 1Note Z
CPLA [m] Complement Data Memory with result in ACC 1 Z
Increment & Decrement
INCA [m] Increment Data Memory with result in ACC 1 Z
INC [m] Increment Data Memory 1Note Z
DECA [m] Decrement Data Memory with result in ACC 1 Z
DEC [m] Decrement Data Memory 1Note Z
Rotate
RRA [m] Rotate Data Memory right with result in ACC 1 None
RR [m] Rotate Data Memory right 1Note None
RRCA [m] Rotate Data Memory right through Carry with result in ACC 1 C
RRC [m] Rotate Data Memory right through Carry 1Note C
RLA [m] Rotate Data Memory left with result in ACC 1 None
RL [m] Rotate Data Memory left 1Note None
RLCA [m] Rotate Data Memory left through Carry with result in ACC 1 C
RLC [m] Rotate Data Memory left through Carry 1Note C

Rev. 1.00 252 December 27, 2019 Rev. 1.00 253 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Mnemonic Description Cycles Flag Affected
Data Move
MOV A,[m] Move Data Memory to ACC 1 None
MOV [m],A Move ACC to Data Memory 1Note None
MOV A,x Move immediate data to ACC 1 None
Bit Operation
CLR [m].i Clear bit of Data Memory 1Note None
SET [m].i Set bit of Data Memory 1Note None
Branch Operation
JMP addr Jump unconditionally 2 None
SZ [m] Skip if Data Memory is zero 1Note None
SZA [m] Skip if Data Memory is zero with data movement to ACC 1Note None
SZ [m].i Skip if bit i of Data Memory is zero 1Note None
SNZ [m] Skip if Data Memory is not zero 1Note None
SNZ [m].i Skip if bit i of Data Memory is not zero 1Note None
SIZ [m] Skip if increment Data Memory is zero 1Note None
SDZ [m] Skip if decrement Data Memory is zero 1Note None
SIZA [m] Skip if increment Data Memory is zero with result in ACC 1Note None
SDZA [m] Skip if decrement Data Memory is zero with result in ACC 1Note None
CALL addr Subroutine call 2 None
RET Return from subroutine 2 None
RET A,x Return from subroutine and load immediate data to ACC 2 None
RETI Return from interrupt 2 None
Table Read Operation
TABRD [m] Read table (specific page) to TBLH and Data Memory 2Note None
TABRDL [m] Read table (last page) to TBLH and Data Memory 2Note None
ITABRD [m] Increment table pointer TBLP first and Read table to TBLH and Data Memory 2Note None

ITABRDL [m] Increment table pointer TBLP first and Read table (last page) to TBLH and
Data Memory 2Note None

Miscellaneous
NOP No operation 1 None
CLR [m] Clear Data Memory 1Note None
SET [m] Set Data Memory 1Note None
CLR WDT Clear Watchdog Timer 1 TO, PDF
SWAP [m] Swap nibbles of Data Memory 1Note None
SWAPA [m] Swap nibbles of Data Memory with result in ACC 1 None
HALT Enter power down mode 1 TO, PDF
Note: 1. For skip instructions, if the result of the comparison involves a skip then up to three cycles are required, if

no skip takes place only one cycle is required.
2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
3. For the “CLR WDT” instruction the TO and PDF flags may be affected by the execution status. The TO

and PDF flags are cleared after the “CLR WDT” instructions is executed. Otherwise the TO and PDF
flags remain unchanged.

Rev. 1.00 254 December 27, 2019 Rev. 1.00 255 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Extended Instruction Set
The extended instructions are used to support the full range address access for the data memory.
When the accessed data memory is located in any data memory sector except sector 0, the extended
instruction can be used to directly access the data memory instead of using the indirect addressing
access. This can not only reduce the use of Flash memory space but also improve the CPU execution
efficiency.

Mnemonic Description Cycles Flag Affected
Arithmetic
LADD A,[m] Add Data Memory to ACC 2 Z, C, AC, OV, SC
LADDM A,[m] Add ACC to Data Memory 2Note Z, C, AC, OV, SC
LADC A,[m] Add Data Memory to ACC with Carry 2 Z, C, AC, OV, SC
LADCM A,[m] Add ACC to Data memory with Carry 2Note Z, C, AC, OV, SC
LSUB A,[m] Subtract Data Memory from ACC 2 Z, C, AC, OV, SC, CZ
LSUBM A,[m] Subtract Data Memory from ACC with result in Data Memory 2Note Z, C, AC, OV, SC, CZ
LSBC A,[m] Subtract Data Memory from ACC with Carry 2 Z, C, AC, OV, SC, CZ
LSBCM A,[m] Subtract Data Memory from ACC with Carry, result in Data Memory 2Note Z, C, AC, OV, SC, CZ
LDAA [m] Decimal adjust ACC for Addition with result in Data Memory 2Note C
Logic Operation
LAND A,[m] Logical AND Data Memory to ACC 2 Z
LOR A,[m] Logical OR Data Memory to ACC 2 Z
LXOR A,[m] Logical XOR Data Memory to ACC 2 Z
LANDM A,[m] Logical AND ACC to Data Memory 2Note Z
LORM A,[m] Logical OR ACC to Data Memory 2Note Z
LXORM A,[m] Logical XOR ACC to Data Memory 2Note Z
LCPL [m] Complement Data Memory 2Note Z
LCPLA [m] Complement Data Memory with result in ACC 2 Z
Increment & Decrement
LINCA [m] Increment Data Memory with result in ACC 2 Z
LINC [m] Increment Data Memory 2Note Z
LDECA [m] Decrement Data Memory with result in ACC 2 Z
LDEC [m] Decrement Data Memory 2Note Z
Rotate
LRRA [m] Rotate Data Memory right with result in ACC 2 None
LRR [m] Rotate Data Memory right 2Note None
LRRCA [m] Rotate Data Memory right through Carry with result in ACC 2 C
LRRC [m] Rotate Data Memory right through Carry 2Note C
LRLA [m] Rotate Data Memory left with result in ACC 2 None
LRL [m] Rotate Data Memory left 2Note None
LRLCA [m] Rotate Data Memory left through Carry with result in ACC 2 C
LRLC [m] Rotate Data Memory left through Carry 2Note C
Data Move
LMOV A,[m] Move Data Memory to ACC 2 None
LMOV [m],A Move ACC to Data Memory 2Note None
Bit Operation
LCLR [m].i Clear bit of Data Memory 2Note None
LSET [m].i Set bit of Data Memory 2Note None

