Ultra-Low Power Flash MCU with EPD & EEPROM # HT67F2567/HT67F2567G Revision: V1.20 Date: November 19, 2019 www.holtek.com # **Table of Contents** | Features | 7 | |--|----| | CPU Features | 7 | | Peripheral Features | 7 | | General Description | 8 | | Block Diagram | 8 | | Pin Assignment | 9 | | Pad Assignment – Gold Bump | 10 | | Pad Dimensions | | | Alignment Mark Dimensions | 11 | | Pad Coordinates – Gold Bump | 11 | | Pin Description | 13 | | Absolute Maximum Ratings | | | D.C. Characteristics | | | Operating Voltage Characteristics | | | Standby Current Characteristics | | | Operating Current Characteristics | | | A.C. Characteristics | 17 | | High Speed Internal Oscillator – HIRC – Frequency Accuracy | | | Low Speed Internal Oscillator Characteristics – LIRC | 17 | | Low Speed Crystal Oscillator Characteristics – LXT | 18 | | Operating Frequency Characteristic Curves | 18 | | System Start Up Time Characteristics | 18 | | Input/Output Characteristics | 19 | | Input/Output (without Multi-power) D.C. Characteristics | 19 | | Input/Output (with Multi-power) D.C. Characteristics | 19 | | Memory Characteristics | 20 | | LVD/LVR Electrical Characteristics | 20 | | EPD Driver Electrical Characteristics | 21 | | A/D Converter Electrical Characteristics | 23 | | Power-on Reset Characteristics | 23 | | System Architecture | 24 | | Clocking and Pipelining | | | Program Counter | 25 | | Stack | 25 | | Arithmetic and Logic Unit – ALU | 26 | | Flash Program Memory | | | Structure | 27 | | Special Vectors | | | Look-up Table | 27 | | Table Program Example | 28 | |--|----| | In Circuit Programming – ICP | 29 | | On-Chip Debug Support – OCDS | 30 | | In Application Programming – IAP | 30 | | Data Memory | 46 | | Structure | 46 | | Data Memory Addressing | 47 | | General Purpose Data Memory | 47 | | Special Purpose Data Memory | 47 | | Special Function Register Description | 49 | | Indirect Addressing Registers – IAR0, IAR1, IAR2 | | | Memory Pointers – MP0, MP1L, MP1H, MP2L, MP2H | 49 | | Program Memory Bank Pointer – PBP | 50 | | Accumulator – ACC | 51 | | Program Counter Low Register – PCL | 51 | | Look-up Table Registers – TBLP, TBHP, TBLH | 51 | | Status Register – STATUS | 51 | | EEPROM Data Memory | 53 | | EEPROM Data Memory Structure | | | EEPROM Registers | 53 | | Reading Data from the EEPROM | 55 | | Writing Data to the EEPROM | 55 | | Write Protection | 55 | | EEPROM Interrupt | 55 | | Programming Considerations | 56 | | Oscillators | 57 | | Oscillator Overview | 57 | | System Clock Configurations | 57 | | Internal RC Oscillator – HIRC | 58 | | External 32.768 kHz Crystal Oscillator – LXT | 58 | | Internal 32kHz Oscillator – LIRC | 58 | | Operating Modes and System Clocks | 59 | | System Clocks | | | System Operation Modes | 60 | | Control Registers | 61 | | Operating Mode Switching | 63 | | Standby Current Considerations | 66 | | Wake-up | 67 | | Watchdog Timer | 68 | | Watchdog Timer Clock Source | | | Watchdog Timer Control Register | 68 | | Watchdog Timer Operation | 69 | | Reset and Initialisation | 70 | |---------------------------------------|-----| | Reset Functions | 70 | | Reset Initial Conditions | 74 | | Input/Output Ports | 78 | | Pull-high Resistors | 78 | | Port A Wake-up | 79 | | I/O Port Control Registers | 79 | | I/O Port Power Source Control | 80 | | Pin-shared Functions | 80 | | I/O Pin Structures | 83 | | Programming Considerations | 83 | | Timer Modules – TM | 84 | | Introduction | 84 | | TM Operation | 84 | | TM Clock Source | 84 | | TM Interrupts | 85 | | TM External Pins | 85 | | Programming Considerations | 86 | | Compact Type TM – CTM | 87 | | Compact TM Operation | 87 | | Compact Type TM Register Description | 87 | | Compact Type TM Operating Modes | 91 | | Standard Type TM – STM | 97 | | Standard TM Operation | 97 | | Standard Type TM Register Description | 97 | | Standard Type TM Operation Modes | 101 | | Analog to Digital Converter | 110 | | A/D Converter Overview | 110 | | A/D Converter Register Description | 111 | | A/D Converter Operation | 114 | | A/D Converter Reference Voltage | 115 | | A/D Converter Input Signals | 115 | | Conversion Rate and Timing Diagram | 115 | | Summary of A/D Conversion Steps | 116 | | Programming Considerations | 117 | | A/D Conversion Function | | | A/D Conversion Programming Examples | 118 | | Electronic Paper Display – EPD | 119 | | EPD Driver Voltage | | | EPD Driver Power Supply Sequence | 120 | | EPD Driver Data Display | 121 | | EPD Driver Registers | | | EPD Driver Voltage Source and Biasing | | | EPD Driver Output Waveforms | 134 | | Universal Serial Interface Module – USIM | | |---|-----| | SPI Interface | 136 | | I ² C Interface | 144 | | UART Interface | 154 | | Serial Peripheral Interface - SPIA | | | SPIA Interface Operation | 169 | | SPIA Registers | 170 | | SPIA Communication | 172 | | SPIA Bus Enable/Disable | 175 | | SPIA Operation Steps | 175 | | Error Detection | 176 | | Interrupts | 177 | | Interrupt Registers | | | Interrupt Operation | 182 | | External Interrupt | 183 | | Multi-function Interrupt | 184 | | Timer Module Interrupts | 184 | | LVD Interrupt | 184 | | EEPROM Interrupt | 185 | | A/D Converter Interrupt | 185 | | Universal Serial Interface Module Interrupt | 185 | | SPIA Interface Interrupt | 185 | | EPD Charge Pump Voltage Ready Interrupt | 186 | | EPD Refresh Finished Interrupt | 186 | | Time Base Interrupts | | | Interrupt Wake-up Function | 188 | | Programming Considerations | 188 | | Low Voltage Detector – LVD | 189 | | LVD Register | 189 | | LVD Operation | 190 | | Configuration Options | 190 | | Application Circuits | | | Instruction Set | | | Introduction | | | Instruction Timing | | | Moving and Transferring Data | | | Arithmetic Operations | | | Logical and Rotate Operation | | | Branches and Control Transfer | | | Bit Operations | | | Table Read Operations | | | Other Operations | | | Instruction Set Summary | 194 | |---|-----| | Table Conventions | 194 | | Extended Instruction Set | 196 | | Instruction Definition | 198 | | Extended Instruction Definition | | | Package Information | 214 | | 100-pin LQFP (14mm×14mm) Outline Dimensions | | Rev. 1.20 6 November 19, 2019 #### **Features** #### **CPU Features** - Operating voltage - f_{SYS} =4MHz: 1.8V~5.5V - f_{SYS} =8MHz: 2.2V~5.5V - f_{SYS}=12MHz: 2.7V~5.5V - Up to $0.33\mu s$ instruction cycle with 12MHz system clock at V_{DD} =5V - Power down and wake-up functions to reduce power consumption - · Oscillator types - Internal High Speed 4/8/12MHz RC Oscillator HIRC - External Low Speed 32.768kHz Crystal LXT - Internal Low Speed 32kHz RC Oscillator—LIRC, for power on reset and LVD/LVR functions only - Fully integrated internal oscillators require no external components - · Multi-mode operation: FAST, SLOW, IDLE and SLEEP - All instructions executed in 1~3 instruction cycles - · Table read instructions - 115 powerful instructions - 16-level subroutine nesting - · Bit manipulation instruction #### **Peripheral Features** - Flash Program Memory: 16K×16 - RAM Data Memory: 2304×8 - True EEPROM Memory: 128×8 - Watchdog Timer function - 19 bidirectional I/O lines - Four external interrupt lines shared with I/O pins - Multiple Timer Modules for time measurement, input capture, compare match output, PWM output function or single pulse output function - Universal Serial Interface Module USIM for SPI, I²C or UART communication - Single serial SPI interface SPIA - Dual Time-Base functions for generation of fixed time interrupt signals - 7 channels 12-bits resolution A/D Converter - Electronic Paper Display (EPD) driver - SEG×64, COM×1, BG×1 - 2 COMBG pins can be set as Common or Background pin by application - • Output dynamic range: 0, $V_{\text{DL}},\,V_{\text{DH}}$ - $V_{DL}=2.5V\sim6V, V_{DH}=5V\sim12V$ - · Driving Black/Red/White color paper - Low voltage reset function LVR - Low voltage detect function LVD - · Package type: - HT67F2567: 100-pin LQFP - HT67F2567G: Gold Bump ## **General Description** The HT67F2567 is a Flash Memory 8-bit high performance RISC architecture microcontrollers, designed for applications that EPD display products. Offering users the convenience of Flash Memory multi-programming features, the device also includes a wide range of functions and features. Other memory includes an area of RAM Data Memory as well as an area of true EEPROM memory for storage of non-volatile data such as serial numbers, calibration data etc. Analog features include a multi-channel 12-bit A/D Converter. Multiple and extremely flexible Timer Modules provide timing, pulse generation and PWM generation functions. Communication with the outside world is catered for by including fully integrated SPI, I²C and UART interface functions, these popular interfaces which provide designers with a means of easy communication with external peripheral hardware. Protective features such as an internal Watchdog Timer, Low Voltage Reset and Low Voltage Detector coupled with excellent noise immunity and ESD protection ensure that reliable operation is maintained in hostile electrical environments. A full choice of external low and internal high oscillator functions are provided including fully integrated system oscillators which require no external components for their implementation. The ability to operate and switch dynamically between a range of operating modes using different clock sources gives users the ability to optimise microcontroller operation and minimise power consumption. The inclusion of flexible I/O programming features, Time-Base functions along with many other features ensure that the device will find excellent use in applications such as display card and electronic shelf labels (ESL) in addition to many others. ## **Block Diagram** Rev. 1.20 8 November 19, 2019
Pin Assignment Note: 1. If the pin-shared pin functions have multiple outputs, the desired pin-shared function is determined by the corresponding software control bits. 2. The OCDSDA and OCDSCK pins are supplied as OCDS dedicated pins and as such only available for the HT67V2567 device which is the OCDS EV chip for the HT67F2567 device. Rev. 1.20 9 November 19, 2019 # Pad Assignment - Gold Bump ### **Pad Dimensions** | Item Number. | Manakan | Si | 11-24 | | |----------------|---------------|-----------|-------|----| | | Х | Υ | Unit | | | Chip size | _ | 3541 2731 | | μm | | Chip thickness | _ | 152.4 | | μm | | Pad pitch | 1~84, 86~114 | 80 | | μm | | D sime | . 1~25, 57~84 | | 49 | μm | | Bump size | 26~56, 86~114 | 49 | 35 | μm | | Bump height | All pad | 15±2 | | μm | Rev. 1.20 10 November 19, 2019 # **Alignment Mark Dimensions** # Pad Coordinates - Gold Bump Unit: µm | Pad No. | Pad Name | Х | Υ | Pad No. | Pad Name | Х | Υ | |---------|----------|-----------|----------|---------|----------|----------|----------| | 1 | COMBG0 | -1621.000 | 1058.010 | 59 | SEG50 | 1621.000 | -916.410 | | 2 | COMBG0 | -1621.000 | 978.010 | 60 | SEG51 | 1621.000 | -836.410 | | 3 | SEG0 | -1621.000 | 898.010 | 61 | SEG52 | 1621.000 | -756.410 | | 4 | SEG1 | -1621.000 | 818.010 | 62 | SEG53 | 1621.000 | -676.410 | | 5 | SEG2 | -1621.000 | 738.010 | 63 | SEG54 | 1621.000 | -596.410 | | 6 | SEG3 | -1621.000 | 658.010 | 64 | SEG55 | 1621.000 | -516.410 | | 7 | SEG4 | -1621.000 | 578.010 | 65 | SEG56 | 1621.000 | -436.410 | | 8 | SEG5 | -1621.000 | 498.010 | 66 | SEG57 | 1621.000 | -356.410 | | 9 | SEG6 | -1621.000 | 418.010 | 67 | SEG58 | 1621.000 | -276.410 | | 10 | SEG7 | -1621.000 | 338.010 | 68 | SEG59 | 1621.000 | -196.410 | | 11 | SEG8 | -1621.000 | 258.010 | 69 | SEG60 | 1621.000 | -116.410 | | 12 | SEG9 | -1621.000 | 178.010 | 70 | SEG61 | 1621.000 | -36.410 | | 13 | SEG10 | -1621.000 | 98.010 | 71 | SEG62 | 1621.000 | 43.590 | | 14 | SEG11 | -1621.000 | 18.010 | 72 | SEG63 | 1621.000 | 123.590 | | 15 | SEG12 | -1621.000 | -61.990 | 73 | COMBG1 | 1621.000 | 203.590 | | 16 | SEG13 | -1621.000 | -141.990 | 74 | COMBG1 | 1621.000 | 283.590 | | 17 | SEG14 | -1621.000 | -221.990 | 75 | VDLI | 1621.000 | 406.820 | | 18 | SEG15 | -1621.000 | -301.990 | 76 | VDLI | 1621.000 | 492.820 | | 19 | SEG16 | -1621.000 | -381.990 | 77 | VDLO | 1621.000 | 583.846 | | 20 | SEG17 | -1621.000 | -461.990 | 78 | VDLO | 1621.000 | 669.846 | | 21 | SEG18 | -1621.000 | -541.990 | 79 | VDHI | 1621.000 | 760.660 | | 22 | SEG19 | -1621.000 | -621.990 | 80 | VDHI | 1621.000 | 846.660 | | 23 | SEG20 | -1621.000 | -701.990 | 81 | VDHO | 1621.000 | 937.540 | | 24 | SEG21 | -1621.000 | -781.990 | 82 | VDHO | 1621.000 | 1023.540 | Rev. 1.20 11 November 19, 2019 | Pad No. | Pad Name | Х | Υ | Pad No. | Pad Name | Х | Υ | |---------|------------|-----------|-----------|---------|-----------|-----------|----------| | 25 | SEG22 | -1621.000 | -861.990 | 83 | EVSS | 1621.000 | 1109.478 | | 26 | SEG23 | -1484.880 | -1216.000 | 84 | EVSS | 1621.000 | 1195.478 | | 27 | SEG24 | -1404.880 | -1216.000 | 85 | ALIGN_B | 1682.500 | 1297.500 | | 28 | SEG25 | -1324.880 | -1216.000 | 86 | VDD | 1258.158 | 1198.000 | | 29 | SEG26 | -1244.880 | -1216.000 | 87 | VDD | 1128.858 | 1198.000 | | 30 | SEG27 | -1164.880 | -1216.000 | 88 | VDD | 999.558 | 1198.000 | | 31 | SEG28 | -1084.880 | -1216.000 | 89 | XT2 | 891.868 | 1198.000 | | 32 | SEG29 | -1004.880 | -1216.000 | 90 | XT1 | 805.868 | 1198.000 | | 33 | SEG30 | -924.880 | -1216.000 | 91 | VSS | 719.868 | 1198.000 | | 34 | SEG31 | -844.880 | -1216.000 | 92 | VSS | 633.868 | 1198.000 | | 35 | SEG32 | -764.880 | -1216.000 | 93 | VSS | 541.198 | 1198.000 | | 36 | SEG33 | -684.880 | -1216.000 | 94 | PC0 | 430.178 | 1198.000 | | 37 | SEG34 | -604.880 | -1216.000 | 95 | PC1 | 344.178 | 1198.000 | | 38 | SEG35 | -524.880 | -1216.000 | 96 | PC2 | 258.178 | 1198.000 | | 39 | SEG36 | -444.880 | -1216.000 | 97 | PC3 | 172.178 | 1198.000 | | 40 | SEG37 | -364.880 | -1216.000 | 98 | PA3 | 83.218 | 1198.000 | | 41 | SEG38 | -284.880 | -1216.000 | 99 | VSS:CLAMP | -2.782 | 1198.000 | | 42 | SEG39 | -204.880 | -1216.000 | 100 | PA4 | -95.322 | 1198.000 | | 43 | SEG40 | -124.880 | -1216.000 | 101 | PA5 | -181.322 | 1198.000 | | 44 | SEG41 | -44.880 | -1216.000 | 102 | PA6 | -267.322 | 1198.000 | | 45 | SEG42 | 35.120 | -1216.000 | 103 | PA7 | -353.322 | 1198.000 | | 46 | SEG43 | 115.120 | -1216.000 | 104 | PA0 | -439.322 | 1198.000 | | 47 | SEG44 | 195.120 | -1216.000 | 105 | PA1 | -525.322 | 1198.000 | | 48 | SEG45 | 275.120 | -1216.000 | 106 | PA2 | -611.322 | 1198.000 | | 49 | SEG46 | 355.120 | -1216.000 | 107 | RES | -701.442 | 1198.000 | | 50 | SEG47 | 435.120 | -1216.000 | 108 | PB1 | -787.442 | 1198.000 | | 51 | DUMMY_BUMP | 657.960 | -1254.160 | 109 | PB2 | -873.442 | 1198.000 | | 52 | DUMMY_BUMP | 797.960 | -1254.160 | 110 | PB3 | -959.442 | 1198.000 | | 53 | DUMMY_BUMP | 937.960 | -1254.160 | 111 | PB4 | -1045.442 | 1198.000 | | 54 | DUMMY_BUMP | 1077.960 | -1254.160 | 112 | PB5 | -1131.442 | 1198.000 | | 55 | DUMMY_BUMP | 1223.960 | -1254.160 | 113 | PB6 | -1217.442 | 1198.000 | | 56 | DUMMY_BUMP | 1369.960 | -1254.160 | 114 | PB7 | -1303.442 | 1198.000 | | 57 | SEG48 | 1621.000 | -1076.410 | 115 | ALIGN_A | -1702.500 | 1297.500 | | 58 | SEG49 | 1621.000 | -996.410 | | | | | Rev. 1.20 November 19, 2019 ## **Pin Description** With the exception of the power pins and some relavant transformer control pins, all pins on the device can be referenced by their Port names, e.g. PA0, PA1 etc, which refer to the digital I/O function of the pins. However these Port pins are also shared with other function such as the Timer Module pins etc. The function of each pin is listed in the following table, however the details behind how each pin is configured is contained in other sections of the datasheet. Note that where more than one package type exists the table will reflect the situation for the larger package type. | Pin Name | Function | OPT | I/T | O/T | Description | |-------------------|----------|----------------------|-----|------|--| | | PA0 | PAWU
PAPU | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | PA0/CTCK1/OCDSDA/ | CTCK1 | _ | ST | _ | CTM1 clock input | | ICPDA | OCDSDA | _ | ST | CMOS | OCDS Data/Address, for EV chip only | | | ICPDA | _ | ST | CMOS | ICP Data/Address | | PA1/CTP1 | PA1 | PAWU
PAPU
PAS0 | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | | CTP1 | PAS0 | _ | CMOS | CTM1 output | | | PA2 | PAWU
PAPU | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | PA2/STCK/OCDSCK/ | STCK | _ | ST | _ | STM clock input pin | | ICPCK | OCDSCK | _ | ST | _ | OCDS Clock pin, for EV chip only | | | ICPCK | _ | ST | _ | ICP Clock pin | | DAG (OTDA (DDIO | PA3 | PAWU
PAPU
PAS0 | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | PA3/STP/VDDIO | STP | PAS0 | _ | CMOS | STM output | | | VDDIO | PAS0
PMPS | PWR | _ | Power supply for SPI/I ² C/UART input/output pins | | PA4/SCSA | PA4 | PAWU
PAPU
PAS1 | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | | SCSA | PAS1 | ST | CMOS | SPIA slave select pin | | PA5/SDIA | PA5 | PAWU
PAPU
PAS1 | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | | SDIA | PAS1 | ST | _ | SPIA serial data input | | PA6/SDOA | PA6 | PAWU
PAPU
PAS1 | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | | SDOA | PAS1 | _ | CMOS | SPIA serial data output | | PA7/SCKA | PA7 | PAWU
PAPU
PAS1 | ST | CMOS | General purpose I/O. Register enabled pull-up and wake-up | | | SCKA | PAS1 | ST | CMOS | SPIA serial clock | | DD4/CTDD/AN4 | PB1 | PBPU
PBS0 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PB1/STPB/AN1 | STPB | PBS0 | _ | CMOS | STM inverting output | | | AN1 | PBS0 | AN | _ | A/D Converter external input 1 | | PB2/CTCK0/AN2 | PB2 | PBPU
PBS0 | ST | CMOS | General purpose I/O. Register enabled pull-high | | FDZ/GTGNU/ANZ | CTCK0 | PBS0 | ST | _ | CTM0 clock input | | | AN2 | PBS0 | AN | _ | A/D Converter external input 2 | Rev. 1.20 13 November 19, 2019 | Pin Name | Function | ОРТ | I/T | O/T | Description | |--------------------|----------|------------------------|-----|------|---| | | PB3 | PBPU
PBS0 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PB3/CTP0/AN3 | CTP0 | PBS0 | _ | CMOS | CTM0 output | | | AN3 | PBS0 | AN | _ | A/D Converter external input 3 | | | PB4 | PBPU
PBS1 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PB4/INT0/CTP0B/AN4 | INT0 | PBS1
INTEG
INTC0 | ST | _ | External interrupt input 0 | | | CTP0B | PBS1 | _ | CMOS | CTM0 inverting output | | | AN4 | PBS1 | AN | _ | A/D Converter external input 4 | | | PB5 | PBPU
PBS1 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PB5/INT1/CTP1B/AN5 | INT1 | PBS1 | ST | _ | External interrupt input 1 | | | CTP1B | PBS1 | _ | CMOS | CTM1 inverting output | | | AN5 | PBS1 | AN | _ | A/D Converter external input 5 | | | PB6 | PBPU
PBS1 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PB6/INT2/STPI/AN6 | INT2 | PBS1
INTEG
INTC2 | ST | _ | External interrupt input 2 | | | STPI | PBS1 | ST | _ | STM capture input | | | AN6 | PBS1 | AN | _ | A/D Converter external input 6 | | | PB7 | PBPU
PBS1 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PB7/INT3/AN7/VREF | INT3 | PBS1
INTEG
INTC2 | ST | _ | External interrupt input 3 | | | AN7 | PBS1 | AN | _ | A/D Converter external input 7 | | | VREF | PBS1 | AN | _ | A/D Converter external reference voltage input | | PC0/SCS | PC0 | PCPU
PCS0 | ST | CMOS | General purpose I/O. Register enabled pull-high | | | SCS | PCS0 | ST | CMOS | SPI slave select pin | | |
PC1 | PCPU
PCS0 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PC1/SDI/SDA/RX | SDI | PCS0 | ST | _ | SPI serial data input | | | SDA | PCS0 | ST | NMOS | I ² C data line | | | RX | PCS0 | ST | _ | UART RX serial data input | | Doggo TV | PC2 | PCPU
PCS0 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PC2/SDO/TX | SDO | PCS0 | _ | CMOS | SPI serial data output | | | TX | PCS0 | _ | CMOS | UART TX serial data output | | | PC3 | PCPU
PCS0 | ST | CMOS | General purpose I/O. Register enabled pull-high | | PC3/SCK/SCL | SCK | PCS0 | ST | CMOS | SPI serial clock | | | SCL | PCS0 | ST | NMOS | I ² C clock line | | RES | RES | _ | ST | _ | External reset input | | XT2 | XT2 | _ | _ | LXT | LXT oscillator pin | | XT1 | XT1 | _ | LXT | _ | LXT oscillator pin | Rev. 1.20 14 November 19, 2019 | Pin Name | Function | ОРТ | I/T | O/T | Description | | | | |---------------|----------|-----|-----|-----|--|--|--|--| | EPD | | | | | | | | | | SEG0~SEG63 | SEG0~63 | _ | _ | AN | EPD Segment output | | | | | COMBG0~COMBG1 | COMBG0~1 | _ | _ | AN | EPD Common/Background output | | | | | VDHO | VDHO | _ | _ | AN | EPD charge pump V _{DH} output | | | | | VDHI | VDHI | _ | AN | _ | EPD charge pump V _{DH} input | | | | | VDLO | VDLO | _ | _ | AN | EPD charge pump V _{DL} output | | | | | VDLI | VDLI | _ | AN | _ | EPD charge pump V _{DL} input | | | | | EVSS | EVSS | _ | PWR | _ | EPD negative power supply. | | | | | Power | | | | | | | | | | VDD/AVDD | VDD | _ | PWR | _ | Digital positive power supply | | | | | VDD/AVDD | AVDD | _ | PWR | _ | Analog positive power supply | | | | | V(00/A) (00 | VSS | _ | PWR | _ | Digital negative power supply | | | | | VSS/AVSS | AVSS | _ | PWR | _ | Analog negative power supply | | | | Legend: I/T: Input type; O/T: Output type; OPT: Optional by register option; ST: Schmitt Trigger input; CMOS: CMOS output; NMOS: NMOS output; AN: Analog signal; PWR: Power; LXT: Low frequency crystal oscillator. ## **Absolute Maximum Ratings** | Supply Voltage | V _{SS} -0.3V to 6.0V | |-------------------------|----------------------------------| | Input Voltage | V_{SS} -0.3V to V_{DD} +0.3V | | Storage Temperature | -50°C to 125°C | | Operating Temperature | -40°C to 85°C | | I _{OL} Total | 80mA | | I _{OH} Total | 80mA | | Total Power Dissipation | 500mW | Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. ### **D.C. Characteristics** For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency, pin load conditions, temperature and program instruction type, etc., can all exert an influence on the measured values. #### **Operating Voltage Characteristics** Ta=25°C | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------|--------------------------|---------------------------|------|------|------|------| | | | f _{SYS} =4MHz | 1.8 | _ | 5.5 | | | | Operating Voltage – HIRC | f _{SYS} =8MHz | 2.2 | _ | 5.5 | V | | V _{DD} | | f _{SYS} =12MHz | 2.7 | _ | 5.5 | | | | Operating Voltage – LXT | f _{sys} =32768Hz | 1.8 | _ | 5.5 | V | Rev. 1.20 15 November 19, 2019 ### **Standby Current Characteristics** Ta=25°C, unless otherwise specified | Compleal | Cton dhy Mada | | Test Conditions | Min. | Trees | May | Max. | Unit | |------------------|-------------------|------------------------|---|-------|-------|-------|--------|------| | Symbol | Standby Mode | V _{DD} | Conditions | wiin. | Тур. | Max. | @ 85°C | Unit | | | | 1.8V | 14/DT (6 T) D (6 | _ | 0.10 | 0.15 | 0.70 | | | | | 3V | WDT off, Time Base off (LXT on) | _ | 0.12 | 0.15 | 1.00 | | | | | 5V | (2711 011) | | 0.2 | 0.5 | 1.2 | | | | | 1.8V | MDT off Time Decree | _ | 0.12 | 0.22 | 0.70 | | | | SLEEP Mode | 3V | WDT off, Time Base on (LXT on) | | 0.15 | 0.22 | 1.00 | μΑ | | | | 5V | (271. 51.) | _ | 0.23 | 0.60 | 1.20 | | | | | 1.8V | M/DT are Times Base are | | 0.15 | 0.22 | 1.00 | | | | | 3V | WDT on, Time Base on (LXT on) | | 0.18 | 0.22 | 1.50 | | | | | 5V | (2711 511) | | 0.30 | 0.75 | 1.80 | | | | | 1.8V | | | 2.4 | 4.0 | 4.8 | | | I _{STB} | IDLE0 Mode – LXT | 3V | f _{SUB} on | | 3 | 5 | 6 | μΑ | | | | 5V | | | 5 | 10 | 12 | | | | | 1.8V | | _ | 0.144 | 0.200 | 0.240 | | | | | 3V | f _{SUB} on, f _{SYS} =4MHz | | 0.18 | 0.25 | 0.30 | | | | | 5V | | _ | 0.40 | 0.60 | 0.72 | | | | | 2.2V | | | 0.3 | 0.6 | 8.0 | | | | IDLE1 Mode – HIRC | 3V | BV f _{SUB} on, f _{SYS} =8MHz — 0. | 0.5 | 1.0 | 1.8 | mA | | | | | 5V | | _ | 1.0 | 2.0 | 2.2 | | | | | 2.7V | | | 0.4 | 0.8 | 1.0 | | | | | 3V | f _{SUB} on, f _{SYS} =12MHz | _ | 0.6 | 1.2 | 1.4 | | | | | 5V | | | 1.2 | 2.4 | 2.6 | | Note: When using the characteristic table data, the following notes should be taken into consideration: - 1. Any digital inputs are setup in a non-floating condition. - 2. All measurements are taken under conditions of no load and with all peripherals in an off state. - 3. There are no DC current paths. - 4. All Standby Current values are taken after a HALT instruction execution thus stopping all instruction execution. ### **Operating Current Characteristics** Ta=25°C | Symbol | Operating Mode | | Test Conditions | Min. | Tun | Max. | Unit | |-----------------|------------------|----------|---------------------------|---------|------|------|------| | Syllibol | Operating wode | V_{DD} | Conditions | IVIIII. | Тур. | Wax. | Onit | | | | 1.8V | | | 8 | 16 | | | | SLOW Mode – LXT | 3V | f _{SYS} =32768Hz | _ | 10 | 20 | μA | | | | 5V | | | 30 | 50 | | | | | 1.8V | | _ | 0.3 | 0.5 | | | | | 3V | f _{SYS} =4MHz | _ | 0.4 | 0.6 | | | I _{DD} | | 5V | | _ | 0.8 | 1.2 | | | IDD | | 2.2V | | _ | 0.8 | 1.2 | | | | FAST Mode – HIRC | 3V | f _{SYS} =8MHz | _ | 1.0 | 1.5 | mA | | | | 5V | | _ | 2.0 | 3.0 | | | | | 2.7V | | _ | 1.2 | 2.2 | | | | | 3V | f _{SYS} =12MHz | _ | 1.5 | 2.7 | | | | | 5V | | _ | 3.0 | 4.5 | | Rev. 1.20 16 November 19, 2019 Note: When using the characteristic table data, the following notes should be taken into consideration: - 1. Any digital inputs are setup in a non-floating condition. - 2. All measurements are taken under conditions of no load and with all peripherals in an off state. - 3. There are no DC current paths. - 4. All Operating Current values are measured using a continuous NOP instruction program loop. #### A.C. Characteristics For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency and temperature etc., can all exert an influence on the measured values. #### High Speed Internal Oscillator - HIRC - Frequency Accuracy During the program writing operation the writer will trim the HIRC oscillator at a user selected HIRC frequency and user selected voltage of either 3V or 5V. | Courals al | Damanatan | Те | st Conditions | Min | T | Mari | 1114 | |-------------------|----------------------------|-----------------|---------------|-------|-----|-------|--------| | Symbol | Parameter | V _{DD} | Temp. | Min | Тур | Max | Unit | | | | 3V/5V | 25°C | -1% | 4 | +1% | | | | | 30/30 | -40°C~85°C | -2% | 4 | +2% | | | | 4 MHz Writer Trimmed HIRC | 2.2V~5.5V | 25°C | -2.5% | 4 | +2.5% | MHz | | | Frequency | 2.20~5.50 | -40°C~85°C | -3% | 4 | +3% | IVI□∠ | | | | 1.8V~5.5V | 25°C | -4% | 4 | +4% | | | | | 1.60~5.50 | -40°C~85°C | -5% | 4 | +5% | | | _ | | 2) //E) / | 25°C | -1% | 8 | +1% | | | f _{HIRC} | 8 MHz Writer Trimmed HIRC | 3V/5V | -40°C~85°C | -2% | 8 | +2% | MHz | | | Frequency | 2.2V~5.5V | 25°C | -2.5% | 8 | +2.5% | IVI□∠ | | | | 2.20~5.50 | -40°C~85°C | -3% | 8 | -3% | | | | | 5V | 25°C | -1% | 12 | +1% | | | | 12 MHz Writer Trimmed HIRC | οv | -40°C~85°C | -2% | 12 | +2% | MHz | | | Frequency | 2.7V~5.5V | 25°C | -2.5% | 12 | +2.5% | IVII⊐∠ | | | | 2.1 V~5.5V | -40°C~85°C | -3% | 12 | +3% | | Note: 1. The 3V/5V values for V_{DD} are provided as these are the two selectable fixed voltages at which the HIRC frequency is trimmed by the writer. - 2. The row below the 3V/5V trim voltage row is provided to show the values for the full V_{DD} range operating voltage. It is recommended that the trim voltage is fixed at 3V for application voltage ranges from 2.2V to 3.6V and fixed at 5V for application voltage ranges from 3.3V to 5.5V. - 3. The minimum and maximum tolerance values provided in the table are only for the frequency at which the writer trims the HIRC oscillator. After trimming at this chosen specific frequency any change in HIRC oscillator frequency using the oscillator register control bits by the application program will give a frequency tolerance to within ±20%. ## Low Speed Internal Oscillator Characteristics - LIRC | Courselle all | Domenication | Те | st Conditions | Min | T | Marr | 1114 | |--------------------|--------------------|-----------------|---------------|------|------|------|--------| | Symbol | Parameter | V _{DD} | Temp. | Min. | Тур. | Max. | Unit | | £ | LIDO Francisco | 0.01/ 5.51/ | 25°C | -5% | 32 | +5% | 1.1.1- | | TLIRC | LIRC Frequency | 2.2V~5.5V | -40°C~85°C | -10% | 32 | +10% | kHz | | t _{START} | LIRC Start Up Time | _ | _ | _ | _ | 100 | μs | Rev. 1.20 17 November 19, 2019 ### Low Speed Crystal Oscillator Characteristics - LXT Ta=25°C | Symbol | Parameter | Tes | Min | Trees | Max | I I m i f | | |--------------------|----------------------------|-----------------|------------|-------|-------|-----------|------| | Symbol Farameter | | V _{DD} | Conditions | Min. | Тур. | Max. | Unit | | f _{LXT} | Oscillator Frequency | 1.8V~5.5V | _ | _ | 32768 | _ | Hz | | Duty Cycle | Duty Cycle | _ | _ | 45 | 50 | 55 | % | | | Start I In Time | 3V | _ |