Rev. 1.00 254 December 27, 2019 Rev. 1.00 255 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Mnemonic Description Cycles Flag Affected
Branch
LSZ [m] Skip if Data Memory is zero 2Note None
LSZA [m] Skip if Data Memory is zero with data movement to ACC 2Note None
LSNZ [m] Skip if Data Memory is not zero 2Note None
LSZ [m].i Skip if bit i of Data Memory is zero 2Note None
LSNZ [m].i Skip if bit i of Data Memory is not zero 2Note None
LSIZ [m] Skip if increment Data Memory is zero 2Note None
LSDZ [m] Skip if decrement Data Memory is zero 2Note None
LSIZA [m] Skip if increment Data Memory is zero with result in ACC 2Note None
LSDZA [m] Skip if decrement Data Memory is zero with result in ACC 2Note None
Table Read
LTABRD [m] Read table to TBLH and Data Memory 3Note None
LTABRDL [m] Read table (last page) to TBLH and Data Memory 3Note None
LITABRD [m] Increment table pointer TBLP first and Read table to TBLH and Data Memory 3Note None

LITABRDL [m] Increment table pointer TBLP first and Read table (last page) to TBLH and
Data Memory 3Note None

Miscellaneous
LCLR [m] Clear Data Memory 2Note None
LSET [m] Set Data Memory 2Note None
LSWAP [m] Swap nibbles of Data Memory 2Note None
LSWAPA [m] Swap nibbles of Data Memory with result in ACC 2 None
Note: 1. For these extended skip instructions, if the result of the comparison involves a skip then up to four cycles

are required, if no skip takes place two cycles is required.
2. Any extended instruction which changes the contents of the PCL register will also require three cycles for

execution.

Rev. 1.00 256 December 27, 2019 Rev. 1.00 257 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry
Description The contents of the specified Data Memory, Accumulator and the carry flag are added.
 The result is stored in the Accumulator.
Operation ACC ← ACC + [m] + C
Affected flag(s) OV, Z, AC, C, SC

ADCM A,[m] Add ACC to Data Memory with Carry
Description The contents of the specified Data Memory, Accumulator and the carry flag are added.
 The result is stored in the specified Data Memory.
Operation [m] ← ACC + [m] + C
Affected flag(s) OV, Z, AC, C, SC

ADD A,[m] Add Data Memory to ACC
Description The contents of the specified Data Memory and the Accumulator are added.
 The result is stored in the Accumulator.
Operation ACC ← ACC + [m]
Affected flag(s) OV, Z, AC, C, SC

ADD A,x Add immediate data to ACC
Description The contents of the Accumulator and the specified immediate data are added.
 The result is stored in the Accumulator.
Operation ACC ← ACC + x
Affected flag(s) OV, Z, AC, C, SC

ADDM A,[m] Add ACC to Data Memory
Description The contents of the specified Data Memory and the Accumulator are added.
 The result is stored in the specified Data Memory.
Operation [m] ← ACC + [m]
Affected flag(s) OV, Z, AC, C, SC

AND A,[m] Logical AND Data Memory to ACC
Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND
 operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″AND″ [m]
Affected flag(s) Z

AND A,x Logical AND immediate data to ACC
Description Data in the Accumulator and the specified immediate data perform a bit wise logical AND
 operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″AND″ x
Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory
Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND
 operation. The result is stored in the Data Memory.
Operation [m] ← ACC ″AND″ [m]
Affected flag(s) Z

Rev. 1.00 256 December 27, 2019 Rev. 1.00 257 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

CALL addr Subroutine call
Description Unconditionally calls a subroutine at the specified address. The Program Counter then
 increments by 1 to obtain the address of the next instruction which is then pushed onto the
 stack. The specified address is then loaded and the program continues execution from this
 new address. As this instruction requires an additional operation, it is a two cycle instruction.
Operation Stack ← Program Counter + 1
 Program Counter ← addr
Affected flag(s) None

CLR [m] Clear Data Memory
Description Each bit of the specified Data Memory is cleared to 0.
Operation [m] ← 00H
Affected flag(s) None

CLR [m].i Clear bit of Data Memory
Description Bit i of the specified Data Memory is cleared to 0.
Operation [m].i ← 0
Affected flag(s) None

CLR WDT Clear Watchdog Timer
Description The TO, PDF flags and the WDT are all cleared.
Operation WDT cleared
 TO ← 0
 PDF ← 0
Affected flag(s) TO, PDF