_ | _ | 600 | m.c | | t _{START} | Start Up Time | 5V | _ | _ | _ | 600 | ms | | R _{NEG} | Negative Resistance (Note) | 1.8V | _ | 3×ESR | _ | _ | Ω | Note: C1 and C2 are external components. C1=C2=7pF, C_L<7pF, ESR=65kΩ (Max.). ### **Operating Frequency Characteristic Curves** ### **System Start Up Time Characteristics** Ta=25°C | Cumb al | Parameter | | Test Conditions | Min. | Time | Max | Unit | |---------------------|--|-----------------|--|---------|------|------|-------------------| | Symbol | Farameter | V_{DD} | Conditions | IVIIII. | Typ. | Max. | Oilit | | | System Start-up Time | _ | $f_{SYS}=f_H\sim f_H/64$, $f_H=f_{HIRC}$ | _ | 16 | _ | t _{SYS} | | | Wake-up from Condition where f _{SYS} is Off | _ | f _{SYS} =f _{SUB} =f _{LXT} | _ | 1024 | _ | tsys | | t _{sst} | System Start-up Time | | $f_{SYS}=f_H\sim f_H/64$, $f_H=f_{HIRC}$ | _ | 2 | _ | tsys | | LSSI | Wake-up from Condition where f _{SYS} is On | _ | f _{SYS} =f _{SUB} =f _{LXT} | _ | 2 | _ | t _{SYS} | | | System Speed Switch Time | _ | $f_{\text{HIRC}}\text{switches from off} \rightarrow \text{on}$ | _ | 16 | _ | t _{HIRC} | | | FAST to SLOW Mode or SLOW to FAST Mode | | $f_{\text{LXT}} \text{ switches from off} \rightarrow \text{on}$ | _ | 1024 | _ | t _{LXT} | | | System Reset Delay Time
Reset Source from Power-on Reset or
LVR Hardware Reset | _ | RR _{POR} =5V/ms | 42 | 48 | 54 | ms | | t _{RSTD} | System Reset Delay Time
LVRC/WDTC/RSTC Software Reset | _ | _ | | | | | | | System Reset Delay Time
Reset Source from WDT Overflow or
Reset Pin Reset | _ | _ | 14 | 16 | 18 | ms | | t _{SRESET} | Minimum Software Reset Width to Reset | _ | _ | 45 | 90 | 120 | μs | Note: 1. For the System Start-up time values, whether f_{SYS} is on or off depends upon the mode type and the chosen f_{SYS} system oscillator. Details are provided in the System Operating Modes section. - 2. The time units, shown by the symbols t_{HIRC} , t_{SYS} etc. are the inverse of the corresponding frequency values as provided in the frequency tables. For example $t_{HIRC} = 1/f_{HIRC}$, $t_{SYS} = 1/f_{SYS}$ etc. - 3. If the LIRC is used as the system clock and if it is off when in the SLEEP Mode, then an additional LIRC start up time, tstart, as provided in the LIRC frequency table, must be added to the tsst time in the table above. - 4. The System Speed Switch Time is effectively the time taken for the newly activated oscillator to start up. Rev. 1.20 18 November 19, 2019 # **Input/Output Characteristics** Ta=25°C # Input/Output (without Multi-power) D.C. Characteristics | 0 | Barranda | | Test Conditions | | _ | M | 11.24 | |-------------------|---|------------------------|--|--------------------|------|--------------------|-------| | Symbol | Parameter | V _{DD} | Conditions | Min. | Тур. | Max. | Unit | | | Input Low Voltage for I/O Ports | 5V | _ | 0 | _ | 1.5 | | | VIL | except PC0~PC3 and RES Pins | _ | _ | 0 | _ | $0.2V_{\text{DD}}$ | V | | | Input Low Voltage for RES pin | _ | _ | 0 | | $0.4V_{DD}$ | | | | Input High Voltage for I/O Ports | 5V | _ | 3.5 | _ | 5.0 | | | VIH | except PC0~PC3 and RES Pins | _ | _ | 0.8V _{DD} | _ | V_{DD} | V | | | Input High Voltage for RES pin | _ | _ | 0.9V _{DD} | _ | V_{DD} | | | | Sink Current for I/O Ports except | 3V | Voi =0.1Vpp | 16 | 32 | _ | mA | | loL | PC0~PC3 Pins | 5V | VOL-U.IVDD | 32 | 65 | _ | mA | | | Source Current for I/O Ports except | 3V | V _{OH} =0.9V _{DD} | -4 | -8 | - | mA | | Іон | PC0~PC3 Pins | 5V | VOH-U.9VDD | -8 | -16 | _ | mA | | | | 3V | LVPU=0 | 20 | 60 | 100 | | | Rph | Pull-high Resistance for I/O Ports | 5V | PxPU=FFH (Px: PA, PB, PC) | 10 | 30 | 50 | kΩ | | I TOPH | except PC0~PC3 Pins (Note) | 3V | LVPU=1 | 6.67 | 15 | 23 | K22 | | | | 5V | PxPU=FFH (Px: PA, PB, PC) | 3.5 | 7.5 | 12 | | | I _{LEAK} | Input Leakage Current for I/O Ports except PC0~PC3 Pins | 5V | V _{IN} =V _{DD} or V _{IN} =V _{SS} | _ | _ | ±1 | μA | | t _{TCK} | TM Clock Input Minimum Pulse Width | _ | _ | 0.3 | _ | _ | μs | | t _{TPI} | TM Capture Input Pin Minimum Pulse Width | _ | _ | 0.3 | _ | _ | μs | | t _{RES} | External Reset Minimum Low Pulse Width | _ | _ | 10 | | _ | μs | ## Input/Output (with Multi-power) D.C. Characteristics | Coura ha a l | Down-ston. | | Test Conditions | Min | T | Mari | 11:4 | |-------------------|---|-----------------|--|--------------------|------|--|------| | Symbol | Parameter | V _{DD} | Conditions | Min. | Тур. | Max. | Unit | | V _{DD} | V _{DD} Power Supply for PC0~PC3 Pins | _ | _ | 1.8 | 5.0 | 5.5 | V | | V _{DDIO} | V _{DDIO} Power Supply for PC0~PC3 Pins | _ | _ | 1.8 | _ | V _{DD} | V | | | lancot I ave Valta as for | 5V | Pin power=V _{DD} or V _{DDIO} , V _{DDIO} =V _{DD} | 0 | _ | 1.5 | | | VIL | Input Low Voltage for PC0~PC3 Pins | _ | Pin power=V _{DD} or V _{DDIO} | 0 | _ | 0.2
(V _{DD} or V _{DDIO}) | V | | VIH | Input High Voltage for | 5V | Pin power=V _{DD} or V _{DDIO} , V _{DDIO} =V _{DD} | 3.5 | _ | 5.0 | V | | VIH | PC0~PC3 Pins | _ | Pin power=V _{DD} or V _{DDIO} | 0.8V _{DD} | _ | V _{DD} or V _{DDIO} | V | | | | 3V | V_{OL} =0.1 (V_{DD} or V_{DDIO}), V_{DDIO} = V_{DD} | 16 | 32 | _ | | | I _{OL} | Sink Current for PC0~PC3 Pins | 5V | V _{OL} =0.1 (V _{DD} or V _{DDIO}), V _{DDIO} =V _{DD} | 32 | 65 | _ | mA | | | 1 1113 | 30 | V _{OL} =0.1 (V _{DD} or V _{DDIO}), V _{DDIO} =3V | 20 | 40 | _ | | | | | 3V | V _{OH} =0.9 (V _{DD} or V _{DDIO}), V _{DDIO} =V _{DD} | -4 | -8 | _ | | | Іон | Source Current for PC0~PC3 Pins | 5V | V _{OH} =0.9 (V _{DD} or V _{DDIO}), V _{DDIO} =V _{DD} | -8 | -16 | | mA | | | 1 1110 | 50 | V _{OH} =0.9 (V _{DD} or V _{DDIO}), V _{DDIO} =3V | -2.5 | -5.0 | _ | | | Cumbal | Parameter | | Test Conditions | Min. | Turn | Max. | Unit | |-------------------|--|-----------------|--|-------|------|--------|-------| | Symbol | Parameter | V _{DD} | Conditions | wiin. | Тур. | iviax. | Oilit | | | | 3V | V _{DDIO} =V _{DD} , LVPU=0
PxPU=FFH (Px=PA, PB, PC) | 20 | 60 | 100 | | | | | 5V | V _{DDIO} =V _{DD} , LVPU=0,
PxPU=FFH (Px=PA, PB, PC) | 10 | 30 | 50 | | | RpH | Pull-high Resistance for | οv | V _{DDIO} =3V, LVPU=0,
PxPU=FFH (Px=PA, PB, PC) | 36 | 110 | 180 | kΩ | | Крн | PC0~PC3 Pins (Note) | 3V | V _{DDIO} =V _{DD} , LVPU=1,
PxPU=FFH (Px=PA, PB, PC) | 6.67 | 15 | 23 | K12 | | | | 5V | V _{DDIO} =V _{DD} , LVPU=1,
PxPU=FFH (Px=PA, PB, PC) | 3.5 | 7.5 | 12 | | | | | οv | V _{DDIO} =3V, LVPU=1,
PxPU=FFH (Px=PA, PB, PC) | 9 | 27.5 | 45 | | | I _{LEAK} | Input Leakage Current for PC0~PC3 Pins | 5V | V _{IN} =V _{DD} or V _{IN} =V _{DDIO} or V _{IN} =V _{SS} | _ | _ | ±1 | μΑ | Note: The R_{PH} internal pull high resistance value is calculated by connecting to ground and enabling the input pin with a pull-high resistor and then measuring the input sink current at the specified supply voltage level. Dividing the voltage by this measured current provides the R_{PH} value. # **Memory Characteristics** Ta=-40°C~85°C, unless otherwise specified | Cumb al | Parameter | | Test Conditions | Min | Tierra | May | Unit | |--------------------|--|-----------------|----------------------|--------------------|--------|--------------------|------| | Symbol | Parameter | V _{DD} | Conditions | Min. | Тур. | Max. | Unit | | V _{RW} | V _{DD} for Read/Write | _ | _ | V_{DDmin} | _ | V_{DDmax} | V | | Flash Pr | ogram / Data EEPROM Memory | | | | | | | | t _{DEW} | Erase/Write Cycle Time – Flash Program
Memory | _ | _ | _ | 2 | 3 | ms | | | Write Cycle Time – Data EEPROM Memory | _ | _ | _ | 4 | 6 | | | I _{DDPGM} | Programming/Erase Current on VDD | _ | _ | _ | _ | 5.0 | mA | | _ | Cell Endurance – Flash Program Memory | _ | _ | 10K | _ | _ | E/W | | E _P | Cell Endurance – Data EEPROM Memory | _ | _ | 100K | _ | _ | E/W | | t _{RETD} | ROM Data Retention Time | _ | Ta=25°C | _ | 40 | _ | Year | | RAM Da | ta Memory | | | | | | | | V _{DR} | RAM Data Retention Voltage | _ | Device in SLEEP Mode | 1.0 | _ | _ | V | ### LVD/LVR Electrical Characteristics Ta=25°C | Symbol | Parameter | | Test Conditions | Min. | Turn | Max. | Unit | |------------------|---------------------------|------------------------|----------------------------------|---------|------|--------|-------| | Symbol | Farameter | V _{DD} | Conditions | IVIIII. | Тур. | IVIAX. | Ullit | | | | | LVR enable, voltage select 1.70V | -5% | 1.70 | +5% | | | | | | LVR enable, voltage select 1.90V | -5% | 1.90 | T370 | | | V _{LVR} | Low Voltage Reset Voltage | _ | LVR enable, voltage select 2.55V | | 2.55 | | V | | | | | LVR enable, voltage select 3.15V | -3% | 3.15 | +3% | | | | | | LVR enable, voltage select 3.80V | | 3.80 | | | Rev. 1.20 20 November 19, 2019 | Comple al | Down stern | | Test Conditions | Min | T | Mari | 11:4 | |---------------------|---|---------------------------------|--|------|------|------|------| | Symbol | Parameter | V _{DD} | Conditions | Min. | Тур. | Max. | Unit | | | | | LVD enable, voltage select 1.8V | | 1.8 | | | | | LVD enable, voltage select 1.9V LVD enable, voltage select 2.0V | | LVD enable, voltage select 1.9V | | 1.9 | | | | | | | 2.0 | | | | | | | | LVD enable, voltage select 2.1V | | 2.1 | | | | | |
 | LVD enable, voltage select 2.2V | | 2.2 | | | | | | | LVD enable, voltage select 2.3V | | 2.3 | | | | | | | LVD enable, voltage select 2.4V | | 2.4 | +5% | | | VIVD | Low Voltage Detection Voltage | | LVD enable, voltage select 2.5V | -5% | 2.5 | | V | | VLVD | | _ | LVD enable, voltage select 2.6V | -3% | 2.6 | | V | | | | | LVD enable, voltage select 2.7V | | 2.7 | | | | | | | LVD enable, voltage select 2.8V | | 2.8 | | | | | | LVD enable, voltage select 2.9V | | 2.9 | | | | | | | | LVD enable, voltage select 3.0V | | 3.0 | | | | | | | LVD enable, voltage select 3.3V | | 3.3 | | | | | | | LVD enable, voltage select 3.6V | | 3.6 | | | | | | | LVD enable, voltage select 4.0V | | 4.0 | i İ | | | | Operating Current | 3V | LVD enable, LVR enable, | _ | _ | 10 | | | I _{LVRLVD} | Operating Current | 5V | V _{LVR} =1.9V, V _{LVD} =2V | _ | 8 | 15 | μA | | tivos | LVDO Stable Time | _ | For LVR enable, LVD off \rightarrow on | _ | _ | 15 | | | LLVDS | LVDO Stable Title | _ | For LVR disable, LVD off \rightarrow on | _ | _ | 150 | μs | | t _{LVR} | Minimum Low Voltage Width to Reset | _ | _ | | 240 | 480 | μs | | t _{LVD} | Minimum Low Voltage Width to Interrupt | _ | _ | 60 | 120 | 240 | μs | | I _{LVR} | Additional Current for LVR Enable | _ | LVD disable | _ | _ | 8 | μΑ | | I _{LVD} | Additional Current for LVD Enable | _ | LVR disable | _ | _ | 8 | μA | ## **EPD Driver Electrical Characteristics** Ta=-40°C~85°C, unless otherwise specify | Complete | Parameter | | Test Conditions | Min | Trees | Max | Unit | |------------------|-----------------------------------|------------------------|----------------------------|------|-------|------|------| | Symbol | Parameter | V _{DD} | Conditions | Min. | Тур. | Max. | Unit | | | | _ | Power supply from AVDD pin | 1.8 | _ | 5.5 | | | V _{IN} | EPD Operating Voltage | | Power supply from VDHI pin | 5 | _ | 12 | V | | | | _ | Power supply from VDLI pin | 2.5 | _ | 6 | | | V 01 5 V 11 | _ | Output to VDHO pin | 5 | _ | 12 | V | | | V _{OUT} | Charge Pump Voltage | _ | Output to VDLO pin | 2.5 | _ | 6 | V | | V _{DHO} | Charge Pump VDH Output
Voltage | _ | VDH_LV[6:0]=1111111B | -5% | 12 | +5% | V | | V _{DLO} | Charge Pump VDL Output voltage | _ | VDL_LV[6:0]=1111111B | -5% | 6 | +5% | V | | Cumb at | Dorometer | | Test Conditions | Min. | Time | Mess | Unit | |-----------------------|----------------------------|---|--|-------|-------|------|------| | Symbol | Parameter | V _{DD} | Conditions | wiin. | Тур. | Max. | Unit | | | | 3V | No load, Charge pump On status | _ | 2.526 | 5.0 | | | | | 5V | (V _{DHO} /V _{DLO} non-stable)
CPC[1:0]=00B | _ | 4.48 | 10 | mA | | | | 3V | No load, Charge pump On status | _ | 1.345 | 3.0 | | | | | 5V | (V _{DHO} /V _{DLO} non-stable)
CPC[1:0]=01B | _ | 2.285 | 5.0 | mA | | I _{DD} | Operating Current | 3V | No load, Charge pump On status | _ | 0.722 | 1.5 | | | | Operating Current | 5V | (V _{DHO} /V _{DLO} non-stable)
CPC[1:0]=10B | _ | 1.076 | 2.0 | mA | | | | 3V | No load, Charge pump On status | _ | 0.378 | 1.0 | | | | | 5V | (V _{DHO} /V _{DLO} non-stable)
CPC[1:0]=11B | _ | 0.609 | 1.5 | mA | | | | 3V | No load, Charge pump On status | | 120 | 180 | μA | | | | 5V | (V _{DHO} /V _{DLO} stable) | _ | 150 | 225 | μΑ | | | EDD Segment Sink Current | PD Segment Sink Current VDHI pin voltage=12V, | | 1.0 | 2.0 | _ | mA | | I _{OL} | Er B Gogmont Gink Garront | 5V | SEGn pin V _{OL} =1.2V(n=0~63) | 1.0 | 2.0 | _ | ША | | | EPD COMBG Sink Current | 3V | VDHI pin voltage=12V, | 3.0 | 6.0 | _ | mA | | | El B GOMBG GIIN GUITGIN | 5V | COMBGm pin V _{OL} =1.2V(m=0~1) | 3.0 | 6.0 | | | | | EPD Segment Source Current | 3V | VDHI pin voltage=12V, | -0.7 | -1.5 | _ | mA | | I _{OH} | | 5V | SEGn pin V _{OH} =10.8V (n=0~63) | -0.7 | -1.5 | | | | -011 | EPD COMBG Source Current | 3V | VDHI pin voltage=12V, | -2.2 | -4.5 | | mA | | | | 5V | COMBGm pin V _{OH} =10.8V (m=0~1) | -2.2 | -4.5 | _ | | | t _{RSEG} | Segment Driver Rise Time | _ | 99% final value, C_{L_S} =30pF, R_{L_S} =10k $\Omega^{(Note)}$ | _ | 1 | 1.5 | μs | | t _{FSEG} | Segment Driver Fall Time | _ | 1% final value, C_{L_S} =30pF, R_{L_S} =10k $\Omega^{(Note)}$ | _ | 0.8 | 1.2 | μs | | t _{RCOMBG} | COMBG Driver Rise Time | _ | 99% final value,
C _{L_COMBG} =2nF, R _{L_COMBG} =1kΩ ^(Note) | _ | 8 | 12 | μs | | t _{FCOMBG} | COMBG Driver Fall Time | _ | 1% final value,
C _{L_COMBG} =2nF, R _{L_COMBG} =1kΩ ^(Note) | _ | 6 | 9 | μs | | | | 1.8V | f _{SYS} =4MHz, CPC[1:0]=00B | _ | 350 | 450 | ms | | | Charge Dump Boody Time | 3V | V _{DHO} from 0V to 12V | _ | 72 | 160 | ms | | t _{CP_READY} | Charge Pump Ready Time | 5V | V _{DLO} from 0V to 6V
(With VDHO, VDLO output
capacitor=1µF) | _ | 30 | 64 | ms | Note: The EPD drives output RC load. # A/D Converter Electrical Characteristics Ta=-40°C~85°C, unless otherwise specify | Cumbal | Downwater | | Test Conditions | Min. | Тур. | Max. | Unit | | |--------------------|---|-----------------|--|--------|------|------------------|-------------------|--| | Symbol | Parameter | V _{DD} | Conditions | iviin. | тур. | wax. | Unit | | | AV _{DD} | Operating Voltage | | | | _ | 5.5 | V | | | V _{ADI} | Input Voltage | | _ | 0 | _ | V_{REF} | V | | | V _{REF} | Reference Voltage | _ | _ | 1.8 | _ | AV _{DD} | V | | | | | 1.8V | | | | | | | | | | 3V | V _{REF} =V _{DD} , t _{ADCK} =0.5µs | | | | | | | DNL | Differential Non-linearity | 5V | | -3 | — | +3 | LSB | | | | | 3V | \/ -\/ + -10.00 | | | | | | | | | 5V | V _{REF} =V _{DD} , t _{ADCK} =10µs | | | | | | | | | 1.8V | | | | | | | | | Integral Non-linearity | 3V | V _{REF} =V _{DD} , t _{ADCK} =0.5µs | | | | | | | INL | | 5V | | -4 | — | +4 | LSB | | | | | 3V | \/ -\/ + -10.00 | | | | | | | | | 5V | V _{REF} =V _{DD} , t _{ADCK} =10µs | | | | | | | | Additional Current Consumption for A/D Converter Enable | 1.8V | | _ | 280 | 400 | μA | | | I _{ADC} | | 3V | No load, t _{ADCK} =0.5µs | _ | 1 | 2 | mA | | | | | 5V | | _ | 1.5 | 3 | mA | | | tadck | Clock Period | _ | _ | 0.5 | _ | 10 | μs | | | t _{ON2ST} | A/D Converter On-to-Start Time | _ | _ | 4 | - | _ | μs | | | t _{ADS} | Sampling Time | _ | _ | _ | 4 | _ | tadck | | | t _{ADC} | Conversion Time
(Including A/D Sample and Hold Time) | _ | _ | _ | 16 | _ | t _{ADCK} | | | | | 1.8V | | -4 | _ | 4 | | | | GERR | Gain Error | 3V | V _{REF} =V _{DD} | -4 | _ | 4 | LSB | | | | | | | -4 | _ | 4 | | | | | | 1.8V | | -4 | _ | 4 | | | | OSRR | Offset Error | 3V | V _{REF} =V _{DD} | -4 | | 4 | LSB | | | | | | | -4 | _ | 4 | | | ## **Power-on Reset Characteristics** Ta=25°C | Symbol | Parameter | | est Conditions | Min. | Time | May | Unit | |------------------|---|---|----------------|-------|------|------|------| | | | | Conditions | wiin. | Тур. | Max. | Unit | | V _{POR} | V _{DD} Start Voltage to Ensure Power-on Reset | _ | _ | _ | _ | 100 | mV | | RRPOR | V _{DD} Rising Rate to Ensure Power-on Reset | _ | _ | 0.035 | _ | _ | V/ms | | t _{POR} | Minimum Time for V _{DD} Stays at V _{POR} to Ensure Power-on Reset | _ | _ | 1 | _ | _ | ms | Rev. 1.20 23 November 19, 2019 ## **System Architecture** A key factor in the high-performance features of the range of microcontrollers is attributed to their internal system architecture. The device takes advantage of the usual features found within RISC microcontrollers providing increased speed of operation and enhanced performance. The pipelining scheme is implemented in such a way that instruction fetching and instruction execution are overlapped, hence instructions are effectively executed in one or two cycles for most of the standard or extended instructions respectively. The exceptions to this are branch or call instructions which need one more cycle. An 8-bit wide ALU is used in practically all instruction set operations, which carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions, etc. The internal data path is simplified by moving data through the Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and can be directly or indirectly addressed. The simple addressing methods of these registers along with additional architectural features ensure that a minimum of external components is required to provide a functional I/O and A/D control system with maximum reliability and flexibility. This makes the device suitable for low-cost, high-volume production for controller applications. #### **Clocking and Pipelining** The main system clock, derived from either a HIRC, LXT or LIRC oscillator is subdivided into four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction cycle. Although the fetching and execution of instructions takes place in consecutive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are effectively executed in one instruction cycle. The exception to this are instructions where the contents of the Program Counter are changed, such as subroutine calls or jumps, in which case the instruction will take one more instruction cycle to execute. For instructions involving branches, such as jump or call instructions, two machine cycles are required to complete instruction execution. An extra cycle is required as the program takes one cycle to first obtain the actual jump or call address and then another cycle to actually execute the branch. The requirement
for this extra cycle should be taken into account by programmers in timing sensitive applications. System Clocking and Pipelining Rev. 1.20 24 November 19, 2019 Instruction Fetching ### **Program Counter** During program execution, the Program Counter is used to keep track of the address of the next instruction to be executed. It is automatically incremented by one each time an instruction is executed except for instructions, such as "JMP" or "CALL" that demands a jump to a non-consecutive Program Memory address. As the device whose memory capacity is greater than 8K words the Program Memory address may be located in a certain program memory bank which is selected by the program memory bank pointer bit PBP0. Only the lower 8 bits, known as the Program Counter Low Register, are directly addressable by the application program. When executing instructions requiring jumps to non-consecutive addresses such as a jump instruction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control by loading the required address into the Program Counter. For conditional skip instructions, once the condition has been met, the next instruction, which has already been fetched during the present instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is obtained. | Program Counter | | | | | | | |-----------------|---------------------------|--------------|--|--|--|--| | | Program Counter High Byte | PCL Register | | | | | | | PBP0, PC12~PC8 | PCL7~PCL0 | | | | | **Program Counter** The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is available for program control and is a readable and writeable register. By transferring data directly into this register, a short program jump can be executed directly. However, as only this low byte is available for manipulation, the jumps are limited to the present page of memory, that is 256 locations. When such program jumps are executed it should also be noted that a dummy cycle will be inserted. Manipulating the PCL register may cause program branching, so an extra cycle is needed to pre-fetch. #### Stack This is a special part of the memory which is used to save the contents of the Program Counter only. The stack is organised into 16 levels and is neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value from the stack. After a device reset, the Stack Pointer will point to the top of the stack. If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI, the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily. However, when the stack is full, a CALL subroutine instruction can still be executed which will result in a stack overflow. Precautions should be taken to avoid such cases which might cause unpredictable program branching. If the stack is overflow, the first Program Counter save in the stack will be lost. Rev. 1.20 25 November 19, 2019 #### Arithmetic and Logic Unit - ALU The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU receives related instruction codes and performs the required arithmetic or logical operations after which the result will be placed in the specified register. As these ALU calculation or operations may result in carry, borrow or other status changes, the status register will be correspondingly updated to reflect these changes. The ALU supports the following functions: - Arithmetic operations: ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA, LADD, LADDM, LADC, LADCM, LSUB, LSUBM, LSBC, LSBCM, LDAA - Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA, LAND, LANDM, LOR, LORM, LXOR, LXORM, LCPL, LCPLA - Rotation: RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC, LRR, LRRA, LRRCA, LRRC, LRLA, LRL, LRLCA, LRLC - Increment and Decrement: INCA, INC, DECA, DEC, LINCA, LINC, LDECA, LDEC - Branch decision: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI, LSNZ, LSZ, LSZA, LSIZ, LSIZA, LSDZ, LSDZA Rev. 1.20 26 November 19, 2019 ## **Flash Program Memory** The Program Memory is the location where the user code or program is stored. For this device the Program Memory is Flash type, which means it can be programmed and re-programmed a large number of times, allowing the user the convenience of code modification on the same device. By using the appropriate programming tools, the Flash device offer users the flexibility to conveniently debug and develop their applications while also offering a means of field programming and updating. #### Structure The Program Memory has a capacity of 16K×16 bits. The Program Memory is addressed by the Program Counter and also contains data, table information and interrupt entries. Table data, which can be setup in any location within the Program Memory, is addressed by a separate table pointer register. **Program Memory Structure** #### **Special Vectors** Within the Program Memory, certain locations are reserved for the reset and interrupts. The location 000H is reserved for use by the device reset for program initialisation. After a device reset is initiated, the program will jump to this location and begin execution. #### Look-up Table Any location within the Program Memory can be defined as a look-up table where programmers can store fixed data. To use the look-up table, the table pointer must first be setup by placing the address of the look up data to be retrieved in the table pointer register, TBLP and TBHP. These registers define the total address of the look-up table. After setting up the table pointer, the table data can be retrieved from the Program Memory using the corresponding table read instruction such as "TABRD [m]" or "TABRDL [m]" respectively when the memory [m] is located in Sector 0. If the memory [m] is located in other sectors, the data can be retrieved from the program memory using the corresponding extended table read instruction such as "LTABRD [m]" or "LTABRDL [m]" respectively. When the instruction is executed, the lower order table byte from the Program Memory will be transferred to the user defined Data Memory register [m] as specified in the instruction. The higher order table data byte from the Program Memory will be transferred to the TBLH special register. Any unused bits in this transferred higher order byte will be read as "0". The accompanying diagram illustrates the addressing data flow of the look-up table. Rev. 1.20 27 November 19, 2019 ### Table Program Example The following example shows how the table pointer and table data is defined and retrieved from the microcontroller. This example uses raw table data located in the Program Memory which is stored there using the ORG statement. The value at this ORG statement is "1F00H" which is located in ROM Bank 1 and refers to the start address of the last page within the 16K Program Memory of the microcontroller. The table pointer low byte register is setup here to have an initial value of "06H". This will ensure that the first data read from the data table will be at the Program Memory address "3F06H" or 6 locations after the start of the last page. Note that the value for the table pointer is referenced to the specific address pointed by TBLP and TBHP registers if the "TABRD [m]" or "LTABRD [m]" instruction is being used. The high byte of the table data which in this case is equal to zero will be transferred to the TBLH register automatically when the "TABRD [m]" or "LTABRD [m]" instruction is executed. Because the TBLH register is a read/write register and can be restored, care should be taken to ensure its protection if both the main routine and Interrupt Service Routine use table read instructions. If using the table read instructions, the Interrupt Service Routines may change the value of the TBLH and subsequently cause errors if used again by the main routine. As a rule it is recommended that simultaneous use of the table read instructions should be avoided. However, in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any main routine table-read instructions. Note that all table related instructions require two instruction cycles to complete their operation. #### **Table Read Program Example** ``` rombank 1 code1 ds .section 'data' tempreg1 db ? ; temporary register #1 tempreg2 db ? ; temporary register #2 code0 .section 'code' ; initialise low table pointer - note that this address is referenced mov a,06h mov tblp,a ; to the last page or the page that thhp pointed mov a,3Fh ; initialise high table pointer mov tbhp, a ; It is not necessary to set thhp register if executing "tabrdl" ; instruction tabrd tempreg1 ; transfers value in table referenced by table pointer data at program ; memory address "3F06H" transferred to tempreq1 and TBLH ; reduce value of table pointer by one dec tblp ; transfers value in table referenced by table pointer tabrd tempreg2 ; data at program memory address "3F05H" transferred to ; tempreg2 and TBLH in this example the data "1AH" is ; transferred to tempreg1 and data "OFH" to register tempreg2 ``` Rev. 1.20 28 November 19, 2019 ``` : codel .section 'code' org 1F00h ; sets initial address of program memory dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh : ``` #### In Circuit Programming - ICP The