CPL [m] Complement Data Memory
Description Each bit of the specified Data Memory is logically complemented (1′s complement). Bits which
 previously contained a 1 are changed to 0 and vice versa.
Operation [m] ← [m]
Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC
Description Each bit of the specified Data Memory is logically complemented (1′s complement). Bits which
 previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in
 the Accumulator and the contents of the Data Memory remain unchanged.
Operation ACC ← [m]
Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory
Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value
 resulting from the previous addition of two BCD variables. If the low nibble is greater than 9
 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble
 remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6
 will be added to the high nibble. Essentially, the decimal conversion is performed by adding
 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag
 may be affected by this instruction which indicates that if the original BCD sum is greater than
 100, it allows multiple precision decimal addition.
Operation [m] ← ACC + 00H or
 [m] ← ACC + 06H or
 [m] ← ACC + 60H or
 [m] ← ACC + 66H
Affected flag(s) C

Rev. 1.00 258 December 27, 2019 Rev. 1.00 259 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

DEC [m] Decrement Data Memory
Description Data in the specified Data Memory is decremented by 1.
Operation [m] ← [m] − 1
Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC
Description Data in the specified Data Memory is decremented by 1. The result is stored in the
 Accumulator. The contents of the Data Memory remain unchanged.
Operation ACC ← [m] − 1
Affected flag(s) Z

HALT Enter power down mode
Description This instruction stops the program execution and turns off the system clock. The contents of
 the Data Memory and registers are retained. The WDT and prescaler are cleared. The power
 down flag PDF is set and the WDT time-out flag TO is cleared.
Operation TO ← 0
 PDF ← 1
Affected flag(s) TO, PDF

INC [m] Increment Data Memory
Description Data in the specified Data Memory is incremented by 1.
Operation [m] ← [m] + 1
Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC
Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator.
 The contents of the Data Memory remain unchanged.
Operation ACC ← [m] + 1
Affected flag(s) Z

JMP addr Jump unconditionally
Description The contents of the Program Counter are replaced with the specified address. Program
 execution then continues from this new address. As this requires the insertion of a dummy
 instruction while the new address is loaded, it is a two cycle instruction.
Operation Program Counter ← addr
Affected flag(s) None

MOV A,[m] Move Data Memory to ACC
Description The contents of the specified Data Memory are copied to the Accumulator.
Operation ACC ← [m]
Affected flag(s) None

MOV A,x Move immediate data to ACC
Description The immediate data specified is loaded into the Accumulator.
Operation ACC ← x
Affected flag(s) None

MOV [m],A Move ACC to Data Memory
Description The contents of the Accumulator are copied to the specified Data Memory.
Operation [m] ← ACC
Affected flag(s) None

Rev. 1.00 258 December 27, 2019 Rev. 1.00 259 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

NOP No operation
Description No operation is performed. Execution continues with the next instruction.
Operation No operation
Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC
Description Data in the Accumulator and the specified Data Memory perform a bitwise
 logical OR operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″OR″ [m]
Affected flag(s) Z

OR A,x Logical OR immediate data to ACC
Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR
 operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″OR″ x
Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory
Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR
 operation. The result is stored in the Data Memory.
Operation [m] ← ACC ″OR″ [m]
Affected flag(s) Z

RET Return from subroutine
Description The Program Counter is restored from the stack. Program execution continues at the restored
 address.
Operation Program Counter ← Stack
Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC
Description The Program Counter is restored from the stack and the Accumulator loaded with the specified
 immediate data. Program execution continues at the restored address.
Operation Program Counter ← Stack
 ACC ← x
Affected flag(s) None

RETI Return from interrupt
Description The Program Counter is restored from the stack and the interrupts are re-enabled by setting the
 EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the
 RETI instruction is executed, the pending Interrupt routine will be processed before returning
 to the main program.
Operation Program Counter ← Stack
 EMI ← 1
Affected flag(s) None

RL [m] Rotate Data Memory left
Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.
Operation [m].(i+1) ← [m].i; (i=0~6)
 [m].0 ← [m].7
Affected flag(s) None

Rev. 1.00 260 December 27, 2019 Rev. 1.00 261 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

RLA [m] Rotate Data Memory left with result in ACC
Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.
 The rotated result is stored in the Accumulator and the contents of the Data Memory remain
 unchanged.
Operation ACC.(i+1) ← [m].i; (i=0~6)
 ACC.0 ← [m].7
Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry
Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7
 replaces the Carry bit and the original carry flag is rotated into bit 0.
Operation [m].(i+1) ← [m].i; (i=0~6)
 [m].0 ← C
 C ← [m].7
Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC
Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the
 Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the
 Accumulator and the contents of the Data Memory remain unchanged.
Operation ACC.(i+1) ← [m].i; (i=0~6)
 ACC.0 ← C
 C ← [m].7
Affected flag(s) C

RR [m] Rotate Data Memory right
Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.
Operation [m].i ← [m].(i+1); (i=0~6)
 [m].7 ← [m].0
Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC
Description Data in the specified Data Memory is rotated right by 1 bit with bit 0
 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the
 Data Memory remain unchanged.
Operation ACC.i ← [m].(i+1); (i=0~6)
 ACC.7 ← [m].0
Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry
Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0
 replaces the Carry bit and the original carry flag is rotated into bit 7.
Operation [m].i ← [m].(i+1); (i=0~6)
 [m].7 ← C
 C ← [m].0
Affected flag(s) C

Rev. 1.00 260 December 27, 2019 Rev. 1.00 261 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

RRCA [m] Rotate Data Memory right through Carry with result in ACC
Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces
 the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the
 Accumulator and the contents of the Data Memory remain unchanged.
Operation ACC.i ← [m].(i+1); (i=0~6)
 ACC.7 ← C
 C ← [m].0
Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry
Description The contents of the specified Data Memory and the complement of the carry flag are
 subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the
 result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
 positive or zero, the C flag will be set to 1.
Operation ACC ← ACC − [m] − C
Affected flag(s) OV, Z, AC, C, SC, CZ

SBC A, x Subtract immediate data from ACC with Carry
Description The immediate data and the complement of the carry flag are subtracted from the
 Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is
 negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag
 will be set to 1.
Operation ACC ← ACC – [m] – C
Affected flag(s) OV, Z, AC, C, SC, CZ

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory
Description The contents of the specified Data Memory and the complement of the carry flag are
 subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the
 result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
 positive or zero, the C flag will be set to 1.
Operation [m] ← ACC − [m] − C
Affected flag(s) OV, Z, AC, C, SC, CZ

SDZ [m] Skip if decrement Data Memory is 0
Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the
 following instruction is skipped. As this requires the insertion of a dummy instruction while
 the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
 proceeds with the following instruction.
Operation [m] ← [m] − 1
 Skip if [m]=0
Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC
Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the
 following instruction is skipped. The result is stored in the Accumulator but the specified
 Data Memory contents remain unchanged. As this requires the insertion of a dummy
 instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0,
 the program proceeds with the following instruction.
Operation ACC ← [m] − 1
 Skip if ACC=0
Affected flag(s) None

Rev. 1.00 262 December 27, 2019 Rev. 1.00 263 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

SET [m] Set Data Memory
Description Each bit of the specified Data Memory is set to 1.
Operation [m] ← FFH
Affected flag(s) None

SET [m].i Set bit of Data Memory
Description Bit i of the specified Data Memory is set to 1.
Operation [m].i ← 1
Affected flag(s) None

SIZ [m] Skip if increment Data Memory is 0
Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
 following instruction is skipped. As this requires the insertion of a dummy instruction while
 the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
 proceeds with the following instruction.
Operation [m] ← [m] + 1
 Skip if [m]=0
Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC
Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
 following instruction is skipped. The result is stored in the Accumulator but the specified
 Data Memory contents remain unchanged. As this requires the insertion of a dummy
 instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
 0 the program proceeds with the following instruction.
Operation ACC ← [m] + 1
 Skip if ACC=0
Affected flag(s) None

SNZ [m].i Skip if Data Memory is not 0
Description If the specified Data Memory is not 0, the following instruction is skipped. As this requires the
 insertion of a dummy instruction while the next instruction is fetched, it is a two cycle
 instruction. If the result is 0 the program proceeds with the following instruction.
Operation Skip if [m].i ≠ 0
Affected flag(s) None

SNZ [m] Skip if Data Memory is not 0
Description If the specified Data Memory is not 0, the following instruction is skipped. As this requires the
 insertion of a dummy instruction while the next instruction is fetched, it is a two cycle
 instruction. If the result is 0 the program proceeds with the following instruction.
Operation Skip if [m]≠ 0
Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC
Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is
 stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be
 cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation ACC ← ACC − [m]
Affected flag(s) OV, Z, AC, C, SC, CZ

Rev. 1.00 262 December 27, 2019 Rev. 1.00 263 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory
Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is
 stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be
 cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation [m] ← ACC − [m]
Affected flag(s) OV, Z, AC, C, SC, CZ

SUB A,x Subtract immediate data from ACC
Description The immediate data specified by the code is subtracted from the contents of the Accumulator.
 The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C
 flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation ACC ← ACC − x
Affected flag(s) OV, Z, AC, C, SC, CZ

SWAP [m] Swap nibbles of Data Memory
Description The low-order and high-order nibbles of the specified Data Memory are interchanged.
Operation [m].3~[m].0 ↔ [m].7~[m].4
Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC
Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The
 result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation ACC.3~ACC.0 ← [m].7~[m].4
 ACC.7~ACC.4 ← [m].3~[m].0
Affected flag(s) None

SZ [m] Skip if Data Memory is 0
Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this
 requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
 cycle instruction. If the result is not 0 the program proceeds with the following instruction.
Operation Skip if [m]=0
Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC
Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero,
 the following instruction is skipped. As this requires the insertion of a dummy instruction
 while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the
 program proceeds with the following instruction.
Operation ACC ← [m]
 Skip if [m]=0
Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0
Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires
 the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle
 instruction. If the result is not 0, the program proceeds with the following instruction.
Operation Skip if [m].i=0
Affected flag(s) None

Rev. 1.00 264 December 27, 2019 Rev. 1.00 265 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

TABRD [m] Read table (specific page) to TBLH and Data Memory
Description The low byte of the program code (specific page) addressed by the table pointer pair
 (TBLP and TBHP) is moved to the specified Data Memory and the high byte moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)
Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory
Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved
 to the specified Data Memory and the high byte moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)
Affected flag(s) None

ITABRD [m] Increment table pointer low byte first and read table to TBLH and Data Memory
Description Increment table pointer low byte, TBLP, first and then the program code addressed by the
 table pointer (TBHP and TBLP) is moved to the specified Data Memory and the high byte
 moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)
Affected flag(s) None

ITABRDL [m] Increment table pointer low byte first and read table (last page) to TBLH and Data Memory
Description Increment table pointer low byte, TBLP, first and then the low byte of the program code
 (last page) addressed by the table pointer (TBLP) is moved to the specified Data Memory and
 the high byte moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)
Affected flag(s) None

XOR A,[m] Logical XOR Data Memory to ACC
Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR
 operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″XOR″ [m]
Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory
Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR
 operation. The result is stored in the Data Memory.
Operation [m] ← ACC ″XOR″ [m]
Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC
Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR
 operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″XOR″ x
Affected flag(s) Z

Rev. 1.00 264 December 27, 2019 Rev. 1.00 265 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Extended Instruction Definition
The extended instructions are used to directly access the data stored in any data memory sections.