provision of Flash type Program Memory provides the user with a means of convenient and easy upgrades and modifications to their programs on the same device. As an additional convenience, Holtek has provided a means of programming the microcontroller in-circuit using a 4-pin interface. This provides manufacturers with the possibility of manufacturing their circuit boards complete with a programmed or un-programmed microcontroller, and then programming or upgrading the program at a later stage. This enables product manufacturers to easily keep their manufactured products supplied with the latest program releases without removal and re-insertion of the device. The Flash MCU to Writer Programming Pin correspondence table is as follows: | Holtek Writer Pins | MCU Programming Pins | Pin Description | |--------------------|----------------------|---------------------------------| | ICPDA | PA0 | Programming serial data/address | | ICPCK | PA2 | Programming clock | | VDD | VDD/AVDD | Power supply | | VSS | VSS/AVSS | Ground | The Program Memory can be programmed serially in-circuit using this 4-wire interface. Data is downloaded and uploaded serially on a single pin with an additional line for the clock. Two additional lines are required for the power supply. The technical details regarding the in-circuit programming of the device are beyond the scope of this document and will be supplied in supplementary literature. During the programming process, the user must take care of the ICPDA and ICPCK pins for data and clock programming purposes to ensure that no other outputs are connected to these two pins. Note: * may be resistor or capacitor. The resistance of * must be greater than $1k\Omega$ or the capacitance of * must be less than 1nF. Rev. 1.20 29 November 19, 2019 #### On-Chip Debug Support - OCDS There is an EV chip named HT67V2567 which is used to emulate the real MCU device named HT67F2567. This EV chip device also provides an "On-Chip Debug" function to debug the device during the development process. The EV chip and the actual MCU device are almost functionally compatible except for the "On-Chip Debug" function. Users can use the EV chip device to emulate the real chip device behavior by connecting the OCDSDA and OCDSCK pins to the HT-IDE development tools. The OCDSDA pin is the OCDS Data/Address input/output pin while the OCDSCK pin is the OCDS clock input pin. When users use the EV chip for debugging, other functions which are shared with the OCDSDA and OCDSCK pins in the actual MCU device will have no effect in the EV chip. However, the two OCDS pins which are pin-shared with the ICP programming pins are still used as the Flash Memory programming pins for ICP. For a more detailed OCDS description, refer to the corresponding document named "Holtek e-Link for 8-bit MCU OCDS User's Guide". | Holtek e-Link Pins | EV Chip Pins | Pin Description | |--------------------|---------------------|---| | OCDSDA | OCDSDA | On-chip debug support data/address input/output | | OCDSCK | OCDSCK | On-chip debug support clock input | | VDD | VDD/AVDD | Power supply | | VSS | VSS/AVSS | Ground | #### In Application Programming - IAP Flash type Program Memory provides the user with a means of convenient and easy upgrades and modifications to their programs on the same device. The provision of IAP function offers users the convenience of Flash Memory multi-programming features. The convenience of the IAP function is that it can execute the updated program procedure using its internal firmware, without requiring an external Program Writer or PC. In addition, the IAP interface can also be any type of communication protocol, such as UART, using I/O pins. Regarding the internal firmware, the user can select versions provided by Holtek or create their own. The following section illustrates the procedures regarding how to implement the IAP firmware. #### Flash Memory Read/Write Size The flash memory Erase and Write operations are carried out in a page format while the Read operation is carried out in a word format. The page size and write buffer size are both assigned with a capacity of 64 words. Note that the Erase operation should be executed before the Write operation is executed. When the Flash Memory Erase/Write Function is successfully enabled, the CFWEN bit will be set high. When the CFWEN bit is set high, the data can be written into the write buffer. The FWT bit is used to initiate the write process and then indicate the write operation status. This bit is set high by application programs to initiate a write process and will be cleared by hardware if the write process is finished. The Read operation can be carried out by executing a specific read procedure. The FRDEN bit is used to enable the read function and the FRD bit is used to initiate the read process by application programs and then indicate the read operation status. When the read process is finished, this bit will be cleared by hardware. | Operations | Format | | | | | |---|---------------|--|--|--|--| | Erase | 64 words/page | | | | | | Write | 64 words/time | | | | | | Read | 1 word/time | | | | | | Note: Page size=Write buffer size=64 words. | | | | | | IAP Read/Write Format Rev. 1.20 30 November 19, 2019 | Erase Page | FARH | FARL [7:6] | FARL [5:0] | |------------|-----------|------------|------------| | 0 | 0000 0000 | 00 | xx xxxx | | 1 | 0000 0000 | 01 | xx xxxx | | 2 | 0000 0000 | 10 | xx xxxx | | 3 | 0000 0000 | 11 | xx xxxx | | 4 | 0000 0001 | 00 | xx xxxx | | : | : | : | : | | : | : | : | : | | 254 | 0011 1111 | 10 | xx xxxx | | 255 | 0011 1111 | 11 | xx xxxx | "x": don't care #### **Erase Page Number and Selection** Note: "n" is specified by FA13~FA6 Flash Memory IAP Read/Write Structure #### Write Buffer The write buffer is used to store the written data temporarily when executing the write operation. The Write Buffer can be filled with written data after the Flash Memory Erase/Write Function has been successfully enabled by executing the Flash Memory Erase/Write Function Enable procedure. The write buffer can be cleared by configuring the CLWB bit in the FC2 register. The CLWB bit can be set high to enable the Clear Write Buffer procedure. When the procedure is finished this bit will be cleared to low by the hardware. It is recommended that the write buffer should be cleared by setting the CLWB bit high before the write buffer is used for the first time or when the data in the write buffer is updated. The write buffer size is 64 words corresponding to a page. The write buffer address is mapped to a specific flash memory page specified by the memory address bits, FA13~FA6. The data written into the FD0L and FD0H registers will be loaded into the write buffer. When data is written into the high byte data register, FD0H, it will result in the data stored in the high and low byte data registers both being written into the write buffer. It will also cause the flash memory address to be incremented by one, after which the new address will be loaded into the FARH and FARL address registers. When the flash memory address reaches the page boundary, 111111b of a page with 64 words, the address will now not be incremented but will stop at the last address of the page. At this point a new page address should be specified for any other erase/write operations. After a write process is finished, the write buffer will automatically be cleared by the hardware. Note that the write buffer should be cleared manually by the application program when the data written into the flash memory is incorrect in the data verification step. The data should again be written into the write buffer after the write buffer has been cleared when the data is found to be incorrect during the data verification step. Rev. 1.20 31 November 19, 2019 #### **IAP Flash Program Memory Registers** There are two address registers, four 16-bit data registers and three control registers. The address and data register pairs are located in Sector 0 while the control registers are located in Sector 1. Read and Write operations to the Flash memory are carried out using 16-bit data operations using the address and data registers and the control register. Several registers control the overall operation of the internal Flash Program Memory. The address registers are named FARL and FARH, the data registers are named FDnL and FDnH and the control registers are named FC0, FC1 and FC2. As the address and data register pairs are located in Sector 0, they can be directly accessed in the same way as any other Special Function Register. The control registers, being located in Sector 1, can be addressed directly only using the corresponding extended instructions or can be read from or written to indirectly using the MP1H/MP1L or MP2H/MP2L Memory Pointer pairs and Indirect Addressing Register, IAR1 or IAR2. | Register | | | | В | it | | | | |----------|-------|-------|-------|-------|-------|------|-------|------| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | FC0 | CFWEN | FMOD2 | FMOD1 | FMOD0 | FWPEN | FWT | FRDEN | FRD | | FC1 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | FC2 | _ | _ | _ | _ | _ | _ | _ | CLWB | | FARL | FA7 | FA6 | FA5 | FA4 | FA3 | FA2 | FA1 | FA0 | | FARH | _ | _ | FA13 | FA12 | FA11 | FA10 | FA9 | FA8 | | FD0L | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | FD0H | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | FD1L | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | FD1H | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | FD2L | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | FD2H | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | FD3L | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | FD3H | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | **IAP Register List** #### FARL Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | FA7 | FA6 | FA5 | FA4 | FA3 | FA2 | FA1 | FA0 | |
R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **FA7~FA0**: Flash Memory Address bit 7~bit 0 #### • FARH Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|------|------|------|------|-----|-----| | Name | _ | _ | FA13 | FA12 | FA11 | FA10 | FA9 | FA8 | | R/W | _ | _ | R/W | R/W | R/W | R/W | R/W | R/W | | POR | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 Unimplemented, read as 0 Bit 5~0 **FA13~FA8**: Flash Memory Address bit 13~bit 8 Rev. 1.20 32 November 19, 2019 #### • FD0L Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit $7 \sim 0$ **D7\simD0**: The first Flash Memory data word bit $7 \sim$ bit 0 Note that data written into the low byte data register FD0L will only be stored in the FD0L register and not loaded into the lower 8-bit write buffer. #### FD0H Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D15~D8**: The first Flash Memory data word bit 15~bit 8 Note that when 8-bit data is written into the high byte data register FD0H, the whole 16-bits of data stored in the FD0H and FD0L registers will simultaneously be loaded into the 16-bit write buffer after which the contents of the Flash memory address register pair, FARH and FARL, will be incremented by one. #### • FD1L Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D7~D0**: The second Flash Memory data word bit 7~bit 0 #### • FD1H Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D15~D8**: The second Flash Memory data word bit 15~bit 8 #### • FD2L Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit $7 \sim 0$ **D7~D0**: The third Flash Memory data word bit $7 \sim$ bit 0 #### • FD2H Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D15~D8**: The third Flash Memory data word bit 15~bit 8 Rev. 1.20 33 November 19, 2019 #### • FD3L Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit $7 \sim 0$ **D7~D0**: The fourth Flash Memory data word bit $7 \sim$ bit 0 #### FD3H Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D15~D8**: The fourth Flash Memory data word bit 15~bit 8 #### FC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-----|-------|-----| | Name | CFWEN | FMOD2 | FMOD1 | FMOD0 | FWPEN | FWT | FRDEN | FRD | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 CFWEN: Flash Memory Erase/Write function enable control 0: Flash memory erase/write function is disabled 1: Flash memory erase/write function has been successfully enabled When this bit is cleared to 0 by application program, the Flash memory erase/write function is disabled. Note that this bit cannot be set high by application programs. Writing "1" into this bit results in no action. This bit is used to indicate the Flash memory erase/write function status. When this bit is set to 1 by the hardware, it means that the Flash memory erase/write function is enabled successfully. Otherwise, the Flash memory erase/write function is disabled if the bit is zero. #### Bit 6~4 FMOD2~FMOD0: Flash memory Mode selection 000: Write Mode 001: Page erase Mode 010: Reserved 011: Read Mode 100: Reserved 101: Reserved 110: Flash memory Erase/Write function Enable Mode 111: Reserved These bits are used to select the Flash Memory operation modes. Note that the "Flash memory Erase/Write function Enable Mode" should first be successfully enabled before the Erase or Write Flash memory operation is executed. ### Bit 3 FWPEN: Flash memory Erase/Write function enable procedure Trigger 0: Erase/Write function enable procedure is not triggered or procedure timer times out 1: Erase/Write function enable procedure is triggered and procedure timer starts to count This bit is used to activate the flash memory Erase/Write function enable procedure and an internal timer. It is set by the application programs and then cleared to zero by the hardware when the internal timer times out. The correct patterns must be written into the FD1L/FD1H, FD2L/FD2H and FD3L/FD3H register pairs respectively as soon as possible after the FWPEN bit is set high. Rev. 1.20 34 November 19, 2019 - Bit 2 **FWT**: Flash memory write initiate control - 0: Do not initiate Flash memory write or indicating that a Flash memory write process has completed - 1: Initiate Flash memory write process This bit is set by software and cleared to zero by the hardware when the Flash memory write process has completed. Note that all CPU operations will be stopped when this bit is set to 1. - Bit 1 FRDEN: Flash memory read enable control - 0: Flash memory read disable - 1: Flash memory read enable This is the Flash memory Read Enable Bit which must be set high before any Flash memory read operations are carried out. Clearing this bit to zero will inhibit Flash memory read operations. - Bit 0 FRD: Flash memory read initiate control - 0: Do not initiate Flash memory read or indicating that a Flash memory read process has completed - 1: Initiate Flash memory read process This bit is set by software and cleared to zero by the hardware when the Flash memory read process has completed. Note that all CPU operations will be stopped when this bit is set to 1. - Note: 1. The FWT, FRDEN and FRD bits cannot be set to "1" at the same time with a single instruction. - 2. Ensure that the f_{SUB} clock is stable before executing the erase/write operation. - 3. Ensure that the read/erase/write operation is totally complete before executing other operations. #### FC1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D7~D0**: Chip Reset Pattern When a specific value of "55H" is written into this register, a reset signal will be generated to reset the whole chip. #### FC2 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|---|------| | Name | _ | _ | _ | _ | _ | _ | _ | CLWB | | R/W | _ | _ | _ | _ | _ | _ | _ | R/W | | POR | _ | _ | _ | _ | _ | _ | _ | 0 | Bit 7~1 Unimplemented, read as "0". Bit 0 CLWB: Flash memory Write Buffer Clear control - 0: Do not initiate a Write Buffer Clear process or indicating that a Write Buffer Clear process has completed. - 1: Initiate Write Buffer Clear process This bit is set by software and cleared to zero by hardware when the Write Buffer Clear process has completed. Rev. 1.20 35 November 19, 2019 #### Flash Memory Erase/Write Flow It is important to understand the Flash memory Erase/Write flow before the Flash memory contents are updated. Users can refer to the corresponding operation procedures when developing their IAP program to ensure that the flash memory contents are correctly updated. #### Flash Memory Erase/Write Flow Descriptions: - Activate the "Flash Memory Erase/Write function enable procedure" first. When the Flash Memory Erase/Write function is successfully enabled, the CFWEN bit in the FC0 register will automatically be set high by hardware. After this, Erase or Write operations can be executed on the Flash memory. Refer to the "Flash Memory Erase/Write Function Enable Procedure" for details. - 2. Configure the flash memory address to select the desired erase page and then erase this page. - 3. Execute a Blank Check operation to ensure whether the page erase operation is successful or not. The "TABRD" instruction should be executed to read the flash memory contents and to check if the contents is 0000h or not. If the flash memory page erase operation fails, users should go back to Step 2 and execute the page erase operation again. - 4. Write data into the specific page. Refer to the "Flash Memory Write Procedure" for details. - 5. Execute the "TABRD" instruction to read the flash memory contents and check if the written data is correct or not. If the data read from the flash memory is different from the written data, it means that the page write operation has failed. The CLWB bit should be set high to clear the write buffer and then write the data into the specific page again if the write operation has failed. - Clear the CFWEN bit to disable the Flash Memory Erase/Write function enable mode if the current page Erase and Write operations are complete if no more pages need to be erased or written. Rev. 1.20 36 November 19, 2019 Flash Memory Erase/Write Flow Note: The Flash Memory Erase/Write Function Enable procedure and Flash Memory Write procedure will be described in the following sections. Rev. 1.20 37 November 19, 2019 ## Flash Memory Erase/Write Function Enable Procedure The Flash Memory Erase/Write Function Enable Mode is specially designed to prevent the flash memory contents from being wrongly modified. In order to allow users to change the Flash memory data using the IAP control registers, users must first
enable the Flash memory Erase/Write function. ## Flash Memory Erase/Write Function Enable Procedure Description - 1. Write data "110" to the FMOD [2:0] bits in the FC0 register to select the Flash Memory Erase/Write Function Enable Mode. - 2. Set the FWPEN bit in the FC0 register to "1" to activate the Flash Memory Erase/Write Function. This will also activate an internal timer. - 3. Write the correct data pattern into the Flash data registers, FD1L~FD3L and FD1H~FD3H, as soon as possible after the FWPEN bit is set high. The enable Flash memory erase/write function data pattern is 00H, 0DH, C3H, 04H, 09H and 40H corresponding to the FD1L~FD3L and FD1H~FD3H registers respectively. - 4. Once the timer has timed out, the FWPEN bit will automatically be cleared to 0 by hardware regardless of the input data pattern. - 5. If the written data pattern is incorrect, the Flash memory erase/write function will not be enabled successfully and the above steps should be repeated. If the written data pattern is correct, the Flash memory erase/write function will be enabled successfully. - 6. Once the Flash memory erase/write function is enabled, the Flash memory contents can be updated by executing the page erase and write operations using the IAP control registers. To disable the Flash memory erase/write function, the CFWEN bit in the FC0 register can be cleared. There is no need to execute the above procedure. Rev. 1.20 38 November 19, 2019 Flash Memory Erase/Write Function Enable Procedure Rev. 1.20 39 November 19, 2019 ### Flash Memory Write Procedure After the Flash memory erase/write function has been successfully enabled as the CFWEN bit is set high, the data to be written into the flash memory can be loaded into the write buffer. The selected flash memory page data should be erased by properly configuring the IAP control registers before the data write procedure is executed. The write buffer size is 64 words, known as a page, whose address is mapped to a specific flash memory page specified by the memory address bits, FA13~FA6. It is important to ensure that the page where the write buffer data is located is the same one which the memory address bits, FA13~FA6, specify. # Flash Memory Consecutive Write Description The maximum amount of write data is 64 words for each write operation. The write buffer address will be automatically incremented by one when consecutive write operations are executed. The start address of a specific page should first be written into the FARL and FARH registers. Then the data word should first be written into the FD0L register and then the FD0H register. At the same time the write buffer address will be incremented by one and then the next data word can be written into the FD0L and FD0H registers for the next address without modifying the address register pair, FARH and FARL. When the write buffer address reaches the page boundary the address will not be further incremented but will stop at the last address of the page. - 1. Activate the "Flash Memory Erase/Write function enable procedure". Check the CFWEN bit value and then execute the erase/write operations if the CFWEN bit is set high. Refer to the "Flash Memory Erase/Write function enable procedure" for more details. - 2. Set the FMOD field to "001" to select the erase operation. Set the FWT bit high to erase the desired page which is specified by the FARH and FARL registers. Wait until the FWT bit goes low. - 3. Execute a Blank Check operation using the table read instruction to ensure that the erase operation has successfully completed. - Go to step 2 if the erase operation is not successful. - Go to step 4 if the erase operation is successful. - 4. Set the FMOD field to "000" to select the write operation. - 5. Setup the desired start address in the FARH and FARL registers. Write the desired data words consecutively into the FD0L and FD0H registers within a page as specified by their consecutive addresses. The maximum written data number is 64 words. - 6. Set the FWT bit high to write the data words from the write buffer to the flash memory. Wait until the FWT bit goes low. - 7. Verify the data using the table read instruction to ensure that the write operation has successfully completed. - If the write operation has not successfully completed, set the CLWB bit high to clear the write buffer and then go to step 5. - Go to step 8 if the write operation is successful. - 8. Clear the CFWEN bit low to disable the Flash memory erase/write function. Rev. 1.20 40 November 19, 2019 Flash Memory Consecutive Write Procedure Note: 1. When the FWT bit is set to 1 all CPU operations will temporarily cease. 2. It will take a typical time of 2.2ms for the FWT bit state changing from high to low. ## Flash Memory Non-Consecutive Write Description The main difference between Flash Memory Consecutive and Non-Consecutive Write operations is whether the data words to be written are located in consecutive addresses or not. If the data to be written is not located in consecutive addresses the desired address should be re-assigned after a data word is successfully written into the Flash Memory. A two data word non-consecutive write operation is taken as an example here and described as follows: - 1. Activate the "Flash Memory Erase/Write function enable procedure". Check the CFWEN bit value and then execute the erase/write operation if the CFWEN bit is set high. Refer to the "Flash Memory Erase/Write function enable procedure" for more details. - 2. Set the FMOD field to "001" to select the erase operation. Set the FWT bit high to erase the desired page which is specified by the FARH and FARL registers. Wait until the FWT bit goes low. - 3. Execute a Blank Check operation using the table read instruction to ensure that the erase operation has successfully completed. - Go to step 2 if the erase operation is not successful. - Go to step 4 if the erase operation is successful. - 4. Set the FMOD field to "000" to select the write operation. - 5. Setup the desired address ADDR1 in the FARH and FARL registers. Write the desired data word DATA1 first into the FD0L register and then into the FD0H register. - 6. Set the FWT bit high to transfer the data word from the write buffer to the flash memory. Wait until the FWT bit goes low. - 7. Verify the data using the table read instruction to ensure that the write operation has successfully completed. - If the write operation has not successfully completed, set the CLWB bit high to clear the write buffer and then go to step 5. - Go to step 8 if the write operation is successful. - 8. Setup the desired address ADDR2 in the FARH and FARL registers. Write the desired data word DATA2 first into the FD0L register and then into the FD0H register. - 9. Set the FWT bit high to transfer the data word from the write buffer to the flash memory. Wait until the FWT bit goes low. - 10. Verify the data using the table read instruction to ensure that the write operation has successfully completed. - If the write operation has not successfully completed, set the CLWB bit high to clear the write buffer and then go to step 8. - Go to step 11 if the write operation is successful. - 11. Clear the CFWEN bit low to disable the Flash memory erase/write function. Rev. 1.20 42 November 19, 2019 Flash Memory Non-Consecutive Write Procedure Note: 1. When the FWT bit is set to high all CPU operations will temporarily cease. 2. It will take a typical time of 2.2ms for the FWT bit state changing from high to low. ## Important Points to Note for Flash Memory Write Operations - 1. The "Flash Memory Erase/Write Function Enable Procedure" must be successfully activated before the Flash Memory erase/write operation is executed. - 2. The Flash Memory erase operation is executed to erase a whole page. - 3. The whole write buffer data will be written into the flash memory in a page format. The corresponding address cannot exceed the page boundary. - 4. After the data is written into the flash memory the flash memory contents must be read out using the table read instruction, TABRD, and checked if it is correct or not. If the data written into the flash memory is incorrect, the write buffer should be cleared by setting the CLWB bit high and then writing the data again into the write buffer. Then activate a write operation on the same flash memory page without erasing it. The data check, buffer clear and data re-write steps should be repeatedly executed until the data written into the flash memory is correct. - 5. The system frequency should be setup to the maximum application frequency when data write and data check operations are executed using the IAP function. ### Flash Memory Read Procedure To activate the Flash Memory Read procedure, the FMOD field should be set to "011" to select the flash memory read mode and the FRDEN bit should be set high to enable the read function. The desired flash memory address should be written into the FARH and FARL registers and then the FRD bit should be set high. After this the flash memory read operation will be activated. The data stored in the specified address can be read from the data registers, FD0H and FD0L, when the FRD bit goes low. There is no need to first activate the Flash Memory Erase/Write Function Enable Procedure before the flash memory read operation is executed. Rev. 1.20 44 November 19, 2019 Flash Memory Read Procedure Note: 1. When the FRD bit is set to high all CPU operations will temporarily cease. 2. It will take a typical time of three instruction cycles for the FRD bit state changing from high to low. Rev. 1.20 45 November 19, 2019 # **Data Memory** The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where temporary information is stored. Categorized into two types, the first of these is an area of RAM where special function registers are located. These registers have fixed locations and are necessary for correct operation of the device. Many of these