LADC A,[m] Add Data Memory to ACC with Carry
Description The contents of the specified Data Memory, Accumulator and the carry flag are added.
 The result is stored in the Accumulator.
Operation ACC ← ACC + [m] + C
Affected flag(s) OV, Z, AC, C, SC

LADCM A,[m] Add ACC to Data Memory with Carry
Description The contents of the specified Data Memory, Accumulator and the carry flag are added.
 The result is stored in the specified Data Memory.
Operation [m] ← ACC + [m] + C
Affected flag(s) OV, Z, AC, C, SC

LADD A,[m] Add Data Memory to ACC
Description The contents of the specified Data Memory and the Accumulator are added.
 The result is stored in the Accumulator.
Operation ACC ← ACC + [m]
Affected flag(s) OV, Z, AC, C, SC

LADDM A,[m] Add ACC to Data Memory
Description The contents of the specified Data Memory and the Accumulator are added.
 The result is stored in the specified Data Memory.
Operation [m] ← ACC + [m]
Affected flag(s) OV, Z, AC, C, SC

LAND A,[m] Logical AND Data Memory to ACC
Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND
 operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″AND″ [m]
Affected flag(s) Z

LANDM A,[m] Logical AND ACC to Data Memory
Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND
 operation. The result is stored in the Data Memory.
Operation [m] ← ACC ″AND″ [m]
Affected flag(s) Z

LCLR [m] Clear Data Memory
Description Each bit of the specified Data Memory is cleared to 0.
Operation [m] ← 00H
Affected flag(s) None

LCLR [m].i Clear bit of Data Memory
Description Bit i of the specified Data Memory is cleared to 0.
Operation [m].i ← 0
Affected flag(s) None

Rev. 1.00 266 December 27, 2019 Rev. 1.00 267 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LCPL [m] Complement Data Memory
Description Each bit of the specified Data Memory is logically complemented (1′s complement). Bits which
 previously contained a 1 are changed to 0 and vice versa.
Operation [m] ← [m]
Affected flag(s) Z

LCPLA [m] Complement Data Memory with result in ACC
Description Each bit of the specified Data Memory is logically complemented (1′s complement). Bits which
 previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in
 the Accumulator and the contents of the Data Memory remain unchanged.
Operation ACC ← [m]
Affected flag(s) Z

LDAA [m] Decimal-Adjust ACC for addition with result in Data Memory
Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value
 resulting from the previous addition of two BCD variables. If the low nibble is greater than 9
 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble
 remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6
 will be added to the high nibble. Essentially, the decimal conversion is performed by adding
 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag
 may be affected by this instruction which indicates that if the original BCD sum is greater than
 100, it allows multiple precision decimal addition.
Operation [m] ← ACC + 00H or
 [m] ← ACC + 06H or
 [m] ← ACC + 60H or
 [m] ← ACC + 66H
Affected flag(s) C

LDEC [m] Decrement Data Memory
Description Data in the specified Data Memory is decremented by 1.
Operation [m] ← [m] − 1
Affected flag(s) Z

LDECA [m] Decrement Data Memory with result in ACC
Description Data in the specified Data Memory is decremented by 1. The result is stored in the
 Accumulator. The contents of the Data Memory remain unchanged.
Operation ACC ← [m] − 1
Affected flag(s) Z

LINC [m] Increment Data Memory
Description Data in the specified Data Memory is incremented by 1.
Operation [m] ← [m] + 1
Affected flag(s) Z

LINCA [m] Increment Data Memory with result in ACC
Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator.
 The contents of the Data Memory remain unchanged.
Operation ACC ← [m] + 1
Affected flag(s) Z

Rev. 1.00 266 December 27, 2019 Rev. 1.00 267 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LMOV A,[m] Move Data Memory to ACC
Description The contents of the specified Data Memory are copied to the Accumulator.
Operation ACC ← [m]
Affected flag(s) None

LMOV [m],A Move ACC to Data Memory
Description The contents of the Accumulator are copied to the specified Data Memory.
Operation [m] ← ACC
Affected flag(s) None

LOR A,[m] Logical OR Data Memory to ACC
Description Data in the Accumulator and the specified Data Memory perform a bitwise
 logical OR operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″OR″ [m]
Affected flag(s) Z

LORM A,[m] Logical OR ACC to Data Memory
Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR
 operation. The result is stored in the Data Memory.
Operation [m] ← ACC ″OR″ [m]
Affected flag(s) Z

LRL [m] Rotate Data Memory left
Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.
Operation [m].(i+1) ← [m].i; (i=0~6)
 [m].0 ← [m].7
Affected flag(s) None

LRLA [m] Rotate Data Memory left with result in ACC
Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.
 The rotated result is stored in the Accumulator and the contents of the Data Memory remain
 unchanged.
Operation ACC.(i+1) ← [m].i; (i=0~6)
 ACC.0 ← [m].7
Affected flag(s) None

LRLC [m] Rotate Data Memory left through Carry
Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7
 replaces the Carry bit and the original carry flag is rotated into bit 0.
Operation [m].(i+1) ← [m].i; (i=0~6)
 [m].0 ← C
 C ← [m].7
Affected flag(s) C