registers can be read from and written to directly under program control, however, some remain protected from user manipulation. The second area of Data Memory is reserved for general purpose use. All locations within this area are read and write accessible under program control Switching between the different Data Memory sectors can be achieved by properly setting the Memory Pointers to correct value. ## **Structure** The Data Memory is subdivided into several sectors, all of which are implemented in 8-bit wide Memory. Each of the Data Memory Sector is categorized into two types, the special Purpose Data Memory and the General Purpose Data Memory. The address range of the Special Purpose Data Memory for the device is from 00H to 7FH while the General Purpose Data Memory address range is from 80H to FFH. | Special Purpose
Data Memory | General Purpose Data Memory | | | | | |--------------------------------|-----------------------------|--|--|--|--| | Available Sectors | Capacity | Sector: Address | | | | | 0~3 | 2304×8 | 0: 80H~FFH
1: 80H~FFH
:
17: 80H~FFH | | | | # **Data Memory Summary** Rev. 1.20 46 November 19, 2019 # **Data Memory Addressing** For device that supports the extended instructions, there is no Bank Pointer for Data Memory. The Bank Pointer, PBP, is only available for Program Memory. For Data Memory the desired Sector is pointed by the MP1H or MP2H register and the certain Data Memory address in the selected sector is specified by the MP1L or MP2L register when using indirect addressing access. Direct Addressing can be used in all sectors using the corresponding instruction which can address all available data memory space. For the accessed data memory which is located in any data memory sectors except sector 0, the extended instructions can be used to access the data memory instead of using the indirect addressing access. The main difference between standard instructions and extended instructions is that the data memory address "m" in the extended instructions can be 13 valid bits for the device, the high byte indicates a sector and the low byte indicates a specific address. # **General Purpose Data Memory** All microcontroller programs require an area of read/write memory where temporary data can be stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose Data Memory. This area of Data Memory is fully accessible by the user programing for both reading and writing operations. By using the bit operation instructions individual bits can be set or reset under program control giving the user a large range of flexibility for bit manipulation in the Data Memory. # **Special Purpose Data Memory** This area of Data Memory is where registers, necessary for the correct operation of the microcontroller, are stored. Most of the registers are both readable and writeable but some are protected and are readable only, the details of which are located under the relevant Special Function Register section. Note that for locations that are unused, any read instruction to these addresses will return the value "00H". Rev. 1.20 47 November 19, 2019 | | Sector 0 | Sector 1 | Sector 2 | Sector 3 | | Sector 0 | Sector 1 | Sector 2 | Sector 3 | |------------|----------------|----------|----------------------|----------------|-------------|------------------|----------|----------------------|----------| | 00H | IAR0 | | EPDC0 | PEPD0 | 40H | LVDC | EEC | PHS4_WK | | | 01H | MP0 | | EPDC1 | PEPD1 | 41H | EEA | | LVL0_WW1 | | | 02H | IAR1 | | EPDC2 | PEPD2 | 42H | 550 | | LVL0_WW2 | | | 03H | MP1L | | VDH_LV | PEPD3 | 43H | EED | FC0 | PHS0_WW | | | 04H
05H | MP1H | | VDL_LV | PEPD4
PEPD5 | 44H
45H | | FC1 | LVL1_WW1
LVL1_WW2 | | | 06H | ACC
PCL | | LVL0_V1
LVL0_V2 | PEPD5
PEPD6 | 45H
46H | PAS0 | FC2 | PHS1_WW | | | 07H | TBLP | 1 | PHS0 V | PEPD7 | 47H | PAS1 | | LVL2 WW1 | | | 08H | TBLH | | LVL1 V1 | PEPDBG | 48H | PBS0 | | LVL2 WW2 | | | 09H | TBHP | 1 | LVL1 V2 | NEPD0 | 49H | PBS1 | | PHS2 WW | | | 0AH | STATUS | | PHS1_V | NEPD1 | 4AH | PCS0 | | LVL3 WW1 | | | 0BH | PBP | 1 | LVL2_V1 | NEPD2 | 4BH | | | LVL3_WW2 | | | 0CH | IAR2 | | LVL2_V2 | NEPD3 | 4CH | | | PHS3_WW | | | 0DH | MP2L | | PHS2_V | NEPD4 | 4DH | | | LVL4_WW1 | | | 0EH | MP2H | | LVL3_V1 | NEPD5 | 4EH | STMC0 | | LVL4_WW2 | | | 0FH | RSTFC | | LVL3_V2 | NEPD6 | 4FH | STMC1 | | PHS4_WW | | | 10H | INTC0 | | PHS3_V | NEPD7 | 50H | STMDL | | | | | 11H
12H | INTC1
INTC2 | | LVL4_V1
LVL4 V2 | NEPDBG | 51H
52H | STMDH
STMAL | | | | | 13H | INTC2 | - | PHS4_V | | 52H | STMAH | | | | | 14H | PA | | LVL0 KK1 | | 54H | STMRP | | | | | 15H | PAC | 1 | LVL0 KK2 | | 55H | CTM0C0 | | | | | 16H | PAPU | | PHS0_KK | | 56H | CTM0C1 | | | | | 17H | PAWU | 1 | LVL1_KK1 | | 57H | CTM0DL | | | | | 18H | PB | | LVL1_KK2 | | 58H | CTM0DH | | | | | 19H | PBC | | PHS1_KK | | 59H | CTM0AL | | | | | 1AH | PBPU | | LVL2_KK1 | | 5AH | CTM0AH | | | | | 1BH | PC | | LVL2_KK2 | | 5BH | | | | | | 1CH
1DH | PCC
PCPU | 4 | PHS2_KK
LVL3_KK1 | | 5CH
5DH | CTM1C0 | | | | | 1EH | PCPU | 1 | LVL3_KK1
LVL3_KK2 | | 5EH | CTM1C0 | | | | | 1FH | | | PHS3 KK | | 5FH | CTM1DL | | | | | 20H | | | LVL4_KK1 | | 60H | CTM1DH | | | | | 21H | PSC0R | 1 | LVL4_KK2 | | 61H | CTM1AL | | | | | 22H | PSC1R | | PHS4_KK | | 62H | CTM1AH | | | | | 23H | | | LVL0_KW1 | | 63H | | | | | | 24H | | | LVL0_KW2 | | 64H | TB0C | | | | | 25H
26H | | | PHS0_KW
LVL1 KW1 | | 65H
66H | TB1C | | | | | 27H | | | LVL1_KW1 | | 67H | SIMC0 | | | | | 28H | | | PHS1 KW | | 68H | SIMC1/UUCR1 | | | | | 29H | SADOL | 1 | LVL2_KW1 | | 69H | SIMC2/SIMA/UUCR2 | | | | | 2AH | SADOH | 1 | LVL2_KW2 | | 6AH | SIMD/UTXR_RXR | | | | | 2BH | SADC0 | | PHS2_KW | | 6BH | SIMTOC/UBRG | | | | | 2CH | SADC1 | | LVL3_KW1 | | 6CH | UUSR | | | | | 2DH | SADC2 | | LVL3_KW2 | | 6DH | SPIAC0 | | | | | 2EH | RSTC | | PHS3_KW | | 6EH | SPIAC1 | | | | | 2FH
30H | PMPS
LVPUC | | LVL4_KW1
LVL4_KW2 | | 6FH
70H | SPIAD | | | | | 31H | LVFOC | 1 | PHS4 KW | | 71H | | | | | | 32H | | | LVL0_WK1 | | 7111
72H | | | | | | 33H | MFI0 | 1 | LVL0 WK2 | | 73H | | | | | | 34H | MFI1 | 1 | PHS0_WK | | 74H | FARL | | | | | 35H | MFI2 | | LVL1_WK1 | | 75H | FARH | | | | | 36H | | | LVL1_WK2 | | 76H | FD0L | | | | | 37H | | | PHS1_WK | | 77H | FD0H | | | | | 38H
39H | INTEG | | LVL2_WK1
LVL2_WK2 | | 78H
79H | FD1L
FD1H | | | | | 3AH | SCC | | PHS2 WK | | 79H
7AH | FD1H
FD2L | | | | | 3BH | HIRCC | | LVL3 WK1 | | 7BH | FD2H | | | | | 3CH | 1 | | LVL3 WK2 | | 7CH | FD3L | | | | | 3DH | LXTC | | PHS3_WK | | 7DH | FD3H | | | | | 3EH | WDTC | | LVL4_WK1 | | 7EH | | | | | | 3FH | LVRC | | LVL4_WK2 | | 7FH | | | | | | | | | | | | | | | | : Unused, read as 00H **Special Purpose Data Memory** Rev. 1.20 48 November 19, 2019 # **Special Function Register Description** Most of the Special Function Register details will be described in the relevant functional sections, however several registers require a separate description in this section. # Indirect Addressing Registers - IAR0, IAR1, IAR2 The Indirect Addressing Registers, IAR0, IAR1 and IAR2, although having their locations in normal RAM register space, do not actually physically exist as normal registers. The method of indirect addressing for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified. Actions on the IAR0, IAR1 and IAR2 registers will result in no actual read or write operation to these registers but rather to the memory location specified by their corresponding Memory Pointers, MP0, MP1L/MP1H or MP2L/MP2H. Acting as a pair, IAR0 and MP0 can together access data only from Sector 0 while the IAR1 register together with the MP1L/MP1H register pair and IAR2 register together with the MP2L/MP2H register pair can access data from any Data Memory Sector. As the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing Registers will return a result of "00H" and writing to the registers will result in no operation. # Memory Pointers - MP0, MP1L, MP1H, MP2L, MP2H Five Memory Pointers, known as MP0, MP1L, MP1H, MP2L, MP2H, are provided. These Memory Pointers are physically implemented in the Data Memory and can be manipulated in the same way as normal registers providing a convenient way with which to address and track data. When any operation to the relevant Indirect Addressing Registers is carried out, the actual address that the microcontroller is directed to is the address specified by the related Memory Pointer. MP0, together with Indirect Addressing Register, IAR0, are used to access data from Sector 0, while MP1L/MP1H together with IAR1 and MP2L/MP2H together with IAR2 are used to access data from all sectors according to the corresponding MP1H or MP2H register. Direct Addressing can be used in all sectors using the corresponding instruction which can address all available data memory space. The following example shows how to clear a section of four Data Memory locations already defined as locations adres1 to adres4. ### **Indirect Addressing Program Example 1** ``` data .section 'data' adres1 db? adres2 db? adres3 db? adres4 db? block db? code .section at 0 'code' org 00h start: mov a, 04h ; setup size of block mov block, a mov a, offset adres1 ; Accumulator loaded with first RAM address mov mp0, a ; setup memory pointer with first RAM address loop: clr IAR0 ; clear the data at address defined by MPO inc mp0 ; increment memory pointer sdz block ; check if last memory location has been cleared jmp loop continue: ``` ### **Indirect Addressing Program Example 2** ``` data .section 'data' adres1 db? adres2 db? adres3 db? adres4 db? block db? code .section at 0 'code' org 00h start: ; setup size of block mov a, 04h mov block, a mov a, 01h ; setup the memory sector mov mp1h, a mov a,
offset adres1 ; Accumulator loaded with first RAM address mov mp11, a ; setup memory pointer with first RAM address loop: clr IAR1 ; clear the data at address defined by MP1L inc mp11 ; increment memory pointer MP1L sdz block ; check if last memory location has been cleared jmp loop continue: ``` The important point to note here is that in the example shown above, no reference is made to specific Data Memory addresses. ## **Direct Addressing Program Example using extended instructions** ``` data .section 'data' temp db? code .section at 0 'code' org 00h start: ; move [m] data to acc lmov a, [m] ; compare [m] and [m+1] data lsub a, [m+1] snz c ; [m]>[m+1]? jmp continue ; no lmov a, [m] ; yes, exchange [m] and [m+1] data mov temp, a lmov a, [m+1] lmov [m], a mov a, temp lmov [m+1], a continue: ``` Note: Here "m" is a data memory address located in any data memory sectors. For example, m=1F0H, it indicates address 0F0H in Sector 1. # Program Memory Bank Pointer - PBP For the device the Program Memory is divided into several banks. Selecting the required Program Memory area is achieved using the Program Memory Bank Pointer, PBP. The PBP register should be properly configured before the device executes the "Branch" operation using the "JMP" or "CALL" instruction. After that a jump to a non-consecutive Program Memory address which is located in a certain bank selected by the program memory bank pointer bits will occur. Rev. 1.20 50 November 19, 2019 ### PBP Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|---|------| | Name | _ | _ | _ | _ | _ | _ | _ | PBP0 | | R/W | _ | _ | _ | _ | _ | _ | _ | R/W | | POR | _ | _ | _ | _ | _ | _ | _ | 0 | Bit 7~1 Unimplemented, read as "0" Bit 0 **PBP0**: Program Memory Bank Point bit 0: Bank 0 1: Bank 1 ### Accumulator - ACC The Accumulator is central to the operation of any microcontroller and is closely related with operations carried out by the ALU. The Accumulator is the place where all intermediate results from the ALU are stored. Without the Accumulator it would be necessary to write the result of each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory resulting in higher programming and timing overheads. Data transfer operations usually involve the temporary storage function of the Accumulator; for example, when transferring data between one user-defined register and another, it is necessary to do this by passing the data through the Accumulator as no direct transfer between two registers is permitted. # Program Counter Low Register - PCL To provide additional program control functions, the low byte of the Program Counter is made accessible to programmers by locating it within the Special Purpose area of the Data Memory. By manipulating this register, direct jumps to other program locations are easily implemented. Loading a value directly into this PCL register will cause a jump to the specified Program Memory location, however, as the register is only 8-bit wide, only jumps within the current Program Memory page are permitted. When such operations are used, note that a dummy cycle will be inserted. # Look-up Table Registers – TBLP, TBHP, TBLH These three special function registers are used to control operation of the look-up table which is stored in the Program Memory. TBLP and TBHP are the table pointers and indicate the location where the table data is located. Their value must be setup before any table read commands are executed. Their value can be changed, for example using the "INC" or "DEC" instructions, allowing for easy table data pointing and reading. TBLH is the location where the high order byte of the table data is stored after a table read data instruction has been executed. Note that the lower order table data byte is transferred to a user defined location. ## Status Register - STATUS This 8-bit register contains the SC flag, CZ flag, zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation and system management flags are used to record the status and operation of the microcontroller. With the exception of the TO and PDF flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PDF flag. In addition, operations related to the status register may give different results due to the different instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or by executing the "CLR WDT" or "HALT" instruction. The PDF flag is affected only by executing the "HALT" or "CLR WDT" instruction or during a system power-up. Rev. 1.20 51 November 19, 2019 The Z, OV, AC, C, SC and CZ flags generally reflect the status of the latest operations. - C is set if an operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction. - AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction; otherwise AC is cleared. - Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared. - OV is set if an operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa; otherwise OV is cleared. - PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by executing the "HALT" instruction. - TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is set by a WDT time-out. - CZ is the operational result of different flags for different instructions. Refer to register definitions for more details. - SC is the result of the "XOR" operation which is performed by the OV flag and the MSB of the current instruction operation result. In addition, on entering an interrupt sequence or executing a subroutine call, the status register will not be pushed onto the stack automatically. If the contents of the status registers are important and if the subroutine can corrupt the status register, precautions must be taken to correctly save it. ### STATUS Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|----|-----|-----|-----|-----|-----| | Name | SC | CZ | TO | PDF | OV | Z | AC | С | | R/W | R/W | R/W | R | R | R/W | R/W | R/W | R/W | | POR | Х | Х | 0 | 0 | Х | Х | Х | Х | "x": unknown Bit 7 SC: The result of the "XOR" operation which is performed by the OV flag and the MSB of the instruction operation result. Bit 6 CZ: The operational result of different flags for different instructions. For SUB/SUBM/LSUB/LSUBM instructions, the CZ flag is equal to the Z flag. For SBC/SBCM/LSBC/LSBCM instructions, the CZ flag is the "AND" operation result which is performed by the previous operation CZ flag and current operation zero For other instructions, the CZ flag will not be affected. Bit 5 **TO**: Watchdog Time-Out Flag 0: After power up or executing the "CLR WDT" or "HALT" instruction 1: A watchdog time-out occurred. Bit 4 **PDF**: Power Down Flag 0: After power up or executing the "CLR WDT" instruction 1: By executing the "HALT" instruction Bit 3 **OV**: Overflow Flag flag. 0: No overflow 1: An operation results in a carry into the highest-order bit but not a carry out of the highest-order bit or vice versa. Bit 2 Z: Zero Flag 0: The result of an arithmetic or logical operation is not zero 1: The result of an arithmetic or logical operation is zero Rev. 1.20 52 November 19, 2019 Bit 1 AC: Auxiliary flag 0: No auxiliary carry 1: An operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction Bit 0 C: Carry Flag 0: No carry-out 1: An operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation The "C" flag is also affected by a rotate through carry instruction. # **EEPROM Data Memory** This device contains an area of internal EEPROM Data Memory. EEPROM is by its nature a non-volatile form of re-programmable memory, with data retention even when its power supply is removed. By incorporating this kind of data memory, a whole new host of application possibilities are made available to the designer. The availability of EEPROM storage allows information such as product identification numbers, calibration values, specific user data, system setup data or other product information to be stored directly within the product microcontroller. The process of reading and writing data to the EEPROM memory has been reduced to a very trivial affair. # **EEPROM Data Memory Structure** The EEPROM Data Memory capacity is 128×8 bits for the device. Unlike the Program Memory and RAM Data Memory, the EEPROM Data Memory is not directly mapped into memory space and is therefore not directly addressable in the same way as the other types of memory. Read and Write operations to the EEPROM are carried out in single byte operations using an address and a data register in Sector 0 and a single control register in Sector 1. # **EEPROM Registers** Three registers control the overall operation of the internal EEPROM Data Memory. These are the address register, EEA, the data register, EED and a single control register, EEC. As both the EEA and EED registers are located in Sector 0, they can be directly accessed in the same was as any other Special Function Register. The EEC register however, being located in Sector 1, can only be read from or written to indirectly using the MP1L/MP1H or MP2L/MP2H Memory Pointer and Indirect Addressing Register, IAR1/IAR2. Because the EEC control register is located at address 40H in Sector 1, the MP1L or MP2L Memory Pointer must first be set to the value 40H and the MP1H or
MP2H Memory Pointer high byte set to the value, 01H, before any operations on the EEC register are executed. | Register | | Bit | | | | | | | | | | | |----------|------|------|------|------|------|------|------|------|--|--|--|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | EEA | _ | EEA6 | EEA5 | EEA4 | EEA3 | EEA2 | EEA1 | EEA0 | | | | | | EED | EED7 | EED6 | EED5 | EED4 | EED3 | EED2 | EED1 | EED0 | | | | | | EEC | _ | _ | _ | _ | WREN | WR | RDEN | RD | | | | | **EEPROM Register List** Rev. 1.20 53 November 19, 2019 ## • EEA Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|------|------|------|------|------|------|------| | Name | _ | EEA6 | EEA5 | EEA4 | EEA3 | EEA2 | EEA1 | EEA0 | | R/W | _ | R/W | POR | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 Unimplemented, read as "0" Bit 6~0 **EEA6~EEA0**: Data EEPROM address bit 6~bit 0 # • EED Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------| | Name | EED7 | EED6 | EED5 | EED4 | EED3 | EED2 | EED1 | EED0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **EED7~EED0**: Data EEPROM data bit 7~bit 0 #### • EEC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|------|-----|------|-----| | Name | _ | _ | _ | _ | WREN | WR | RDEN | RD | | R/W | _ | _ | _ | _ | R/W | R/W | R/W | R/W | | POR | _ | _ | _ | _ | 0 | 0 | 0 | 0 | Bit 7~4 Unimplemented, read as "0" Bit 3 WREN: Data EEPROM Write Enable 0: Disable 1: Enable This is the Data EEPROM Write Enable Bit which must be set high before Data EEPROM write operations are carried out. Clearing this bit to zero will inhibit Data EEPROM write operations. Bit 2 WR: EEPROM Write Control 0: Write cycle has finished 1: Activate a write cycle This is the Data EEPROM Write Control Bit and when set high by the application program will activate a write cycle. This bit will be automatically reset to zero by the hardware after the write cycle has finished. Setting this bit high will have no effect if the WREN has not first been set high. Bit 1 RDEN: Data EEPROM Read Enable 0: Disable 1: Enable This is the Data EEPROM Read Enable Bit which must be set high before Data EEPROM read operations are carried out. Clearing this bit to zero will inhibit Data EEPROM read operations. Bit 0 **RD**: EEPROM Read Control 0: Read cycle has finished 1: Activate a read cycle This is the Data EEPROM Read Control Bit and when set high by the application program will activate a read cycle. This bit will be automatically reset to zero by the hardware after the read cycle has finished. Setting this bit high will have no effect if the RDEN bit has not first been set high. Note: 1. The WREN, WR, RDEN and RD cannot be set high at the same time in one instruction. The WR and RD cannot be set high at the same time. - 2. Ensure that the f_{SUB} clock is stable before executing the write operation. - 3. Ensure that the write operation is totally complete before changing the EEC register content. Rev. 1.20 54 November 19, 2019 # Reading Data from the EEPROM To read data from the EEPROM, the EEPROM address of the data to be read must first be placed in the EEA register. Then the read enable bit, RDEN, in the EEC register must be set high to enable the read function. If the RD bit in the EEC register is now set high, a read cycle will be initiated. Setting the RD bit high will not initiate a read operation if the RDEN bit has not been set. When the read cycle terminates, the RD bit will be automatically cleared to zero, after which the data can be read from the EED register. The data will remain in the EED register until another read or write operation is executed. The application program can poll the RD bit to determine when the data is valid for reading. # Writing Data to the EEPROM To write data to the EEPROM, the EEPROM address of the data to be written must first be placed in the EEA register and the data placed in the EED register. To initiate a write cycle, the write enable bit, WREN, in the EEC register must first be set high to enable the write function. After this, the WR bit in the EEC register must be immediately set high to initiate a write cycle. These two instructions must be executed in two consecutive instruction cycles. The global interrupt bit EMI should also first be cleared before implementing any write operations, and then set again after the write cycle has started. Note that setting the WR bit high will not initiate a write cycle if the WREN bit has not been set. As the EEPROM write cycle is controlled using an internal timer whose operation is asynchronous to microcontroller system clock, a certain time will elapse before the data will have been written into the EEPROM. Detecting when the write cycle has finished can be implemented either by polling the WR bit in the EEC register or by using the EEPROM interrupt. When the write cycle terminates, the WR bit will be automatically cleared to zero by the microcontroller, informing the user that the data has been written to the EEPROM. The application program can therefore poll the WR bit to determine when the write cycle has ended. ## **Write Protection** Protection against inadvertent write operation is provided in several ways. After the device is powered-on the Write Enable bit in the control register will be cleared preventing any write operations. Also at power-on the Memory Pointer high byte register, MP1H or MP2H, will be reset to zero, which means that Data Memory Sector 0 will be selected. As the EEPROM control register is located in Sector 1, this adds a further measure of protection against spurious write operations. During normal program operation, ensuring that the Write Enable bit in