LRLCA [m] Rotate Data Memory left through Carry with result in ACC
Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the
 Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the
 Accumulator and the contents of the Data Memory remain unchanged.
Operation ACC.(i+1) ← [m].i; (i=0~6)
 ACC.0 ← C
 C ← [m].7
Affected flag(s) C

Rev. 1.00 268 December 27, 2019 Rev. 1.00 269 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LRR [m] Rotate Data Memory right
Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.
Operation [m].i ← [m].(i+1); (i=0~6)
 [m].7 ← [m].0
Affected flag(s) None

LRRA [m] Rotate Data Memory right with result in ACC
Description Data in the specified Data Memory is rotated right by 1 bit with bit 0
 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the
 Data Memory remain unchanged.
Operation ACC.i ← [m].(i+1); (i=0~6)
 ACC.7 ← [m].0
Affected flag(s) None

LRRC [m] Rotate Data Memory right through Carry
Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0
 replaces the Carry bit and the original carry flag is rotated into bit 7.
Operation [m].i ← [m].(i+1); (i=0~6)
 [m].7 ← C
 C ← [m].0
Affected flag(s) C

LRRCA [m] Rotate Data Memory right through Carry with result in ACC
Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces
 the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the
 Accumulator and the contents of the Data Memory remain unchanged.
Operation ACC.i ← [m].(i+1); (i=0~6)
 ACC.7 ← C
 C ← [m].0
Affected flag(s) C

LSBC A,[m] Subtract Data Memory from ACC with Carry
Description The contents of the specified Data Memory and the complement of the carry flag are
 subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the
 result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
 positive or zero, the C flag will be set to 1.
Operation ACC ← ACC − [m] − C
Affected flag(s) OV, Z, AC, C, SC, CZ

LSBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory
Description The contents of the specified Data Memory and the complement of the carry flag are
 subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the
 result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
 positive or zero, the C flag will be set to 1.
Operation [m] ← ACC − [m] − C
Affected flag(s) OV, Z, AC, C, SC, CZ

Rev. 1.00 268 December 27, 2019 Rev. 1.00 269 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LSDZ [m] Skip if decrement Data Memory is 0
Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the
 following instruction is skipped. As this requires the insertion of a dummy instruction while
 the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
 proceeds with the following instruction.
Operation [m] ← [m] − 1
 Skip if [m]=0
Affected flag(s) None

LSDZA [m] Skip if decrement Data Memory is zero with result in ACC
Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the
 following instruction is skipped. The result is stored in the Accumulator but the specified
 Data Memory contents remain unchanged. As this requires the insertion of a dummy
 instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0,
 the program proceeds with the following instruction.
Operation ACC ← [m] − 1
 Skip if ACC=0
Affected flag(s) None

LSET [m] Set Data Memory
Description Each bit of the specified Data Memory is set to 1.
Operation [m] ← FFH
Affected flag(s) None

LSET [m].i Set bit of Data Memory
Description Bit i of the specified Data Memory is set to 1.
Operation [m].i ← 1
Affected flag(s) None

LSIZ [m] Skip if increment Data Memory is 0
Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
 following instruction is skipped. As this requires the insertion of a dummy instruction while
 the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
 proceeds with the following instruction.
Operation [m] ← [m] + 1
 Skip if [m]=0
Affected flag(s) None

LSIZA [m] Skip if increment Data Memory is zero with result in ACC
Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
 following instruction is skipped. The result is stored in the Accumulator but the specified
 Data Memory contents remain unchanged. As this requires the insertion of a dummy
 instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
 0 the program proceeds with the following instruction.
Operation ACC ← [m] + 1
 Skip if ACC=0
Affected flag(s) None

LSNZ [m].i Skip if Data Memory is not 0
Description If the specified Data Memory is not 0, the following instruction is skipped. As this requires the
 insertion of a dummy instruction while the next instruction is fetched, it is a two cycle
 instruction. If the result is 0 the program proceeds with the following instruction.
Operation Skip if [m].i ≠ 0
Affected flag(s) None

Rev. 1.00 270 December 27, 2019 Rev. 1.00 271 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LSNZ [m] Skip if Data Memory is not 0
Description If the content of the specified Data Memory is not 0, the following instruction is skipped. As
 this requires the insertion of a dummy instruction while the next instruction is fetched, it is a
 two cycle instruction. If the result is 0 the program proceeds with the following instruction.
Operation Skip if [m] ≠ 0
Affected flag(s) None

LSUB A,[m] Subtract Data Memory from ACC
Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is
 stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be
 cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation ACC ← ACC − [m]
Affected flag(s) OV, Z, AC, C, SC, CZ

LSUBM A,[m] Subtract Data Memory from ACC with result in Data Memory
Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is
 stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be
 cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation [m] ← ACC − [m]
Affected flag(s) OV, Z, AC, C, SC, CZ

LSWAP [m] Swap nibbles of Data Memory
Description The low-order and high-order nibbles of the specified Data Memory are interchanged.
Operation [m].3~[m].0 ↔ [m].7~[m].4
Affected flag(s) None

LSWAPA [m] Swap nibbles of Data Memory with result in ACC
Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The
 result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation ACC.3~ACC.0 ← [m].7~[m].4
 ACC.7~ACC.4 ← [m].3~[m].0
Affected flag(s) None

LSZ [m] Skip if Data Memory is 0
Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this
 requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
 cycle instruction. If the result is not 0 the program proceeds with the following instruction.
Operation Skip if [m]=0
Affected flag(s) None