the control register is cleared will safeguard against incorrect write operations. ## **EEPROM Interrupt** The EEPROM write interrupt is generated when an EEPROM write cycle has ended. The EEPROM interrupt must first be enabled by setting the DEE bit in the relevant interrupt register. However as the EEPROM is contained within a Multi-function Interrupt, the associated multi-function interrupt enable bit must also be set. When an EEPROM write cycle ends, the DEF request flag and its associated multi-function interrupt request flag will both be set. If the global, EEPROM and Multi-function interrupts are enabled and the stack is not full, a jump to the associated Multi-function Interrupt vector will take place. When the interrupt is serviced only the Multi-function interrupt flag will be automatically reset, the EEPROM interrupt flag must be manually reset by the application program. More details can be obtained in the Interrupt section. Rev. 1.20 55 November 19, 2019 # **Programming Considerations** Care must be taken that data is not inadvertently written to the EEPROM. Protection can be enhanced by ensuring that the Write Enable bit is normally cleared to zero when not writing. Also the Memory Pointer high byte register, MP1H or MP2H, could be normally cleared to zero as this would inhibit access to Sector 1 where the EEPROM control register exist. Although certainly not necessary, consideration might be given in the application program to the checking of the validity of new write data by a simple read back process. When writing data the WR bit must be set high immediately after the WREN bit has been set high, to ensure the write cycle executes correctly. The global interrupt bit EMI should also be cleared before a write cycle is executed and then re-enabled after the write cycle starts. Note that the device should not enter the IDLE or SLEEP mode until the EEPROM read or write operation is totally complete. Otherwise, the EEPROM read or write operation will fail. # **Programming Examples** ### Reading data from the EEPROM - polling method ``` MOV A, EEPROM ADRES ; user defined address MOV EEA, A MOV A, 40H ; setup memory pointer low byte MP1L MOV MP1L, A ; MP1L points to EEC register MOV A, 01H ; setup memory pointer high byte MP1H MOV MP1H, A SET IAR1.1 ; set RDEN bit, enable read operations SET IAR1.0 ; start Read Cycle - set RD bit BACK: S7 TAR1.0 ; check for read cycle end JMP BACK CLR IAR1 ; disable EEPROM read if no more read operations are required CLR MP1H MOV A, EED ; move read data to register MOV READ DATA, A ``` Note: For each read operation, the address register should be re-specified followed by setting the RD bit high to activate a read cycle even if the target address is consecutive. #### Writing Data to the EEPROM - polling method ``` MOV A, EEPROM ADRES ; user defined address MOV EEA, A MOV A, EEPROM DATA ; user defined data MOV EED, A MOV A, 040H ; setup memory pointer low byte MP1L MOV MP1L, A ; MP1L points to EEC register MOV A, 01H ; setup memory pointer high byte MP1H MOV MP1H, A CLR EMI SET IAR1.3 ; set WREN bit, enable write operations SET IAR1.2 ; start Write Cycle - set WR bit - executed immediately ; after set WREN bit SET EMI BACK: SZ IAR1.2 ; check for write cycle end JMP BACK CLR MP1H ``` Rev. 1.20 56 November 19, 2019 # **Oscillators** Various oscillator options offer the user a wide range of functions according to their various application requirements. The flexible features of the oscillator functions ensure that the best optimisation can be achieved in terms of speed and power saving. Oscillator selections and operation are selected through a combination of configuration options and relevant control registers. #### **Oscillator Overview** In addition to being the source of the main system clock the oscillators also provide clock sources for the Watchdog Timer and Time Base Interrupts. External oscillators requiring some external components as well as fully integrated internal oscillators, requiring no external components, are provided to form a wide range of both fast and slow system oscillators. All oscillator options are selected through the registers. The higher frequency oscillators provide higher performance but carry with it the disadvantage of higher
power requirements, while the opposite is of course true for the lower frequency oscillators. With the capability of dynamically switching between fast and slow system clock, the device have the flexibility to optimize the performance/power ratio, a feature especially important in power sensitive portable applications. | Туре | Name | Freq. | Pins | |----------------------------|------|-----------|---------| | Internal High Speed RC | HIRC | 4/8/12MHz | _ | | External Low Speed Crystal | LXT | 32.768kHz | XT1/XT2 | | Internal Low Speed RC | LIRC | 32kHz | _ | **Oscillator Types** # **System Clock Configurations** There are two methods of generating the system clock, a high speed oscillator and a low speed oscillator. The high speed oscillator is the internal 4/8/12MHz RC oscillator, HIRC. The low speed oscillator is the external 32.768kHz crystal oscillator, LXT. Selecting whether the low or high speed oscillator is used as the system oscillator is implemented using the CKS2~CKS0 bits in the SCC register and as the system clock can be dynamically selected. The actual source clock used for the low speed oscillators is chosen via registers. The frequency of the slow speed or high speed system clock is determined using the CKS2~CKS0 bits in the SCC register. Note that two oscillator selections must be made namely one high speed and one low speed system oscillators. **System Clock Configurations** ## Internal RC Oscillator - HIRC The internal RC oscillator is a fully integrated system oscillator requiring no external components. The internal RC oscillator has three fixed frequencies of 4MHz, 8MHz and 12MHz, which is selected using a configuration option. The HIRC1~HIRC0 bits in the HIRCC register must also be setup to match the selected configuration option frequency. Setting up these bits is necessary to ensure that the HIRC frequency accuracy specified in the A.C. Characterisites is achieved. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised. # External 32.768 kHz Crystal Oscillator - LXT The External 32.768kHz Crystal System Oscillator is the low frequency oscillator choice, which is always enabled. This clock source has a frequency of 32.768kHz and requires a 32.768kHz crystal to be connected between pins XT1 and XT2. In addition of supplying f_{LXT} with the frequency of 32.768kHz, the clock source also provides a divided version of f_{LXT}/8 for the Watchdog Timer and Time Base functions. The external capacitor components connected to the 32.768kHz crystal are necessary to provide oscillation. For applications where precise frequencies are essential, these components may be required to provide frequency compensation due to different crystal manufacturing tolerances. After the LXT oscillator is enabled, there is a time delay associated with the LXT oscillator waiting for it to start-up. However, for some crystals, to ensure oscillation and accurate frequency generation, it is necessary to add two small value external capacitors, C1 and C2. The exact values of C1 and C2 should be selected in consultation with the crystal or resonator manufacturer's specification. For oscillator stability and to minimise the effects of noise and crosstalk, it is important to ensure that the crystal and any associated capacitors along with interconnecting lines are all located as close to the MCU as possible. Note: 1. C1 and C2 are required. - 2. Although not shown pins have a parasitic capacitance of around 7pF. - 3. Although not shown the oscillator circuit has two output frequency of f_{LXT} and $f_{LXT}/8$. ### **External LXT Oscillator** | LXT Oscillator C1 and C2 Values | | | | | | | | |---------------------------------|------------------|----------|--|--|--|--|--| | Crystal Frequency C1 C2 | | | | | | | | | 32.768kHz | 7pF | 7pF | | | | | | | Note: C1 and C2 value | s are for guidan | ce only. | | | | | | 32.768kHz Crystal Recommended Capacitor Values ### Internal 32kHz Oscillator - LIRC The Internal 32kHz Oscillator is a fully integrated RC oscillator with a typical frequency of 32kHz at 5V, requiring no external components for its implementation. Note that the internal 32kHz oscillator is only used as clock source for power on reset, low voltage reset and low voltage detector functions. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised. Rev. 1.20 58 November 19, 2019 # **Operating Modes and System Clocks** Present day applications require that their microcontrollers have high performance but often still demand that they consume as little power as possible, conflicting requirements that are especially true in battery powered portable applications. The fast clocks required for high performance will by their nature increase current consumption and of course vice versa, lower speed clocks reduce current consumption. As both high and low speed clock sources are provided the means to switch between them dynamically, the user can optimise the operation of their microcontroller to achieve the best performance/power ratio. # **System Clocks** The device has different clock sources for both the CPU and peripheral function operation. By providing the user with a wide range of clock selections using configuration options and register programming, a clock system can be configured to obtain maximum application performance. The main system clock, can come from either a high frequency, $f_{\rm H}$, or low frequency, $f_{\rm SUB}$, source, and is selected using the CKS2~CKS0 bits in the SCC register. The high speed system clock is sourced from the HIRC oscillator. The low speed system clock source can be sourced from the internal clock $f_{\rm SUB}$. If $f_{\rm SUB}$ is selected then it can be sourced from the LXT oscillator. The other choice, which is a divided version of the high speed system oscillator has a range of $f_{\rm H}/2\sim f_{\rm H}/64$. Note that the LIRC oscillator is only used for power on, low voltage detector and low voltage reset functions. The LXT oscillator is always on even when the device enters the SLEEP mode and the WDT function is disabled. Note: When the system clock source f_{SYS} is switched to f_{SUB} from f_H, the high speed oscillator can be stopped to conserve the power or continue to oscillate to provide the clock source, f_H~f_H/64, for peripheral circuit to use, which is determined by configuring the corresponding high speed oscillator enable control bit. Rev. 1.20 59 November 19, 2019 # **System Operation Modes** There are six different modes of operation for the microcontroller, each one with its own special characteristics and which can be chosen according to the specific performance and power requirements of the application. There are two modes allowing normal operation of the microcontroller, the FAST Mode and SLOW Mode. The remaining four modes, the SLEEP, IDLE0, IDLE1 and IDLE2 Mode are used when the microcontroller CPU is switched off to conserve power. | Operation | CPU | F | Register Se | tting | fsys | fн | £ | £ | |-----------|-----|--------|-------------|-----------|------------------------------------|---------------|------------------|--------------| | Mode | CPU | FHIDEN | FSIDEN | CKS2~CKS0 | Isys | TH | f _{SUB} | f LXT | | FAST | On | х | х | 000~110 | f _H ∼f _H /64 | On | On | On | | SLOW | On | х | х | 111 | f _{SUB} | On/Off (Note) | On | On | | IDLE0 | Off | 0 | 1 | 000~110 | Off | Off | On | On | | IDLEO | Oil | 0 | I | 111 | On | Oll | | OII | | IDLE1 | Off | 1 | 1 | xxx | On | On | On | On | | IDLE2 | Off | 1 | 0 | 000~110 | On | On | Off | On | | IDLEZ | Oll | l | U | 111 | Off | On | Oll | On | | SLEEP | Off | 0 | 0 | xxx | Off | Off | Off | On | "x": don't care Note: The f_H clock will be switched on or off by configuring the corresponding oscillator enable bit in the SLOW mode. #### **FAST Mode** This is one of the main operating modes where the microcontroller has all of its functions operational and where the system clock is provided by the high speed oscillator. This mode operates allowing the microcontroller to operate normally with a clock source will come from the HIRC oscillator. The high speed oscillator will however first be divided by a ratio ranging from 1 to 64, the actual ratio being selected by the CKS2~CKS0 bits in the SCC register. Although a high speed oscillator is used, running the microcontroller at a divided clock ratio reduces the operating current. ## **SLOW Mode** This is also a mode where the microcontroller operates normally although now with a slower speed clock source. The clock source used will be from f_{SUB} . The f_{SUB} clock is derived from the LXT oscillator. # SLEEP Mode The SLEEP Mode is entered when an HALT instruction is executed and when the FHIDEN and FSIDEN bit are low. In the SLEEP mode the CPU will be stopped, and the f_{SUB} clock to peripheral will be stopped too. However if the WDT function is enabled or disabled is determined by the WDTC register. ### **IDLE0 Mode** The IDLE0 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is low and the FSIDEN bit in the SCC register is high. In the IDLE0 Mode the CPU will be switched off but the low speed oscillator will be turned on to drive some peripheral functions. ### **IDLE1 Mode** The IDLE1 Mode is entered when an HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is high. In the IDLE1 Mode the CPU will be switched off but both the high and low speed oscillators will be turned on to provide a clock source to keep some peripheral functions
operational. Rev. 1.20 60 November 19, 2019 ### **IDLE2 Mode** The IDLE2 Mode is entered when an HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is low. In the IDLE2 Mode the CPU will be switched off but the high speed oscillator will be turned on to provide a clock source to keep some peripheral functions operational. # **Control Registers** The registers, SCC, HIRCC and LXTC, are used to control the system clock and the corresponding oscillator configurations. | Register | | | | В | | | | | |----------|------|------|------|---|-------|-------|--------|--------| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCC | CKS2 | CKS1 | CKS0 | _ | _ | _ | FHIDEN | FSIDEN | | HIRCC | _ | _ | _ | _ | HIRC1 | HIRC0 | HIRCF | HIRCEN | | LXTC | _ | _ | _ | _ | _ | _ | LXTF | LXTEN | System Operating Mode Control Register List ### SCC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|---|---|---|--------|--------| | Name | CKS2 | CKS1 | CKS0 | _ | _ | _ | FHIDEN | FSIDEN | | R/W | R/W | R/W | R/W | _ | _ | _ | R/W | R/W | | POR | 0 | 0 | 1 | _ | _ | _ | 0 | 0 | Bit 7~5 CKS2~CKS0: System clock selection $\begin{array}{c} 000:\,f_H\\ 001:\,f_H/2\\ 010:\,f_H/4\\ 011:\,f_H/8\\ 100:\,f_H/16\\ 101:\,f_H/32\\ 110:\,f_H/64\\ 111:\,f_{SUB} \end{array}$ These three bits are used to select which clock is used as the system clock source. In addition to the system clock source directly derived from f_H or f_{SUB}, a divided version of the high speed system oscillator can also be chosen as the system clock source. Bit 4~2 Unimplemented, read as "0" Bit 1 FHIDEN: High Frequency oscillator control when CPU is switched off 0: Disable 1: Enable This bit is used to control whether the high speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction. Bit 0 FSIDEN: Low Frequency oscillator control when CPU is switched off 0: Disable 1: Enable This bit is used to control whether the low speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction. Rev. 1.20 61 November 19, 2019 ## • HIRCC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|-------|-------|-------|--------| | Name | _ | _ | _ | _ | HIRC1 | HIRC0 | HIRCF | HIRCEN | | R/W | _ | _ | _ | _ | R/W | R/W | R | R/W | | POR | _ | _ | _ | _ | 0 | 0 | 0 | 1 | Bit 7~4 Unimplemented, read as "0" Bit 3~2 HIRC1~HIRC0: HIRC Frequency selection 00: 4MHz 01: 8MHz 10: 12MHz 11: 4MHz When the HIRC oscillator is enabled or the HIRC frequency selection is changed by application program, the clock frequency will automatically be changed after the HIRCF flag is set high. It is recommended that the HIRC frequency selected by these two bits should be the same with the frequency determined by the configuration option to achieve the HIRC frequency accuracy specified in the A.C. Characteristics. Bit 1 HIRCF: HIRC oscillator stable flag 0: HIRC unstable 1: HIRC stable This bit is used to indicate whether the HIRC oscillator is stable or not. When the HIRCEN bit is set to 1 to enable the HIRC oscillator or the HIRC frequency selection is changed by application program, the HIRCF bit will first be cleared to 0 and then set to 1 after the HIRC oscillator is stable. Bit 0 HIRCEN: HIRC oscillator enable control 0: Disable 1: Enable ## LXTC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|------|-------| | Name | _ | _ | _ | _ | _ | _ | LXTF | LXTEN | | R/W | _ | _ | _ | _ | _ | _ | R | R | | POR | _ | _ | _ | _ | _ | _ | 0 | 1 | Bit 7~2 Unimplemented, read as 0 Bit 1 LXTF: LXT oscillator stable flag 0: LXT unstable 1: LXT stable This bit is used to indicate whether the LXT oscillator is stable or not. When the LXT oscillator is enabled, the LXTF bit will first be cleared to 0 and then set to 1 after the LXT oscillator is stable. Bit 0 LXTEN: LXT oscillator enable control (Read only) 1: Enable Rev. 1.20 62 November 19, 2019 # **Operating Mode Switching** The device can switch between operating modes dynamically allowing the user to select the best performance/power ratio for the present task in hand. In this way microcontroller operations that do not require high performance can be executed using slower clocks thus requiring less operating current and prolonging battery life in portable applications. In simple terms, Mode Switching between the FAST Mode and SLOW Mode is executed using the CKS2~CKS0 bits in the SCC register while Mode Switching from the FAST/SLOW Modes to the SLEEP/IDLE Modes is executed via the HALT instruction. When an HALT instruction is executed, whether the device enters the IDLE Mode or the SLEEP Mode is determined by the condition of the FHIDEN and FSIDEN bits in the SCC register. ## **FAST Mode to SLOW Mode Switching** When running in the FAST Mode, which uses the high speed system oscillator, and therefore consumes more power, the system clock can switch to run in the SLOW Mode by set the CKS2~CKS0 bits to "111" in the SCC register. This will then use the low speed system oscillator which will consume less power. Users may decide to do this for certain operations which do not require high performance and can subsequently reduce power consumption. The SLOW Mode is sourced from the LXT oscillator and therefore requires this oscillator to be stable before full mode switching occurs. Rev. 1.20 64 November 19, 2019 ## **SLOW Mode to FAST Mode Switching** In SLOW mode the system clock is derived from f_{SUB} . When system clock is switched back to the FAST mode from f_{SUB} , the CKS2~CKS0 bits should be set to "000"~"110" and then the system clock will respectively be switched to $f_{H^{-}}f_{H}/64$. However, if f_H is not used in SLOW mode and thus switched off, it will take some time to reoscillate and stabilise when switching to the FAST mode from the SLOW Mode. This is monitored using the HIRCF bit in the HIRCC register. The time duration required for the high speed system oscillator stabilization is specified in the relevant characteristics. ### **Entering the SLEEP Mode** There is only one way for the device to enter the SLEEP Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "0". In this mode all the clocks and functions will be switched off except the WDT function. When this instruction is executed under the conditions described above, the following will occur: - The system clock will be stopped and the application program will stop at the "HALT" instruction. - The Data Memory contents and registers will maintain their present condition. - The I/O ports will maintain their present conditions. - In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be cleared. - The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped. ### **Entering the IDLE0 Mode** There is only one way for the device to enter the IDLE0 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "0" and the FSIDEN bit in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur: Rev. 1.20 65 November 19, 2019 - The f_H clock will be stopped and the application program will stop at the "HALT" instruction, but the f_{SUB} clock will be on. - The Data Memory contents and registers will maintain their present condition. - The I/O ports will maintain their present conditions. - In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be cleared. - The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped. ### **Entering the IDLE1 Mode** There is only one way for the device to enter the IDLE1 Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur: - The f_H and f_{SUB} clocks will be on but the application program will stop at the "HALT" instruction. - The Data Memory contents and registers will maintain their present condition. - The I/O ports will maintain their present conditions. - In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be cleared. - The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped. ## **Entering the IDLE2 Mode** There is only one way for the device to enter the IDLE2 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "1" and the FSIDEN bit in the SCC register equal to "0". When this instruction is executed under the conditions described above, the following will occur: - The f_H clock will be on but the f_{SUB} clock will be off and the application program will stop at the "HALT" instruction. - The Data Memory contents and registers will maintain their present condition. - The I/O ports will maintain their present conditions. - In the status register, the Power Down flag PDF will be set, and WDT timeout flag TO will be cleared. - The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped. # **Standby Current Considerations** As the main reason for entering the SLEEP or IDLE Mode is to keep the current consumption of the device to as low a value as possible, perhaps only in the order of several micro-amps except in the IDLE1 and IDLE2 Mode, there are other considerations which must also be taken
into account by the circuit designer if the power consumption is to be minimised. Special attention must be made to the I/O pins on the device. All high-impedance input pins must be connected to either a fixed high or low level as any floating input pins could create internal oscillations and result in increased current consumption. This also applies to devices which have different package types, as there may be unbonbed pins. These must either be setup as outputs or if setup as inputs must have pull-high resistors connected. Rev. 1.20 66 November 19, 2019 Care must also be taken with the loads, which are connected to I/O pins, which are setup as outputs. These should be placed in a condition in which minimum current is drawn or connected only to external circuits that do not draw current, such as other CMOS inputs. Also note that additional standby current will also be required if the LXT oscillator has enabled. In the IDLE1 and IDLE2 Mode the high speed oscillator is on, if the peripheral function clock source is derived from the high speed oscillator, the additional standby current will also be perhaps in the order of several hundred micro-amps. ### Wake-up To minimise power consumption the device can enter the SLEEP or any IDLE Mode, where the CPU will be switched off. However, when the device is woken up again, it will take a considerable time for the original system oscillator to restart, stablise and allow normal operation to resume. After the system enters the SLEEP or IDLE Mode, it can be woken up from one of various sources listed as follows: - · An external falling edge on Port A - · An external reset - · A system interrupt - · A WDT overflow If the system is woken up by an external reset, the device will experience a full system reset, however, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated. Although both of these wake-up methods will initiate a reset operation, the actual source of the wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a system power-up or executing the clear Watchdog Timer instructions and is set when executing the "HALT" instruction. The TO flag is set if a WDT time-out occurs and causes a wake-up that only resets the Program Counter and Stack Pointer, other flags remain in their original status. Each pin on Port A can be setup using the PAWU register to permit a negative transition on the pin to wake up the system. When a Port A pin wake-up occurs, the program will resume execution at the instruction following the "HALT" instruction. If the system is woken up by an interrupt, then two possible situations may occur. The first is where the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the program will resume execution at the instruction following the "HALT" instruction. In this situation, the interrupt which woke up the device will not be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled or when a stack level becomes free. The other situation is where the related interrupt is enabled and the stack is not full, in which case the regular interrupt response takes place. If an interrupt request flag is set high before entering the SLEEP or IDLE Mode, the wake-up function of the related interrupt will be disabled. Rev. 1.20 67 November 19, 2019 # **Watchdog Timer** The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to unknown locations, due to certain uncontrollable external events such as electrical noise. # **Watchdog Timer Clock Source** The Watchdog Timer clock source is provided by the internal clock, f_{WDT} , which is supplied by the LXT oscillator with the output frequency of $f_{LXT}/8$. The Watchdog Timer source clock is then subdivided by a ratio of 2^8 to 2^{18} to give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the WDTC register. # **Watchdog Timer Control Register** A single register, WDTC, controls the required timeout period as well as the enable/disable and reset MCU operation. The WRF software reset flag will be indicated in the RSTFC register. These registers control the overall operation of the Watchdog Timer. # • WDTC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | WE4 | WE3 | WE2 | WE1 | WE0 | WS2 | WS1 | WS0 | | R/W | POR | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | Bit 7~3 **WE4~WE0**: WDT function software control 10101: Disable 01010: Enable Others: Reset MCU When these bits are changed by the environmental noise or software setting to reset the microcontroller, the reset operation will be activated after a delay time, t_{SRESET}, and the WRF bit in the RSTFC register will be set high. Bit 2~0 WS2~WS0: WDT time-out period selection 000: 2⁸/f_{WDT} 001: 2¹⁰/f_{WDT} 010: 2¹²/f_{WDT} 011: 2¹⁴/f_{WDT} 100: 2¹⁵/f_{WDT} 101: 2¹⁶/f_{WDT} 110: 2¹⁷/f_{WDT} 111: 2¹⁸/f_{WDT} These three bits determine the division ratio of the watchdog timer source clock, which in turn determines the time-out period. The internal clock, f_{WDT} is supplied by the LXT oscillator with the output frequency of $f_{LXT}/8$. # RSTFC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|------|------|-----|-----| | Name | - | _ | _ | _ | RSTF | LVRF | LRF | WRF | | R/W | _ | _ | _ | _ | R/W | R/W | R/W | R/W | | POR | _ | _ | _ | _ | 0 | х | 0 | 0 | "x": unknown Bit 7~4 Unimplemented, read as "0" Bit 3 RSTF: Reset control register software reset flag Described elsewhere Rev. 1.20 68 November 19, 2019 Bit 2 LVRF: LVR function reset flag Described elsewhere Bit 1 LRF: LVR Control Register Software Reset Flag Described elsewhere Bit 0 WRF: WDT Control Register Software Reset Flag 0: Not occur 1: Occurred This bit is set high by the WDT Control register software reset and cleared to zero by the application program. Note that this bit can only be cleared to zero by the application program. # **Watchdog Timer Operation** The Watchdog Timer operates by providing a device reset when its timer overflows. This means that in the application program and during normal operation the user has to strategically clear the Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is done using the clear watchdog instruction. If the program malfunctions for whatever reason, jumps to an unknown location, or enters an endless loop, the clear instruction will not be executed in the correct manner, in which case the Watchdog Timer will overflow and reset the device. There are five bits, WE4~WE0, in the WDTC register to offer the enable/disable control and reset control of the Watchdog Timer. The WDT function will be disabled when the WE4~WE0 bits are set to a value of 10101B while the WDT function will be enabled if the WE4~WE0 bits are equal to 01010B. If the WE4~WE0 bits are set to any other values, other than 01010B and 10101B, it will reset the device after a delay time, t_{SRESET}. After power on these bits will have a value of 01010B. | WE4~WE0 Bits | WDT Function | |------------------|--------------| | 10101B | Disable | | 01010B | Enable | | Any other values | Reset MCU | Watchdog Timer Enable/Disable Control Under normal program operation, a Watchdog Timer time-out will initialise a device reset and set the status bit TO. However, if the system is in the SLEEP or IDLE Mode, when a Watchdog Timer time-out occurs, the TO bit in the status register will be set and only the Program Counter and Stack Pointer will be reset. Four methods can be adopted to clear the contents of the Watchdog Timer. The first is a WDT reset, which means a certain value except 01010B and 10101B written into the WE4~WE0 bit filed, the second is using the Watchdog Timer software clear instruction and the third is via a HALT instruction. The last is an external hardware reset, which means a low level on the external reset pin if the external reset pin is selected by the RSTC register. There is only one method of using software instruction to clear the Watchdog Timer. That is to use the single "CLR WDT" instruction to clear the WDT. The maximum time out period is when the 2^{18} division ratio is selected. As an example, the Watchdog Timer clock source is provided by the internal clock, f_{WDT} , which is supplied by the LXT oscillator with the output frequency of $f_{LXT}/8$, this will give a maximum watchdog period of around 64 seconds for the 2^{18} division ratio, and a minimum timeout of 62.5ms for the 2^8 division ration. Rev. 1.20 69 November 19, 2019 # Reset and Initialisation A reset function is a fundamental part of any microcontroller ensuring that the device can be set to some predetermined condition irrespective of outside parameters. The most important reset condition is after power is first applied to the microcontroller. In this case, internal circuitry will ensure that the microcontroller, after a short delay, will be in a well-defined state and ready to execute the first program instruction. After this power-on reset, certain important internal registers will be set to defined states before the program commences. One of these registers is the Program Counter, which will be reset to zero forcing the microcontroller to begin program execution from the lowest Program Memory address. In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a reset condition when the microcontroller is already running, the $\overline{\text{RES}}$ line is forcefully pulled low. In such a case, known as a normal operation reset, some of the microcontroller registers remain unchanged allowing the microcontroller to preceed with normal operation after the reset line is allowed to return high. The Watchdog Timer overflow is one of many reset types and will reset the microcontroller. Another reset exists in the form of a Low Voltage Reset,
LVR, where a full reset, similar to the \overline{RES} reset is implemented in situations where the power supply voltage falls below a certain threshold. All types of reset operations result in different register conditions being setup. # **Reset Functions** There are several ways in which a microcontroller reset can occur, through events occurring both internally and externally. ### **Power-on Reset** The most fundamental and unavoidable reset is the one that occurs after power is first applied to the microcontroller. As well as ensuring that the Program Memory begins execution from the first memory address, a power-on reset also ensures that certain other registers are preset to known conditions. All the I/O port and port control registers will power up in a high condition ensuring that all I/O ports will be first set to inputs. Rev. 1.20 70 November 19, 2019 ## **RES** Pin Reset Although the microcontroller has an internal RC reset function, if the V_{DD} power supply rise time is not fast enough or does not stabilise quickly at power-on, the internal reset function may be incapable of providing proper reset operation. For this reason it is recommended that an external RC network is connected to the \overline{RES} pin, whose additional time delay will ensure that the \overline{RES} pin remains low for an extended period to allow the power supply to stabilise. During this time delay, normal operation of the microcontroller will be inhibited. After the \overline{RES} line reaches a certain voltage value, the reset delay time, t_{RSTD} , is invoked to provide an extea delay time after which the microcontroller will begin normal operation. The abbreviation SST in the figures stands for System Start-up Time. For most applications a resistor connected between VDD and the \overline{RES} line and a capacitor connected betweeb VSS and the \overline{RES} pin will provide a suitable external reset circuit. Any wiring connected to the \overline{RES} pin should be kept as short as possible to minimise any stray noise interference. For applications that operate within an environment where more noise is present the Enhanced Reset Circuit shown is recommended. Note: "*" It is recommended that this component is added for added ESD protection. "**" It is recommended that this component is added in environments where power line noise is significant. ## External RES Circuit Pulling the \overline{RES} pin low using external hardware will also execute a device reset. In this case, as in the case of other resets, the Progran Counter will reset to zero and program execution initiated from this point. There is an internal reset control register, RSTC, which is used to select the external RES pin function and provide a reset when the device operates abnormally due to the environmental noise interference. If the content of the RSTC register is set to any value other than 01010101B or 10101010B, it will reset the device after a delay time, t_{SRESET}. After power on the register will have a value of 01010101B. Rev. 1.20 71 November 19, 2019 | RSTC7~RSTC0 Bits | Reset Function | | | | |------------------------|----------------|--|--|--| | 01010101B
10101010B | RES | | | | | Any other value | Reset MCU | | | | **Internal Reset Function Control** # • RSTC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | RSTC7 | RSTC6 | RSTC5 | RSTC4 | RSTC3 | RSTC2 | RSTC1 | RSTC0 | | R/W | POR | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | Bit 7~0 **RSTC7~RSTC0**: Reset function control 01010101, 10101010: RES pin Other values: Reset MCU If these bits are changed due to adverse environmental conditions, the microcontroller will be reset. The reset operation will be activated after a delay time, t_{SRESET} , and the RSTF bit in the RSTFC register will be set to 1. All resets will reset this register to POR value except the WDT time out hardware warm reset. Note that if the register is set to 01010101B or 10101010B to select the RES pin, this configuration has higher priority than other related pin-shared controls. ### RSTFC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|------|------|-----|-----| | Name | _ | _ | _ | _ | RSTF | LVRF | LRF | WRF | | R/W | _ | _ | _ | _ | R/W | R/W | R/W | R/W | | POR | _ | _ | _ | _ | 0 | Х | 0 | 0 | "x": unknown Bit 7~4 Unimplemented, read as "0" Bit 3 RSTF: Reset control register software reset flag 0: Not occurred 1: Occurred This bit is set to 1 by the RSTC control register software reset and cleared to zero by the application program. Note that this bit can only be cleared to 0 by the application program. Bit 2 LVRF: LVR function reset flag Described elsewhere Bit 1 LRF: LVR control register software reset flag Described elsewhere Bit 0 WRF: WDT control register software reset flag Described elsewhere ## Low Voltage Reset - LVR The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the device and provides an MCU reset should the value fall below a certain predefined level. This function can be enabled or disabled by the LVRC control register. If the LVRC control register is configured to enable the LVR, the LVR function will be always enabled, except in the SLEEP/IDLE mode, with a specific LVR voltage V_{LVR} . If the supply voltage of the device drops to within a range of $0.9V\sim V_{LVR}$ such as might occur when changing the battery, the LVR will automatically reset the device internally and the LVRF bit in the RSTFC register will also be set high. For a valid LVR signal, a low supply voltage, i.e., a voltage in the range between $0.9V\sim V_{LVR}$ must exist for a Rev. 1.20 72 November 19, 2019 time greater than that specified by t_{LVR} in the LVD/LVR Electrical Characteristics. If the low supply voltage state does not exceed this value, the LVR will ignore the low supply voltage and will not perform a reset function. The actual V_{LVR} value can be selected by the LVS7~LVS0 bits in the LVRC register. If the LVS7~LVS0 bits are changed to some certain values by the environmental noise or software setting, the LVR will reset the device after a delay time, t_{SRESET} . When this happens, the LRF bit in the RSTFC register will be set high. After power on the register will have the value of 01100110B. Note that the LVR function will be automatically disabled when the device enters the IDLE/SLEEP mode. ### LVRC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------| | Name | LVS7 | LVS6 | LVS5 | LVS4 | LVS3 | LVS2 | LVS1 | LVS0 | | R/W | POR | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | Bit 7~0 LVS7~LVS0: LVR voltage select 01100110B: 1.7V 01010101B: 1.9V 00110011B: 2.55V 10011001B: 3.15V 10101010B: 3.8V 11110000B: LVR disable Other values: MCU reset – register is reset to POR value When an actual low voltage condition occurs, as specified by one of the five defined LVR voltage values above, an MCU reset will be generated. The reset operation will be activated after the low voltage condition keeps more than a t_{LVR} time. In this situation the register contents will remain the same after such a reset occurs. Any register value, other than the five defined LVR values above, will also result in the generation of an MCU reset. The reset operation will be activated after a delay time, t_{SRESET} . However in this situation the register contents will be reset to the POR value. ### RSTFC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|------|------|-----|-----| | Name | _ | _ | _ | _ | RSTF | LVRF | LRF | WRF | | R/W | _ | _ | _ | _ | R/W | R/W | R/W | R/W | | POR | _ | _ | _ | _ | 0 | Х | 0 | 0 | "x": unknown Bit 7~4 Unimplemented, read as "0" Bit 3 RSTF: Reset control register software reset flag Described elsewhere Bit 2 LVRF: LVR function reset flag 0: Not occur 1: Occurred This bit is set high when a specific Low Voltage Reset situation condition occurs. This bit can only be cleared to zero by the application program. Rev. 1.20 73 November 19, 2019 Bit 1 LRF: LVR control register software reset flag 0: Not occur 1: Occurred This bit is set high if the LVRC register contains any non-defined LVR voltage register values. This in effect acts like a software-reset function. This bit can only be cleared to zero by the application program. Bit 0 WRF: WDT Control register software reset flag Described elsewhere ### **In Application Programming Reset** When a specific value of "55H" is written into the FC1 register, a reset signal will be generated to reset the whole device. Refer to the IAP section for more associated details. ### Watchdog Time-out Reset during Normal Operation The Watchdog time-out flag TO will be set to "1" when Watchdog time-out Reset during normal operation. WDT Time-out Reset during Normal Operation Timing Chart ### Watchdog Time-out Reset during SLEEP or IDLE Mode The Watchdog time-out Reset during SLEEP or IDLE Mode is a little different from other kinds of reset. Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer will be cleared to zero and the TO flag will be set high. Refer to the System Start Up Time Characteristics for t_{SST} details. WDT Time-out Reset during Sleep or IDLE Mode Timing Chart ### **Reset Initial Conditions** The different types of reset described affect the reset flags in different ways. These flags, known as PDF and TO are located in the status register and are controlled by various microcontroller operations, such as the SLEEP or IDLE Mode function or Watchdog Timer. The reset flags are shown in the table: | ТО | PDF | Reset Conditions | | | | | |----|-----|--|--|--|--|--| | 0 | 0 | Power-on reset | | | | | | u | u | RES or LVR reset during FAST or SLOW Mode operation | | | | | | 1 | u | WDT time-out reset during FAST or SLOW Mode
operation | | | | | | 1 | 1 | WDT time-out reset during IDLE or SLEEP Mode operation | | | | | "u" stands for unchanged Rev. 1.20 74 November 19, 2019 The following table indicates the way in which the various components of the microcontroller are affected after a power-on reset occurs. | Item | Condition after Reset | |--------------------|--| | Program Counter | Reset to zero | | Interrupts | All interrupts will be disabled | | WDT, Time Bases | Clear after reset, WDT begins counting | | Timer Modules | Timer Modules will be turned off | | Input/Output Ports | I/O ports will be setup as inputs | | Stack Pointer | Stack Pointer will point to the top of the stack | The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller is in after a particular reset occurs. The following table describes how each type of reset affects each of the microcontroller internal registers. | | Reset | RES Reset | LVR Reset | WDT Time-out | WDT Time-out | | |----------|------------|-----------|--------------------|--------------|--------------|--| | Register | (Power On) | | (Normal Operation) | | (IDLE/SLEEP) | | | IAR0 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | MP0 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | IAR1 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | MP1L | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | MP1H | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | ACC | xxxx xxxx | uuuu uuuu | uuuu uuuu | uuuu uuuu | uuuu uuuu | | | PCL | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | | | TBLP | xxxx xxxx | uuuu uuuu | uuuu uuuu | uuuu uuuu | uuuu uuuu | | | TBLH | xxxx xxxx | uuuu uuuu | uuuu uuuu | uuuu uuuu | uuuu uuuu | | | ТВНР | xx xxxx | uu uuuu | uu uuuu | uu uuuu | uu uuuu | | | STATUS | xx00 xxxx | uuuu uuuu | uuuu uuuu | uu1u uuuu | uu11 uuuu | | | PBP | 0 | 0 | 0 | 0 | u | | | IAR2 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | MP2L | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | MP2H | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | RSTFC | 0 x 0 0 | uuuu | u1uu | uuuu | uuuu | | | INTC0 | -000 0000 | -000 0000 | -000 0000 | -000 0000 | -uuu uuuu | | | INTC1 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | INTC2 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | INTC3 | -000 -000 | -000 -000 | -000 -000 | -000 -000 | -uuu -uuu | | | PA | 1111 1111 | 1111 1111 | 1111 1111 | 1111 1111 | uuuu uuuu | | | PAC | 1111 1111 | 1111 1111 | 1111 1111 | 1111 1111 | uuuu uuuu | | | PAPU | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | PAWU | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | РВ | 1111 1111 | 1111 1111 | 1111 1111 | 1111 1111 | uuuu uuuu | | | PBC | 1111 1111 | 1111 1111 | 1111 1111 | 1111 1111 | uuuu uuuu | | | PBPU | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | | PC | 1111 | 1111 | 1111 | 1111 | uuuu | | | PCC | 1111 | 1111 | 1111 | 1111 | uuuu | | | PCPU | 0000 | 0000 | 0000 | 0000 | uuuu | | | PSC0R | 0 | 0 | 0 | 0 | u | | | PSC1R | 0 | 0 | 0 | 0 | u | | Rev. 1.20 75 November 19, 2019 | | Reset | RES Reset | LVR Reset | WDT Time-out | WDT Time-out | |----------|------------|-----------|--------------------|--------------|------------------------| | Register | (Power On) | | (Normal Operation) | | (IDLE/SLEEP) | | SADOL | x x x x | x x x x | x x x x | x x x x | uuuu
(ADRFS=0) | | UNDUE | *** | **** | **** | **** | uuuu uuuu
(ADRFS=1) | | SADOH | xxxx xxxx | xxxx xxxx | xxxx xxxx | xxxx xxxx | uuuu uuuu
(ADRFS=0) | | | | | | | (ADRFS=1) | | SADC0 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | SADC1 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | SADC2 | 0 1 0 | 0 1 0 | 0 10 | 0 1 0 | uuu | | RSTC | 0101 0101 | 0101 0101 | 0101 0101 | 0101 0101 | uuuu uuuu | | PMPS | 0 0 | 00 | 00 | 00 | u u | | LVPUC | 0 | 0 | 0 | 0 | u | | MFI0 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | MFI1 | 0000 | 0000 | 0000 | 0000 | uuuu | | MFI2 | 0000 | 0000 | 0000 | 0000 | uuuu | | INTEG | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | SCC | 00100 | 00100 | 00100 | 00100 | uuuuu | | HIRCC | 0001 | 0001 | 0001 | 0001 | uuuu | | LXTC | 01 | 0 1 | 01 | 0 1 | u u | | WDTC | 0101 0010 | 0101 0010 | 0101 0010 | 0101 0010 | uuuu uuuu | | LVRC | 0110 0110 | 0110 0110 | 0110 0110 | 0110 0110 | uuuu uuuu | | LVDC | 00 0000 | 00 0000 | 00 0000 | 00 0000 | uu uuuu | | EEA | -000 0000 | -000 0000 | -000 0000 | -000 0000 | -uuu uuuu | | EED | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | PAS0 | 00 00 | 00 00 | 00 00 | 00 00 | uu uu | | PAS1 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | PBS0 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | PBS1 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | PCS0 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | STMC0 | 0000 0 | 0000 0 | 0000 0 | 0000 0 | uuuu u | | STMC1 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | STMDL | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | STMDH | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | STMAL | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | STMAH | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | STMRP | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | CTM0C0 | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | CTM0C1 | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | CTM0DL | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | CTM0DH | 0 0 | | 0 0 | 0 0 | u u | | CTM0AL | 0000 0000 | | 0000 0000 | 0000 0000 | | | CTM0AH | 0 0 | | 0 0 | 0 0 | u u | | CTMICO | 0000 0000 | | 0000 0000 | 0000 0000 | | | | - | | | | uuuu uuuu | | CTM1C1 | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | CTM1DL | 0000 0000 | | 0000 0000 | 0000 0000 | uuuu uuuu | | CTM1DH | 00 | 00 | 00 | 0 0 | u u | Rev. 1.20 76 November 19, 2019 | | Reset | RES Reset | LVR Reset | WDT Time-out | WDT Time-out | |----------------------|------------|-----------|--------------------|--------------|--------------| | Register | (Power On) | | (Normal Operation) | | | | CTM1AL | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | CTM1AH | 00 | 00 | 00 | 00 | u u | | TB0C | 0000 | 0000 | 0000 | 0000 | uuuu | | TB1C | 0000 | 0000 | 0000 | 0000 | uuuu | | SIMC0 | 1110 0000 | 1110 0000 | 1110 0000 | 1110 0000 | uuuu uuuu | | SIMC1 (UMD=0) | 1000 0001 | 1000 0001 | 1000 0001 | 1000 0001 | uuuu uuuu | | UUCR1* (UMD=1) | 0000 00x0 | 0000 00x0 | 0000 00x0 | 0000 00x0 | uuuu uuuu | | SIMD/UTXR_RXR | xxxx xxxx | xxxx xxxx | xxxx xxxx | xxxx xxxx | uuuu uuuu | | SIMA/SIMC2/
UUCR2 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | SIMTOC (UMD=0) | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | UBRG* (UMD=1) | xxxx xxxx | xxxx xxxx | xxxx xxxx | xxxx xxxx | uuuu uuuu | | UUSR | 0000 1011 | 0000 1011 | 0000 1011 | 0000 1011 | uuuu uuuu | | SPIAC0 | 111 00 | 11100 | 11100 | 11100 | uuuuu | | SPIAC1 | 00 0000 | 00 0000 | 00 0000 | 00 0000 | uu uuuu | | SPIAD | xxxx xxxx | xxxx xxxx | xxxx xxxx | xxxx xxxx | uuuu uuuu | | FARL | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FARH | 00 0000 | 00 0000 | 00 0000 | 00 0000 | uu uuuu | | FD0L | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FD0H | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FD1L | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FD1H | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FD2L | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FD2H | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FD3L | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FD3H | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | EEC | 0000 | 0000 | 0000 | 0000 | uuuu | | FC0 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FC1 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | FC2 | 0 | 0 | 0 | 0 | u | | EPDC0 | 0000 | 0000 | 0000 | 0000 | uuuu | | EPDC1 | -111 0011 | -111 0011 | -111 0011 | -111 0011 | -uuu uuuu | | EPDC2 | 10 -011 | 10 -011 | 10 -011 | 10 -011 | uu -uuu | | VDH_LV | -111 1111 | -111 1111 | -111 1111 | -111 1111 | -uuu uuuu | | VDL_LV | -111 1111 | -111 1111 | -111 1111 | -111 1111 | -uuu uuuu | | LUT Registers** | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | PEPD0~PEPD7 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | PEPDBG | 0 | 0 | 0 | 0 | u | | NEPD0~NEPD7 | 0000 0000 | 0000 0000 | 0000 0000 | 0000 0000 | uuuu uuuu | | NEPDBG | 0 | 0 | 0 | 0 | u | Note: "u" stands for unchanged [&]quot;x" stands for unknown [&]quot;-" stands for unimplemented [&]quot;*": The UUCR1 and SIMC1 registers share the same memory address while the UBRG and SIMTOC registers share the same memory address. The default value of the UUCR1 or UBRG register can be obtained when the UMD bit is set high by application program after a reset. [&]quot;**": The LUT registers have a total of 75 bytes, with the same reset value for each byte, the details can be found in the EPD Driver Registers section. ## **Input/Output Ports** Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output designation of every pin fully under user program control, pull-high selections for all ports and wake-up selections on certain pins, the user is provided with an I/O structure to meet the needs of a wide range of application possibilities. The device provides bidirectional input/output lines labeled with port names PA~PC. These I/O ports are mapped to the RAM Data Memory with specific