LSZA [m] Skip if Data Memory is 0 with data movement to ACC
Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero,
 the following instruction is skipped. As this requires the insertion of a dummy instruction
 while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the
 program proceeds with the following instruction.
Operation ACC ← [m]
 Skip if [m]=0
Affected flag(s) None

Rev. 1.00 270 December 27, 2019 Rev. 1.00 271 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

LSZ [m].i Skip if bit i of Data Memory is 0
Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires
 the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle
 instruction. If the result is not 0, the program proceeds with the following instruction.
Operation Skip if [m].i=0
Affected flag(s) None

LTABRD [m] Read table (current page) to TBLH and Data Memory
Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is
 moved to the specified Data Memory and the high byte moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)
Affected flag(s) None

LTABRDL [m] Read table (last page) to TBLH and Data Memory
Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved
 to the specified Data Memory and the high byte moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)
Affected flag(s) None

LITABRD [m] Increment table pointer low byte first and read table to TBLH and Data Memory
Description Increment table pointer low byte, TBLP, first and then the program code addressed by the
 table pointer (TBHP and TBLP) is moved to the specified Data Memory and the high byte
 moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)

Affected flag(s) None

LITABRDL [m] Increment table pointer low byte first and read table (last page) to TBLH and Data Memory
Description Increment table pointer low byte, TBLP, first and then the low byte of the program code
 (last page) addressed by the table pointer (TBLP) is moved to the specified Data Memory and
 the high byte moved to TBLH.
Operation [m] ← program code (low byte)
 TBLH ← program code (high byte)
Affected flag(s) None

LXOR A,[m] Logical XOR Data Memory to ACC
Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR
 operation. The result is stored in the Accumulator.
Operation ACC ← ACC ″XOR″ [m]
Affected flag(s) Z

LXORM A,[m] Logical XOR ACC to Data Memory
Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR
 operation. The result is stored in the Data Memory.
Operation [m] ← ACC ″XOR″ [m]
Affected flag(s) Z

Rev. 1.00 272 December 27, 2019 Rev. 1.00 273 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Package Information

Note that the package information provided here is for consultation purposes only. As this
information may be updated at regular intervals users are reminded to consult the Holtek website for
the latest version of the Package/Carton Information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant
section to be transferred to the relevant website page.

• Package Information (include Outline Dimensions, Product Tape and Reel Specifications)

• The Operation Instruction of Packing Materials

• Carton information

http://www.holtek.com/en/
http://www.holtek.com/en/package_carton_information

Rev. 1.00 272 December 27, 2019 Rev. 1.00 273 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

48-pin LQFP (7mm×7mm) Outline Dimensions

� � � �

� � � �

� �

� ��

� �

� �

�

�

�

�

�
�

�

��

 �

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.354 BSC —
B — 0.276 BSC —
C — 0.354 BSC —
D — 0.276 BSC —
E — 0.020 BSC —
F 0.007 0.009 0.011
G 0.053 0.055 0.057
H — — 0.063
I 0.002 — 0.006
J 0.018 0.024 0.030
K 0.004 — 0.008
α 0° — 7°

Symbol
Dimensions in mm

Min. Nom. Max.
A — 9.00 BSC —
B — 7.00 BSC —
C — 9.00 BSC —
D — 7.00 BSC —
E — 0.50 BSC —
F 0.17 0.22 0.27
G 1.35 1.40 1.45
H — — 1.60
I 0.05 — 0.15
J 0.45 0.60 0.75
K 0.09 — 0.20
α 0° — 7°

Rev. 1.00 274 December 27, 2019 Rev. 1.00 275 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

64-pin LQFP (7mm×7mm) Outline Dimensions

� �

� �

� �

� �

� �

� � �

� �

� �

�

�

�

�

�
�

�

�

 �

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.354 BSC —

B — 0.276 BSC —

C — 0.354 BSC —

D — 0.276 BSC —

E — 0.016 BSC —

F 0.005 0.007 0.009

G 0.053 0.055 0.057

H — — 0.063

I 0.002 — 0.006

J 0.018 0.024 0.030

K 0.004 — 0.008

α 0° — 7°

Symbol
Dimensions in mm

Min. Nom. Max.
A — 9.00 BSC —

B — 7.00 BSC —

C — 9.00 BSC —

D — 7.00 BSC —

E — 0.40 BSC —

F 0.13 0.18 0.23

G 1.35 1.40 1.45

H — — 1.60

I 0.05 — 0.15

J 0.45 0.60 0.75

K 0.09 — 0.20

α 0° — 7°

Rev. 1.00 274 December 27, 2019 Rev. 1.00 275 December 27, 2019

HT66F3370H
CAN BUS A/D Flash MCU

HT66F3370H
CAN BUS A/D Flash MCU

Copyright© 2019 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time
of publication. However, Holtek assumes no responsibility arising from the use of
the specifications described. The applications mentioned herein are used solely
for the purpose of illustration and Holtek makes no warranty or representation that
such applications will be suitable without further modification, nor recommends
the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Holtek's products are not authorized for use as critical
components in life support devices or systems. Holtek reserves the right to alter
its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.