addresses as shown in the Special Purpose Data Memory table. All of these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of instruction "MOV A, [m]", where m denotes the port address. For output operation, all the data is latched and remains unchanged until the output latch is rewritten. | Register | | | | В | it | | | | |----------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | PA | PA7 | PA6 | PA5 | PA4 | PA3 | PA2 | PA1 | PA0 | | PAC | PAC7 | PAC5 | PAC5 | PAC4 | PAC3 | PAC2 | PAC1 | PAC0 | | PAPU | PAPU7 | PAPU4 | PAPU5 | PAPU4 | PAPU3 | PAPU2 | PAPU1 | PAPU0 | | PAWU | PAWU7 | PAWU6 | PAWU5 | PAWU4 | PAWU3 | PAWU2 | PAWU1 | PAWU0 | | РВ | PB7 | PB6 | PB5 | PB4 | PB3 | PB2 | PB1 | _ | | PBC | PBC7 | PBC6 | PBC5 | PBC4 | PBC3 | PBC2 | PBC1 | _ | | PBPU | PBPU7 | PBPU6 | PBPU5 | PBPU4 | PBPU3 | PBPU2 | PBPU1 | _ | | PC | _ | _ | _ | _ | PC3 | PC2 | PC1 | PC0 | | PCC | _ | _ | _ | _ | PCC3 | PCC2 | PCC1 | PCC0 | | PCPU | _ | _ | _ | _ | PCPU3 | PCPU2 | PCPU1 | PCPU0 | | LVPUC | _ | _ | _ | _ | _ | _ | _ | LVPU | "-": Unimplemented, read as "0" I/O Logic Function Register List ### **Pull-high Resistors** Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when configured as a digital input have the capability of being connected to an internal pull-high resistor. These pull-high resistors are selected using the LVPUC and PxPU registers, and are implemented using weak PMOS transistors. The PxPU registers is used to determine whether the pull-high function is enabled or not while the LVPUC register is used to select the pull-high resistors value for low voltage power supply applications. Note that the pull-high resistor can be controlled by the relevant pull-high control register only when the pin-shared functional pin is selected as a digital input or NMOS output. Otherwise, the pull-high resistors cannot be enabled. ## PxPU Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | PxPU7 | PxPU6 | PxPU5 | PxPU4 | PxPU3 | PxPU2 | PxPU1 | PxPU0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | PxPUn: I/O Port x Pin Pull-high Function Control 0: Disable 1: Enable The PxPUn bit is used to control the pin pull-high function. Here the "x" can be A, B and C. However, the actual available bits for each I/O port may be different. Rev. 1.20 78 November 19, 2019 ### LVPUC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|---|------| | Name | _ | _ | _ | _ | _ | _ | _ | LVPU | | R/W | _ | _ | _ | _ | _ | _ | _ | R/W | | POR | _ | _ | _ | _ | _ | _ | _ | 0 | Bit 7~1 Unimplemented, read as "0" Bit 0 LVPU: Pull-high resistor select when low voltage power supply 0: All pin pull high resistor is $60k\Omega$ (typ.) @ 3V 1: All pin pull high resistor is $15k\Omega$ (typ.) @ 3V This bit is used to select the pull-high resistor value for low voltage power supply applications. The LVPU bit is only available when the corresponding pin pull-high function is enabled by setting the relevant pull-high control bit high. This bit will have no effect when the pull-high function is disabled. ## Port A Wake-up The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves power, a feature that is important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of which is to change the logic condition on one of the Port A pins from high to low. This function is especially suitable for applications that can be woken up via external switches. Each pin on Port A can be selected individually to have this wake-up feature using the PAWU register. Note that the wake-up function can be controlled by the wake-up control registers only when the pin-shared functional pin is selected as general purpose input/output and the MCU enters the IDLE or SLEEP down mode. ### PAWU Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | PAWU7 | PAWU6 | PAWU5 | PAWU4 | PAWU3 | PAWU2 | PAWU1 | PAWU0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **PAWU7~PAWU0**: PA7~PA0 wake-up function control 0: Disable 1: Enable ### I/O Port Control Registers Each I/O port has its own control register which controls the input/output configuration. With this control register, each CMOS output or input can be reconfigured dynamically under software control. Each pin of the I/O ports is directly mapped to a bit in its associated port control register. For the I/O pin to function as an input, the corresponding bit of the control register must be written as a "1". This will then allow the logic state of the input pin to be directly read by instructions. When the corresponding bit of the control register is written as a "0", the I/O pin will be setup as a CMOS output. If the pin is currently setup as an output, instructions can still be used to read the output register. However, it should be noted that the program will in fact only read the status of the output data latch and not the actual logic status of the output pin. Rev. 1.20 79 November 19, 2019 ### PxC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------| | Name | PxC7 | PxC5 | PxC5 | PxC4 | PxC3 | PxC2 | PxC1 | PxC0 | | R/W | POR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | PxCn: I/O Port x Pin Type Selection 0: Output 1: Input The PxCn bit is used to control the pin type selection. Here the "x" can be A, B and C. However, the actual available bits for each I/O port may be different. ### I/O Port Power Source Control The device supports different I/O port power source selections for PC3~PC0. The port power can come from either the power pin VDD or VDDIO which is determined using the PMPS1~PMPS0 bits in the PMPS register. The VDDIO power pin function should first be selected using the corresponding pin-shared function selection bits if the port power is supposed to come from the VDDIO pin. An important point to know is that the input power voltage on the VDDIO pin should be equal to or less than the device supply power voltage when the VDDIO pin is selected as the port power supply pin. ### PMPS Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|-------|-------| | Name | _ | _ | _ | _ | _ | _ | PMPS1 | PMPS0 | | R/W | _ | _ | _ | _ | _ | _ | R/W | R/W | | POR | _ | _ | _ | _ | _ | _ | 0 | 0 | Bit 7~2 Unimplemented, read as "0" Bit 1~0 PMPS1~PMPS0: PC3~PC0 pin power source selection 0x: VDD 1x: VDDIO If the PA3 pin-shared function is switched to the VDDIO function, the VDDIO input voltage can be used as the PC3~PC0 I/O port power source by setting the PMPS[1:0] bit field to "1x". Note that the input power voltage on the VDDIO pin should be equal to or less than the device supply power voltage. ### **Pin-shared Functions** The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function. Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions, many of these difficulties can be overcome. For these pins, the desired function of the multi-function I/O pins is selected by a series of registers via the application program control. ### **Pin-shared Function Selection Registers** The limited number of supplied pins in a package can impose restrictions on the amount of functions a certain device can contain. However by allowing the same pins to share several different functions and providing a means of function selection, a wide range of different functions can be incorporated into even relatively small package sizes. The device includes Port "x" output function Selection register "n", labeled as PxSn, which can select the desired functions of the multi-function pin-shared pins. Rev. 1.20 80 November 19, 2019 The most important point to note is to make sure that the desired pin-shared function is properly selected and also deselected. For most pin-shared functions, to select the desired pin-shared function, the pin-shared function should first be correctly selected using the corresponding pin-shared control register. After that the corresponding peripheral functional setting should be configured and then the peripheral function can be enabled. However, special point must be noted for some digital input pins, such as INTn, xTCKn, etc, which share the same pin-shared control configuration with their corresponding general purpose I/O functions when setting the relevant functions, in addition to the necessary pin-shared control and peripheral functional setup aforementioned, they must also be setup as input by setting the corresponding bit in the I/O port control register. To correctly deselect the pin-shared function, the peripheral function should first be disabled and then the corresponding pin-shared function control register can be modified to select other pin-shared functions. | Register | Bit | | | | | | | | | | | |----------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | PAS0 | PAS07 | PAS06 | _ | _ | PAS03 | PAS02 | _ | _ | | | | | PAS1 | PAS17 | PAS16 | PAS15 | PAS14 | PAS13 | PAS12 | PAS11 | PAS10 | | | | | PBS0 | PBS07 | PBS06 | PBS05 | PBS04 | PBS03 | PBS02 | _ | _ | | | | | PBS1 | PBS17 | PBS16 | PBS15 | PBS14 | PBS13 | PBS12 | PBS11 | PBS10 | | | | | PCS0 | PCS07 | PCS06 | PCS05 | PCS04 | PCS03 | PCS02 | PCS01 | PCS00 | | | | Pin-shared Function Selection Register List ### PAS0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|---|---|-------|-------|---|---| | Name
 PAS07 | PAS06 | _ | _ | PAS03 | PAS02 | _ | _ | | R/W | R/W | R/W | _ | _ | R/W | R/W | _ | _ | | POR | 0 | 0 | _ | _ | 0 | 0 | _ | _ | Bit 7~6 PAS07~PAS06: PA3 pin-shared function selection 00/01: PA3 10: STP 11: VDDIO Bit 5~4 Unimplemented, read as "0" Bit 3~2 PAS03~PAS02: PA1 pin-shared function selection 00/01/10: PA1 11: CTP1 Bit 1~0 Unimplemented, read as "0" ### PAS1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | PAS17 | PAS16 | PAS15 | PAS14 | PAS13 | PAS12 | PAS11 | PAS10 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 PAS17~PAS16: PA7 pin-shared function selection 00/01/10: PA7 11: SCKA Bit 5~4 PAS15~PAS14: PA6 pin-shared function selection 00/01/10: PA6 11: SDOA Bit 3~2 PAS13~PAS12: PA5 pin-shared function selection 00/01/10: PA5 11: SDIA Bit 1~0 PAS11~PAS10: PA4 pin-shared function selection 00/01/10: PA4 11: SCSA ### PBS0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|---|---| | Name | PBS07 | PBS06 | PBS05 | PBS04 | PBS03 | PBS02 | _ | _ | | R/W _ | _ | | POR | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | Bit 7~6 **PBS07~PBS06**: PB3 pin-shared function selection 00/01: PB3 10: CTP0 11: AN3 Bit 5~4 **PBS05~PBS04**: PB2 pin-shared function selection 00/01/10: PB2/CTCK0 11: AN2 Bit 3~2 **PBS03~PBS02**: PB1 pin-shared function selection 00/01: PB1 10: STPB 11: AN1 Bit 1~0 Unimplemented, read as "0" ### PBS1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | PBS17 | PBS16 | PBS15 | PBS14 | PBS13 | PBS12 | PBS11 | PBS10 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 **PBS17~PBS16**: PB7 pin-shared function selection 00/01: PB7/INT3 10: AN7 11: VREF Bit 5~4 PBS15~PBS14: PB6 pin-shared function selection 00/01/10: PB6/INT2/STPI 11: AN6 Bit 3~2 **PBS13~PBS12**: PB5 pin-shared function selection 00/01: PB5/INT1 10: CTP1B 11: AN5 Bit 1~0 **PBS11~PBS10**: PB4 pin-shared function selection 00/01: PB4/INT0 10: CTP0B 11: AN4 ### PCS0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | PCS07 | PCS06 | PCS05 | PCS04 | PCS03 | PCS02 | PCS01 | PCS00 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 PCS07~PCS06: PC3 pin-shared function selection 00/01/10: PC3 11: SCK/SCL Rev. 1.20 82 November 19, 2019 Bit 5~4 PCS05~PCS04: PC2 pin-shared function selection 00/01/10: PC2 11: SDO/TX Bit 3~2 PCS03~PCS02: PC1 pin-shared function selection 00/01/10: PC1 11: SDI/SDA/RX Bit 1~0 PCS01~PCS00: PC0 pin-shared function selection 00/01/10: PC0 11: SCS ### I/O Pin Structures The accompanying diagram illustrates the internal structures of the I/O logic function. As the exact logical construction of the I/O pin will differ from this diagram, it is supplied as a guide only to assist with the functional understanding of the logic function I/O pins. The wide range of pin-shared structures does not permit all types to be shown. ### **Programming Considerations** Within the user program, one of the things first to consider is port initialisation. After a reset, all of the I/O data and port control registers will be set to high. This means that all I/O pins will be defaulted to an input state, the level of which depends on the other connected circuitry and whether pull-high selections have been chosen. If the port control registers are then programmed to setup some pins as outputs, these output pins will have an initial high output value unless the associated port data registers are first programmed. Selecting which pins are inputs and which are outputs can be achieved byte-wide by loading the correct values into the appropriate port control register or by programming individual bits in the port control register using the "SET [m].i" and "CLR [m].i" instructions. Note that when using these bit control instructions, a read-modify-write operation takes place. The microcontroller must first read in the data on the entire port, modify it to the required new bit values and then rewrite this data back to the output ports. Port A has the additional capability of providing wake-up functions. When the device is in the SLEEP or IDLE Mode, various methods are available to wake the device up. One of these is a high to low transition of any of the Port A pins. Single or multiple pins on Port A can be setup to have this function. Rev. 1.20 83 November 19, 2019 ### **Timer Modules - TM** One of the most fundamental functions in any microcontroller devices is the ability to control and measure time. To implement time related functions the device includes several Timer Modules, generally abbreviated to the name TM. The TMs are multi-purpose timing units and serve to provide operations such as Timer/Counter, Input Capture, Compare Match Output and Single Pulse Output as well as being the functional unit for the generation of PWM signals. Each of the TMs has two interrupts. The addition of input and output pins for each TM ensures that users are provided with timing units with a wide and flexible range of features. The common features of the different TM types are described here with more detailed information provided in the individual Compact and Standard Type TM sections. ### Introduction The device contains three TMs and each individual TM can be categorised as a certain type, namely Compact Type TM or Standard Type TM. Although similar in nature, the different TM types vary in their feature complexity. The common features to all of the Compact and Standard type TMs will be described in this section and the detailed operation regarding each of the TM types will be described in separate sections. The main features and differences between the two types of TMs are summarised in the accompanying table. | TM Function | СТМ | STM | |------------------------------|----------------|----------------| | Timer/Counter | √ | √ | | Input Capture | _ | √ | | Compare Match Output | √ | √ | | PWM Output | √ | √ | | Single Pulse Output | _ | √ | | PWM Alignment | Edge | Edge | | PWM Adjustment Period & Duty | Duty or Period | Duty or Period | **TM Function Summary** | СТМ | STM | |----------------------------|------------| | 10-bit CTM0
10-bit CTM1 | 16-bit STM | TM Name/Type Reference ### TM Operation The different types of TM offer a diverse range of functions, from simple timing operations to PWM signal generation. The key to understanding how the TM operates is to see it in terms of a free running count-up counter whose value is then compared with the value of pre-programmed internal comparators. When the free running count-up counter has the same value as the pre-programmed comparator, known as a compare match situation, a TM interrupt signal will be generated which can clear the counter and perhaps also change the condition of the TM output pin. The internal TM counter is driven by a user selectable clock source, which can be an internal clock or an external pin. ### **TM Clock Source** The clock source which drives the main counter in each TM can originate from various sources. The selection of the required clock source is implemented using the xTnCK2~xTnCK0 bits in the xTMn control registers, where "x" stands for C or S type TM and "n" stands for the specific TM serial number. For the STM there is no serial number "n" in the relevant pins, registers and control bits since there is only one STM in the device. The clock source can be a ratio of the system clock, Rev. 1.20 84 November 19, 2019 f_{SYS} , or the internal high clock, f_H , the f_{SUB} clock source or the external xTCKn pin. The xTCKn pin clock source is used to allow an external signal to drive the TM as an external clock source for event counting. ### **TM Interrupts** The Compact or Standard type TM has two internal interrupt, one for each of the internal comparator A or comparator P, which generate a TM interrupt when a compare match condition occurs. When a TM interrupt is generated, it can be used to clear the counter and also to change the state of the TM output pin. ### **TM External Pins** Each of the TMs, irrespective of what type, has an TM input pin, with the label xTCKn. The xTMn input pin, xTCKn, is essentially a clock source for the xTMn and is selected using the xTnCK2~xTnCK0 bits in the xTMnC0 register. This external TM input pin allows an external clock source to drive the internal TM. The xTCKn input pin can be chosen to have either a rising or falling active edge. The STCK pin is also used as the external trigger input pin in single pulse output mode for the STM. The Standard type TM has another input pin, STPI, which is the capture input whose active edge can be a rising edge, a falling edge or both rising and falling edges and the active edge transition type is selected using the STIO1~STIO0 bits in the STMC1 register. The TMs each has two output pins, xTPn and xTPnB. When the TM is in the Compare Match Output Mode, these pins can be controlled by the TM to switch to a high or low level or to toggle when a compare match situation occurs. The external xTPn and xTPnB pins are also the pins where the TM generates the PWM output waveform. As the TM input and output pins are pin-shared with other functions, the TM input and output functions must first be setup using the relevant pin-shared function selection bits described in the Pin-shared Function section. | C. | ТМ | STM | | | |----------------|----------------------------|------------|-----------|--| | Input Output | | Input | Output | | | CTCK0
CTCK1 | CTP0, CTP0B
CTP1, CTP1B | STCK, STPI | STP, STPB | | **TM External Pins** CTMn Function Pin Block Diagram (n=0~1) Rev. 1.20 85 November 19, 2019 **STM Function Pin Block Diagram** ### **Programming Considerations** The TM Counter Registers and the Capture/Compare CCRA register, all have a low and high byte structure. The high bytes can be directly accessed,
but as the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to note is that data transfer to and from the 8-bit buffer and its related low byte only takes place when a write or read operation to its corresponding high byte is executed. As the CCRA register is implemented in the way shown in the following diagram and accessing these register pairs is carried out in a specific way as described above, it is recommended to use the "MOV" instruction to access the CCRA low byte registers, named xTMnAL, using the following access procedures. Accessing the CCRA low byte registers without following these access procedures will result in unpredictable values. The following steps show the read and write procedures: - · Writing Data to CCRA - Step 1. Write data to Low Byte xTMnAL - Note that here data is only written to the 8-bit buffer. - Step 2. Write data to High Byte xTMnAH - Here data is written directly to the high byte registers and simultaneously data is latched from the 8-bit buffer to the Low Byte registers. - · Reading Data from the Counter Registers and CCRA - Step 1. Read data from the High Byte xTMnDH, xTMnAH - Here data is read directly from the High Byte registers and simultaneously data is latched from the Low Byte register into the 8-bit buffer. - Step 2. Read data from the Low Byte xTMnDL, xTMnAL - This step reads data from the 8-bit buffer. Rev. 1.20 86 November 19, 2019 ## Compact Type TM - CTM The Compact TM type contains three operating modes, which are Compare Match Output, Timer/ Event Counter and PWM Output modes. The Compact TM can also be controlled with an external input pin and can drive two external output pins. Note: The CTPnB is the inverted output of the CTPn. Compact Type TM Block Diagram (n=0~1) ### **Compact TM Operation** At its core is a 10-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP is three bits wide whose value is compared with the highest three bits in the counter while the CCRA is the ten bits and therefore compares with all counter bits. The only way of changing the value of the 10-bit counter using the application program, is to clear the counter by changing the CTnON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, a CTMn interrupt signal will also usually be generated. The Compact Type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control two output pins. All operating setup conditions are selected using relevant internal registers. ### **Compact Type TM Register Description** Overall operation of the Compact type TM is controlled using several registers. A read only register pair exists to store the internal counter 10-bit value, while a read/write register pair exists to store the internal 10-bit CCRA value. The remaining two registers are control registers which setup the different operating and control modes as well as the three CCRP bits. | Register | Bit | | | | | | | | | | | |----------|--------|--------|--------|--------|-------|--------|--------|---------|--|--|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | CTMnC0 | CTnPAU | CTnCK2 | CTnCK1 | CTnCK0 | CTnON | CTnRP2 | CTnRP1 | CTnRP0 | | | | | CTMnC1 | CTnM1 | CTnM0 | CTnIO1 | CTnIO0 | CTnOC | CTnPOL | CTnDPX | CTnCCLR | | | | | CTMnDL | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | CTMnDH | _ | _ | _ | _ | _ | _ | D9 | D8 | | | | | CTMnAL | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | CTMnAH | _ | | | _ | _ | _ | D9 | D8 | | | | 10-bit Compact Type TM Register List (n=0~1) Rev. 1.20 87 November 19, 2019 ### CTMnC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|--------|--------|--------|--------|-------|--------|--------|--------| | Name | CTnPAU | CTnCK2 | CTnCK1 | CTnCK0 | CTnON | CTnRP2 | CTnRP1 | CTnRP0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 CTnPAU: CTMn Counter Pause Control 0: Run 1: Pause The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the CTMn will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again. ### Bit 6~4 CTnCK2~CTnCK0: Select CTMn Counter clock 000: f_{SYS}/4 001: f_{SYS} 010: f_H/16 011: f_H/64 100: f_{SUB} 101: f_{SUB} 110: CTCKn rising edge clock111: CTCKn falling edge clock These three bits are used to select the clock source for the CTMn. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_H and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section. #### Bit 3 CTnON: CTMn Counter On/Off Control 0: Off 1: On This bit controls the overall on/off function of the CTMn. Setting the bit high enables the counter to run, clearing the bit disables the CTMn. Clearing this bit to zero will stop the counter from counting and turn off the CTMn which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again. If the CTMn is in the Compare Match Output Mode or the PWM Output Mode then the CTMn output pin will be reset to its initial condition, as specified by the CTnOC bit, when the CTnON bit changes from low to high. ## Bit 2~0 CTnRP2~CTnRP0: CTMn CCRP 3-bit register, compared with the CTMn Counter bit 9~bit 7 Comparator P Match Period 000: 1024 CTMn clocks 001: 128 CTMn clocks 010: 256 CTMn clocks 011: 384 CTMn clocks 100: 512 CTMn clocks 101: 640 CTMn clocks 110: 768 CTMn clocks These three bits are used to setup the value on the internal CCRP 3-bit register, which are then compared with the internal counter's highest three bits. The result of this comparison can be selected to clear the internal counter if the CTnCCLR bit is set to zero. Setting the CTnCCLR bit to zero ensures that a compare match with the CCRP values will reset the internal counter. As the CCRP bits are only compared with the Rev. 1.20 88 November 19, 2019 highest three counter bits, the compare values exist in 128 clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at its maximum value. ### CTMnC1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|--------|--------|-------|--------|--------|---------| | Name | CTnM1 | CTnM0 | CTnIO1 | CTnIO0 | CTnOC | CTnPOL | CTnDPX | CTnCCLR | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 CTnM1~CTnM0: Select CTMn Operating Mode 00: Compare Match Output Mode 01: Undefined 10: PWM Output Mode 11: Timer/Counter Mode These bits setup the required operating mode for the CTMn. To ensure reliable operation the CTMn should be switched off before any changes are made to the CTnM1 and CTnM0 bits. In the Timer/Counter Mode, the CTMn output pin state is undefined. Bit 5~4 **CTnIO1~CTnIO0**: Select CTPn function Compare Match Output Mode 00: No change 01: Output low 10: Output high 11: Toggle output PWM Output Mode 00: PWM Output inactive state 01: PWM Output active state 10: PWM output 11: Undefined Timer/counter Mode Unused These two bits are used to determine how the CTMn external pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the CTMn is running. In the Compare Match Output Mode, the CTnIO1 and CTnIO0 bits determine how the CTMn output pin changes state when a compare match occurs from the Comparator A. The CTMn output pin can be setup to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the CTMn output pin should be setup using the CTnOC bit in the CTMnC1 register. Note that the output level requested by the CTnIO1 and CTnIO0 bits must be different from the initial value setup using the CTnOC bit otherwise no change will occur on the CTMn output pin when a compare match occurs. After the CTMn output pin changes state it can be reset to its initial level by changing the level of the CTnON bit from low to high. In the PWM Output Mode, the CTnIO1 and CTnIO0 bits determine how the CTMn output pin changes state when a certain compare match condition occurs. The PWM output function is modified by changing these two bits. It is necessary to only change the values of the CTnIO1 and CTnIO0 bits only after the CTMn has been switched off. Unpredictable PWM outputs will occur if the CTnIO1 and CTnIO0 bits are changed when The CTMn is running. Bit 3 CTnOC: CTPn Output control bit Compare Match Output Mode 0: Initial low1: Initial high PWM Output Mode 0: Active low 1: Active high This is the output control bit for the CTMn output pin. Its operation depends upon whether CTMn is being used in the Compare Match Output Mode or in the PWM Output Mode. It has no effect if the CTMn is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the CTMn output pin before a compare match occurs. In the PWM Output Mode it determines if the PWM signal is active high or active low. Bit 2 **CTnPOL**: CTPn Output polarity Control 0: Non-invert 1: Invert This bit controls the polarity of the CTPn output pin. When the bit is set high the CTMn