	Features
	CPU Features
	Peripheral Features

	General Description
	Block Diagram
	Pin Assignment
	Pin Description
	Absolute Maximum Ratings
	D.C. Characteristics
	Operating Voltage Characteristics
	Standby Current Characteristics
	Operating Current Characteristics

	A.C. Characteristics
	High Speed Internal Oscillator – HIRC – Frequency Accuracy
	Low Speed Internal Oscillator Characteristics – LIRC
	Low Speed Crystal Oscillator Characteristics – LXT
	Operating Frequency Characteristic Curves

	Input/Output (without Multi-power) Characteristics
	Input/Output (with Multi-power) Characteristics
	Memory Characteristics
	LVD/LVR Electrical Characteristics
	A/D Converter Electrical Characteristics
	Reference Voltage Characteristics
	Comparator Characteristics
	Software Controlled LCD Driver Electrical Characteristics
	CAN Module Electrical Characteristics
	D.C Characteristics
	A.C Characteristics

	Power-on Reset Characteristics
	System Architecture
	Clocking and Pipelining
	Program Counter
	Stack
	Arithmetic and Logic Unit – ALU

	Flash Program Memory
	Structure
	Special Vectors
	Look-up Table
	Table Program Example
	In Circuit Programming – ICP
	On-Chip Debug Support – OCDS
	In Application Programming – IAP

	Data Memory
	Structure
	Data Memory Addressing
	General Purpose Data Memory
	Special Purpose Data Memory

	Special Function Register Description
	Indirect Addressing Registers – IAR0, IAR1, IAR2
	Memory Pointers – MP0, MP1L, MP1H, MP2L, MP2H
	Program Memory Bank Pointer – PBP
	Accumulator – ACC
	Program Counter Low Register – PCL
	Look-up Table Registers – TBLP, TBHP, TBLH
	Status Register – STATUS

	EEPROM Data Memory
	EEPROM Data Memory Structure
	EEPROM Registers
	Reading Data from the EEPROM
	Writing Data to the EEPROM
	Write Protection
	EEPROM Interrupt
	Programming Considerations

	Oscillators
	Oscillator Overview
	System Clock Configurations
	External Crystal/Ceramic Oscillator – HXT
	Internal RC Oscillator – HIRC
	External 32.768kHz Crystal Oscillator – LXT
	Internal 32kHz Oscillator – LIRC

	Operating Modes and System Clocks
	System Clocks
	System Operation Modes
	Control Registers
	Operating Mode Switching
	Standby Current Considerations
	Wake-up

	Watchdog Timer
	Watchdog Timer Clock Source
	Watchdog Timer Control Register
	Watchdog Timer Operation

	Reset and Initialisation
	Reset Functions
	Reset Initial Conditions

	Input/Output Ports
	Pull-high Resistors
	Port A Wake-up
	I/O Port Control Registers
	I/O Port Source Current Control
	I/O Port Power Source Control
	Pin-shared Functions
	I/O Pin Structures
	READ PORT Function
	Programming Considerations

	Timer Modules – TM
	Introduction
	TM Operation
	TM Clock Source
	TM Interrupts
	TM External Pins
	Programming Considerations

	Standard Type TM – STM
	Standard TM Operation
	Standard Type TM Register Description
	Standard Type TM Operation Modes

	Periodic Type TM – PTM
	Periodic TM Operation
	Periodic Type TM Register Description
	Periodic Type TM Operation Modes

	Analog to Digital Converter
	A/D Overview
	Registers Descriptions
	A/D Converter Reference Voltage
	A/D Converter Input Signals
	A/D Operation
	Conversion Rate and Timing Diagram
	Summary of A/D Conversion Steps
	Programming Considerations
	A/D Transfer Function
	A/D Programming Examples

	Serial Interface Module – SIM
	SPI Interface
	I2C Interface

	Serial Interface – SPIA
	SPIA Interface Operation
	SPIA Registers
	SPIA Communication
	SPIA Bus Enable/Disable
	SPIA Operation
	Error Detection

	UART Interface
	UART External Pins
	UART Data Transfer Scheme
	UART Status and Control Registers
	Baud Rate Generator
	UART Setup and Control
	UART Transmitter
	UART Receiver
	Managing Receiver Errors
	UART Interrupt Structure
	UART Power Down and Wake-up

	CAN Bus
	CAN Bus Overview
	CAN Bus Pins
	CAN Bus Registers
	Message RAM and FIFO Buffer Configuration
	CAN Module Operating Modes
	CAN Application
	CAN Bus Interrupt Structure

	Comparators
	Comparator Operation
	Comparator Registers
	Input Offset Calibration
	Comparator Interrupt
	Programming Considerations

	Software Controlled LCD Driver
	LCD Operation
	LCD Bias Current Control

	16-bit Multiplication Division Unit – MDU
	MDU Registers
	MDU Operation

	Cyclic Redundancy Check – CRC
	CRC Registers
	CRC Operation

	Interrupts
	Interrupt Registers
	Interrupt Operation
	External Interrupts
	Comparator Interrupts
	Multi-function Interrupts
	A/D Converter Interrupt
	Time Base Interrupts
	Timer Module Interrupts
	LVD Interrupt
	EEPROM Interrupt
	Serial Interface Module Interrupt
	SPIA Interface Interrupt
	UART Interrupts
	CAN Interrupts
	Interrupt Wake-up Function
	Programming Considerations

	Low Voltage Detector – LVD
	LVD Register
	LVD Operation

	Application Circuits
	For CAN Application Reference

	Instruction Set
	Introduction
	Instruction Timing
	Moving and Transferring Data
	Arithmetic Operations
	Logical and Rotate Operation
	Branches and Control Transfer
	Bit Operations
	Table Read Operations
	Other Operations

	Instruction Set Summary
	Table Conventions
	Extended Instruction Set

	Instruction Definition
	Extended Instruction Definition

	Package Information
	48-pin LQFP (7mm×7mm) Outline Dimensions
	64-pin LQFP (7mm×7mm) Outline Dimensions