output pin will be inverted and not inverted when the bit is zero. It has no effect if the CTMn is in the Timer/Counter Mode. Bit 1 CTnDPX: CTMn PWM period/duty Control 0: CCRP - period; CCRA - duty 1: CCRP - duty; CCRA - period This bit, determines which of the CCRA and CCRP registers are used for period and duty control of the PWM waveform. Bit 0 CTnCCLR: Select CTMn Counter clear condition 0: CTMn Comparatror P match 1: CTMn Comparatror A match This bit is used to select the method which clears the counter. Remember that the Compact TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the CTnCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The CTnCCLR bit is not used in the PWM Output Mode. ### CTMnDL Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----|----|----|----|----|----|----|----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | R | R | R | R | R | R | R | R | | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D7~D0**: CTMn Counter Low Byte Register bit 7~bit 0 CTMn 10-bit Counter bit 7~bit 0 ### • CTMnDH Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|----|----| | Name | _ | _ | _ | _ | _ | _ | D9 | D8 | | R/W | _ | _ | _ | _ | _ | _ | R | R | | POR | _ | _ | _ | _ | _ | _ | 0 | 0 | Bit 7~2 Unimplemented, read as "0" Bit 1~0 **D9~D8**: CTMn Counter High Byte Register bit 1~bit 0 CTMn 10-bit Counter bit 9~bit 8 Rev. 1.20 90 November 19, 2019 ### CTMnAL Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D7~D0**: CTMn CCRA Low Byte Register bit 7~bit 0 CTMn 10-bit CCRA bit 7~bit 0 ### CTMnAH Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|-----|-----| | Name | _ | _ | _ | _ | _ | _ | D9 | D8 | | R/W | _ | _ | _ | _ | _ | _ | R/W | R/W | | POR | _ | _ | _ | _ | _ | _ | 0 | 0 | Bit 7~2 Unimplemented, read as "0" Bit 1~0 **D9~D8**: CTMn CCRA High Byte Register bit 1~bit 0 CTMn 10-bit CCRA bit 9~bit 8 ## **Compact Type TM Operating Modes** The Compact Type TM can operate in one of three operating modes, Compare Match Output Mode, PWM Output Mode or Timer/Counter Mode. The operating mode is selected using the CTnM1 and CTnM0 bits in the CTMnC1 register. ### **Compare Match Output Mode** To select this mode, bits CTnM1 and CTnM0 in the CTMnC1 register, should be set to 00 respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the CTnCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both CTMnAF and CTMnPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated. If the CTnCCLR bit in the CTMnC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the CTMnAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when CTnCCLR is high no CTMnPF interrupt request flag will be generated. If the CCRA bits are all zero, the counter will overflow when its reaches its maximum 10-bit, 3FF Hex, value, however here the CTMnAF interrupt request flag will not be generated. As the name of the mode suggests, after a comparison is made, the CTMn output pin will change state. The CTMn output pin condition however only changes state when a CTMnAF interrupt request flag is generated after a compare match occurs from Comparator A. The CTMnPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the CTMn output pin. The way in which the CTMn output pin changes state are determined by the condition of the CTnIO1 and CTnIO0 bits in the CTMnC1 register. The CTMn output pin can be selected using the CTnIO1 and CTnIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the CTM output pin, which is setup after the CTON bit changes from low to high, is setup using the CTnOC bit. Note that if the CTnIO1 and CTnIO0 bits are zero then no pin change will take place. Rev. 1.20 91 November 19, 2019 Compare Match Output Mode - CTnCCLR=0 (n=0~1) Note: 1. With CTnCCLR=0, a Comparator P match will clear the counter - 2. The CTMn output pin controlled only by the CTMnAF flag - 3. The output pin reset to initial state by a CTnON bit rising edge Rev. 1.20 92 November 19, 2019 Compare Match Output Mode - CTnCCLR=1 (n=0~1) Note: 1. With CTnCCLR=1, a Comparator A match will clear the counter - 2. The CTMn output pin controlled only by the CTMnAF flag - 3. The output pin reset to initial state by a CTnON rising edge - 4. The CTMnPF flags is not generated when CTnCCLR=1 ### **Timer/Counter Mode** To select this mode, bits CTnM1 and CTnM0 in the CTMnC1 register should be set to 11 respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the CTMn output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the CTMn output pin is not used in this mode, the pin can be used as a normal I/O pin or other pin-shared function. ### **PWM Output Mode** To select this mode, bits CTnM1 and CTnM0 in the CTMnC1 register should be set to 10 respectively. The PWM function within the CTMn is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the CTMn output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values. As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM Output Mode, the CTnCCLR bit has no effect on the PWM operation. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. Which register is used to control either frequency or duty cycle is determined using the CTnDPX bit in the CTMnC1 register. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers. An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The CTnOC bit In the CTMnC1 register is used to select the required polarity of the PWM waveform while the two CTnIO1 and CTnIO0 bits are used to enable the PWM output or to force the CTMn output pin to a fixed high or low level. The CTnPOL bit is used to reverse the polarity of the PWM output waveform. ### • 10-bit CTMn, PWM Output Mode, Edge-aligned Mode, CTnDPX=0 | CCRP | 1~7 | 0 | | | | |--------|----------|------|--|--|--| | Period | CCRP×128 | 1024 | | | | | Duty | CCRA | | | | | If f_{SYS}=8MHz, CTMn clock source is f_{SYS}/4, CCRP=2, CCRA=128, The CTMn PWM output frequency= $(f_{SYS}/4)/(2\times128)=f_{SYS}/1024=7.812$ kHz, duty= $128/(2\times128)=50\%$. If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%. ### • 10-bit CTMn, PWM Output Mode, Edge-aligned Mode, CTnDPX=1 | CCRP | 1~7 | 0 | | | | |--------|----------|------|--|--|--| | Period | CCRA | | | | | | Duty | CCRP×128 | 1024 | | | | The PWM output period is determined by the CCRA register value together with the CTMn clock while the PWM duty cycle is defined by the CCRP register value. Rev. 1.20 94 November 19, 2019 Note: 1. Here CTnDPX=0 - Counter cleared by CCRP - 2. A counter clear sets PWM Period - 3. The internal PWM function continues running even when CTnIO[1:0]=00 or 01 - 4. The CTnCCLR bit has no influence on PWM operation Note: 1. Here CTnDPX=1 - Counter cleared by CCRA - 2. A counter clear sets PWM Period - 3. The internal PWM function continues even when CTnIO[1:0]=00 or 01 - 4. The CTnCCLR bit has no influence on PWM operation Rev. 1.20 96 November 19, 2019 ## Standard Type TM - STM The Standard Type TM contains five operating modes, which are Compare Match Output, Timer/ Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Standard TM can also be controlled with two external input pins and can drive two external output pins. Note: The STPB is the inverted output of the STP. Standard Type TM Block Diagram ### **Standard TM Operation** The size of Standard TM is 16-bit wide and its core is a 16-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP comparator is 8-bit wide whose value is compared the with highest 8 bits in the counter while the CCRA is the sixteen bits and therefore compares all counter bits. The only way of changing the value of the 16-bit counter using the application program, is to clear the counter by changing the STON bit from low to high. The counter will also be cleared automatically
by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, a STM interrupt signal will also usually be generated. The Standard Type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control two output pins. All operating setup conditions are selected using relevant internal registers. ### Standard Type TM Register Description Overall operation of the Standard TM is controlled using a series of registers. A read only register pair exists to store the internal counter 16-bit value, while a read/write register pair exists to store the internal 16-bit CCRA value. The STMRP register is used to store the 8-bit CCRP value. The remaining two registers are control registers which setup the different operating and control modes. Rev. 1.20 97 November 19, 2019 | Register | Bit | | | | | | | | | | |----------|-------|-------|-------|-------|------|-------|-------|--------|--|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | STMC0 | STPAU | STCK2 | STCK1 | STCK0 | STON | _ | _ | _ | | | | STMC1 | STM1 | STM0 | STIO1 | STIO0 | STOC | STPOL | STDPX | STCCLR | | | | STMDL | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | STMDH | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | | | STMAL | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | STMAH | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | | | STMRP | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 16-bit Standard Type TM Register List ### STMC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|------|---|---|---| | Name | STPAU | STCK2 | STCK1 | STCK0 | STON | _ | _ | _ | | R/W | R/W | R/W | R/W | R/W | R/W | _ | _ | _ | | POR | 0 | 0 | 0 | 0 | 0 | _ | _ | _ | Bit 7 STPAU: STM Counter Pause control 0: Run 1: Pause The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the STM will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again. Bit 6~4 STCK2~STCK0: Select STM Counter clock $\begin{array}{c} 000:\,f_{SYS}/4 \\ 001:\,f_{SYS} \\ 010:\,f_H/16 \\ 011:\,f_H/64 \\ 100:\,f_{SUB} \\ 101:\,f_{SUB} \end{array}$ 110: STCK rising edge clock111: STCK falling edge clock These three bits are used to select the clock source for the STM. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_H and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section. Bit 3 STON: STM Counter On/Off control 0: Off 1: On This bit controls the overall on/off function of the STM. Setting the bit high enables the counter to run while clearing the bit disables the STM. Clearing this bit to zero will stop the counter from counting and turn off the STM which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again. If the STM is in the Compare Match Output Mode, the PWM Output Mode or the Single Pulse Output Mode then the STM output pin will be reset to its initial condition, as specified by the STOC bit, when the STON bit changes from low to high. Bit 2~0 Unimplemented, read as "0" Rev. 1.20 98 November 19, 2019 ### STMC1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|-------|-------|------|-------|-------|--------| | Name | STM1 | STM0 | STIO1 | STIO0 | STOC | STPOL | STDPX | STCCLR | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 STM1~STM0: Select STM Operating Mode 00: Compare Match Output Mode 01: Capture Input Mode 10: PWM Output Mode or Single Pulse Output Mode 11: Timer/Counter Mode These bits setup the required operating mode for the STM. To ensure reliable operation the STM should be switched off before any changes are made to the STM1 and STM0 bits. In the Timer/Counter Mode, the STM output pin state is undefined. ### Bit 5~4 STIO1~STIO0: Select STM external pin STP function Compare Match Output Mode 00: No change 01: Output low 10: Output high 11: Toggle output PWM Output Mode/Single Pulse Output Mode 00: PWM output inactive state 01: PWM output active state 10: PWM output 11: Single Pulse Output Capture Input Mode 00: Input capture at rising edge of STPI 01: Input capture at falling edge of STPI 10: Input capture at rising/falling edge of STPI 11: Input capture disabled Timer/Counter Mode Unused These two bits are used to determine how the STM external pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the STM is running. In the Compare Match Output Mode, the STIO1 and STIO0 bits determine how the STM output pin changes state when a compare match occurs from the Comparator A. The TM output pin can be setup to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the STM output pin should be setup using the STOC bit in the STMC1 register. Note that the output level requested by the STIO1 and STIO0 bits must be different from the initial value setup using the STOC bit otherwise no change will occur on the STM output pin when a compare match occurs. After the STM output pin changes state, it can be reset to its initial level by changing the level of the STON bit from low to high. In the PWM Output Mode, the STIO1 and STIO0 bits determine how the STM output pin changes state when a certain compare match condition occurs. The PWM output function is modified by changing these two bits. It is necessary to only change the values of the STIO1 and STIO0 bits only after the STM has been switched off. Unpredictable PWM outputs will occur if the STIO1 and STIO0 bits are changed when the STM is running. Bit 3 STOC: STM STP Output control Compare Match Output Mode 0: Initial low 1: Initial high PWM Output Mode/Single Pulse Output Mode 0: Active low 1: Active high This is the output control bit for the STM output pin. Its operation depends upon whether STM is being used in the Compare Match Output Mode or in the PWM Output Mode/Single Pulse Output Mode. It has no effect if the STM is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the STM output pin before a compare match occurs. In the PWM output Mode it determines if the PWM signal is active high or active low. In the Single Pulse Output Mode it determines the logic level of the STM output pin when the STON bit changes from low to high. Bit 2 STPOL: STM STP Output polarity control 0: Non-invert 1: Invert This bit controls the polarity of the STP output pin. When the bit is set high the STM output pin will be inverted and not inverted when the bit is zero. It has no effect if the STM is in the Timer/Counter Mode. Bit 1 STDPX: STM PWM duty/period control 0: CCRP – period; CCRA – duty 1: CCRP – duty; CCRA – period This bit determines which of the CCRA and CCRP registers are used for period and duty control of the PWM waveform. Bit 0 STCCLR: STM Counter Clear condition selection 0: Comparator P match1: Comparator A match This bit is used to select the method which clears the counter. Remember that the Standard TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the STCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The STCCLR bit is not used in the PWM Output, Single Pulse Output or Capture Input Mode. ### STMDL Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----|----|----|----|----|----|----|----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | R | R | R | R | R | R | R | R | | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D7~D0**: STM Counter Low Byte Register bit 7~bit 0 STM 16-bit Counter bit 7~bit 0 ### STMDH Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|----|----| | Name | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | R/W | R | R | R | R | R | R | R | R | | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D15~D8**: STM Counter High Byte Register bit 7~bit 0 STM 16-bit Counter bit 15~bit 8 Rev. 1.20 100 November 19, 2019 ### STMAL Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D7~D0**: STM CCRA Low Byte Register bit 7~bit 0 STM 16-bit CCRA bit 7~bit 0 ### STMAH Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D15~D8**: STM CCRA High Byte Register bit 7~bit 0 STM 16-bit CCRA bit 15~bit 8 ### STMRP Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 **D7~D0**: STM CCRP 8-bit register, compared with the STM counter bit 15~bit 8 Comparator P match period= 0: 65536 STM clocks 1~255: (1~255)×256 STM clocks These eight bits are used to setup the value on the internal CCRP 8-bit register, which are then compared with the internal counter's highest eight
bits. The result of this comparison can be selected to clear the internal counter if the STCCLR bit is set to zero. Setting the STCCLR bit to zero ensures that a compare match with the CCRP values will reset the internal counter. As the CCRP bits are only compared with the highest eight counter bits, the compare values exist in 256 clock cycle multiples. Clearing all eight bits to zero is in effect allowing the counter to overflow at its maximum value. ### **Standard Type TM Operation Modes** The Standard Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using the STM1 and STM0 bits in the STMC1 register. ### **Compare Match Output Mode** To select this mode, bits STM1 and STM0 in the STMC1 register, should be set to 00 respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the STCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both STMAF and STMPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated. If the STCCLR bit in the STMC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the STMAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when Rev. 1.20 101 November 19, 2019 STCCLR is high no STMPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA can not be set to "0". If the CCRA bits are all zero, the counter will overflow when its reaches its maximum 16-bit, FFFF Hex, value, however here the STMAF interrupt request flag will not be generated. As the name of the mode suggests, after a comparison is made, the STM output pin, will change state. The STM output pin condition however only changes state when a STMAF interrupt request flag is generated after a compare match occurs from Comparator A. The STMPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the STM output pin. The way in which the STM output pin changes state are determined by the condition of the STIO1 and STIO0 bits in the STMC1 register. The STM output pin can be selected using the STIO1 and STIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the STM output pin, which is setup after the STON bit changes from low to high, is setup using the STOC bit. Note that if the STIO1 and STIO0 bits are zero then no pin change will take place. Compare Match Output Mode - STCCLR=0 Note: 1. With STCCLR=0 a Comparator P match will clear the counter - 2. The STM output pin is controlled only by the STMAF flag - 3. The output pin is reset to its initial state by a STON bit rising edge Rev. 1.20 102 November 19, 2019 Compare Match Output Mode - STCCLR=1 Note: 1. With STCCLR=1 a Comparator A match will clear the counter - 2. The STM output pin is controlled only by the STMAF flag - 3. The output pin is reset to its initial state by a STON bit rising edge - 4. A STMPF flag is not generated when STCCLR=1 Rev. 1.20 103 November 19, 2019 ### **Timer/Counter Mode** To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 11 respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the STM output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the STM output pin is not used in this mode, the pin can be used as a normal I/O pin or other pin-shared function. ### **PWM Output Mode** To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 10 respectively and also the STIO1 and STIO0 bits should be set to 10 respectively. The PWM function within the STM is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the STM output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values. As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM Output Mode, the STCCLR bit has no effect as the PWM period. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. Which register is used to control either frequency or duty cycle is determined using the STDPX bit in the STMC1 register. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers. An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The STOC bit in the STMC1 register is used to select the required polarity of the PWM waveform while the two STIO1 and STIO0 bits are used to enable the PWM output or to force the STM output pin to a fixed high or low level. The STPOL bit is used to reverse the polarity of the PWM output waveform. ### • 16-bit STM, PWM Output Mode, Edge-aligned Mode, STDPX=0 | CCRP | 1~255 | 0 | | | |--------|----------|-------|--|--| | Period | CCRP×256 | 65536 | | | | Duty | CCRA | | | | If f_{SYS}=8MHz, STM clock source is f_{SYS}/4, CCRP=2 and CCRA=128, The STM PWM output frequency= $(f_{SYS}/4)/(2\times256)=f_{SYS}/2048=4$ kHz, duty= $128/(2\times256)=25\%$. If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%. ### • 16-bit STM, PWM Output Mode, Edge-aligned Mode, STDPX=1 | CCRP | 1~255 | 0 | | | |--------|----------|-------|--|--| | Period | CCRA | | | | | Duty | CCRP×256 | 65536 | | | The PWM output period is determined by the CCRA register value together with the STM clock while the PWM duty cycle is defined by the CCRP register value except when the CCRP value is equal to 0. Rev. 1.20 104 November 19, 2019 Note: 1. Here STDPX=0 – Counter cleared by CCRP - 2. A counter clear sets the PWM Period - 3. The internal PWM function continues running even when STIO [1:0]=00 or 01 - 4. The STCCLR bit has no influence on PWM operation Rev. 1.20 105 November 19, 2019 Note: 1. Here STDPX=1 - Counter cleared by CCRA - 2. A counter clear sets the PWM Period - 3. The internal PWM function continues even when STIO [1:0]=00 or 01 - 4. The STCCLR bit has no influence on PWM operation Rev. 1.20 106 November 19, 2019 ### Single Pulse Output Mode To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 10 respectively and also the STIO1 and STIO0 bits should be set to 11 respectively. The Single Pulse Output Mode, as the name suggests, will generate a single shot pulse on the STM output pin. The trigger for the pulse output leading edge is a low to high transition of the STON bit, which can be implemented using the application program. However in the Single Pulse Output Mode, the STON bit can also be made to automatically change from low to high using the external STCK pin, which will in turn initiate the Single Pulse output. When the STON bit transitions to a high level, the counter will start running and the pulse leading edge will be generated. The STON bit should remain high when the pulse is in its active state. The generated pulse trailing edge will be generated when the STON bit is cleared to zero, which can be implemented using the application program or when a compare match occurs from Comparator A. However a compare match from Comparator A will also automatically clear the STON bit and thus generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control the pulse width. A compare match from Comparator A will also generate a STM interrupt. The counter can only be reset back to zero when the STON bit changes from low to high when the counter restarts. In the Single Pulse Output Mode CCRP is not used. The STCCLR and STDPX bits are not used in this Mode. Single Pulse Generation Rev. 1.20 107 November 19, 2019 Single Pulse Output Mode Note: 1. Counter stopped by CCRA - 2. CCRP is not used - 3. The pulse triggered by the STCK pin or by setting the STON bit high - 4. A STCK pin active edge will automatically set the STON bit high - 5. In the Single Pulse Output Mode, STIO [1:0] must be set to "11" and can not be changed ## **Capture Input Mode** To select this mode bits STM1 and STM0 in the STMC1 register should be set to 01 respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications such as pulse width measurements. The external signal is supplied on the STPI pin, whose active edge can be a rising edge, a falling edge or both rising and falling edges; the active edge transition type is selected using the STIO1 and STIO0 bits in the STMC1 register. The counter is started when the STON bit changes from low to high which is initiated using the application program. When the required edge transition appears on the STPI pin the present value in the counter will be latched into the CCRA registers and a STM interrupt generated. Irrespective of what events occur on the STPI pin the counter will continue to free run until the STON bit changes from high to low. When a CCRP compare match
occurs the counter will reset back to zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP compare match occurs Rev. 1.20 108 November 19, 2019 from Comparator P, a STM interrupt will also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The STIO1 and STIO0 bits can select the active trigger edge on the STPI pin to be a rising edge, falling edge or both edge types. If the STIO1 and STIO0 bits are both set high, then no capture operation will take place irrespective of what happens on the STPI pin, however it must be noted that the counter will continue to run. The STCCLR and STDPX bits are not used in this Mode. ### **Capture Input Mode** Note: 1. STM [1:0]=01 and active edge set by the STIO [1:0] bits - 2. A STM Capture input pin active edge transfers the counter value to CCRA - 3. STCCLR bit not used - 4. No output function STOC and STPOL bits are not used - 5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to zero Rev. 1.20 109 November 19, 2019 # **Analog to Digital Converter** The need to interface to real world analog signals is a common requirement for many electronic systems. However, to properly process these signals by a microcontroller, they must first be converted into digital signals by A/D Converters. By integrating the A/D conversion electronic circuitry into the microcontroller, the need for external components is reduced significantly with the corresponding follow-on benefits of lower costs and reduced component space requirements. ## A/D Converter Overview This device contains a multi-channel analog to digital converter which can directly interface to external analog signals, such as that from sensors or other control signals and convert these signals directly into a 12-bit digital value. The external or internal analog signal to be converted is determined by the SAINS2~SAINS0 bits together with the SACS3~SACS0 bits. When the external analog signal is to be converted, the corresponding pin-shared control bits should first be properly configured and then desired external channel input should be selected using the SAINS2~SAINS0 and SACS3~SACS0 bits. Note that when the internal analog signal is to be converted, the pin-shared control bits should also be properly configured except the SAINS and SACS bit fields. More detailed information about the A/D Converter input signal is described in the "A/D Converter Control Registers" and "A/D Converter Input Signals" sections respectively. | External Input Channels | A/D Channel Select Bits | |-------------------------|-------------------------------| | 7: AN1~AN7 | SAINS2~SAINS0,
SACS3~SACS0 | The accompanying block diagram shows the internal structure of the A/D Converter with its associated registers and control bits. A/D Converter with Temperature Sensor Structure Rev. 1.20 110 November 19, 2019 # A/D Converter Register Description Overall operation of the A/D Converter with temperature sensor is controlled using five registers. A read only register pair exists to store the A/D Converter data 12-bit value. Two registers, SADC0 and SADC1 are control registers which setup the operating and control function of the A/D Converter. The SADC2 register is the control register which control independent reference bandgap enable/disable. | Dogistar Nama | | | | В | it | | | | |-----------------|--------|--------|--------|--------|--------|--------|--------|--------| | Register Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SADOL (ADRFS=0) | D3 | D2 | D1 | D0 | _ | _ | _ | _ | | SADOH (ADRFS=0) | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | | SADOL (ADRFS=1) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | SADOH (ADRFS=1) | _ | _ | _ | _ | D11 | D10 | D9 | D8 | | SADC0 | START | ADBZ | ADCEN | ADRFS | SACS3 | SACS2 | SACS1 | SACS0 | | SADC1 | SAINS2 | SAINS1 | SAINS0 | SAVRS1 | SAVRS0 | SACKS2 | SACKS1 | SACKS0 | | SADC2 | VBGREN | _ | _ | _ | _ | _ | _ | _ | A/D Converter Register List ### A/D Converter Data Registers - SADOL, SADOH As this device contains an internal 12-bit A/D Converter, it requires two data registers to store the converted value. These are a high byte register, known as SADOH, and a low byte register, known as SADOL. After the conversion process takes place, these registers can be directly read by the microcontroller to obtain the digitised conversion value. As only 12 bits of the 16-bit register space is utilised, the format in which the data is stored is controlled by the ADRFS bit in the SADCO register as shown in the accompanying table. D0~D11 are the A/D conversion result data bits. Any unused bits will be read as zero. Note that A/D data registers contents will be unchanged if the A/D Converter is disabled. | ADRFS | SADOH | | | | | | | SADOH SADOL | | | | | | | | | |-------|-------|-----|----|----|-----|-----|----|-------------|----|----|----|----|----|----|----|----| | ADRES | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | A/D Data Registers #### A/D Converter Control Registers - SADC0, SADC1, SADC2 To control the function and operation of the A/D Converter, two control registers known as SADC0 and SADC1 are provided. These 8-bit registers define functions such as the selection of which analog channel is connected to the internal A/D Converter, the digitised data format, the A/D clock source as well as controlling the start function and monitoring the A/D Converter busy status. As the device contains only one actual analog to digital converter hardware circuit, each of the external or internal analog signal inputs must be routed to the converter. The SACS3~SACS0 bits in the SADC0 register are used to determine which external channel input is selected to be converted. The SAINS2~SAINS0 bits in the SADC1 register are used to determine that the analog signal to be converted comes from the internal analog signal or external analog channel input. The relevant pin-shared function selection bits determine which pins on I/O Ports are used as analog inputs for the A/D Converter input and which pins are not to be used as the A/D Converter input. When the pin is selected to be an A/D input, its original function whether it is an I/O or other pin-shared function will be removed. In addition, any internal pull-high resistor connected to the pin will be automatically removed if the pin is selected to be an A/D Converter input. Rev. 1.20 111 November 19, 2019 ### SADC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|------|-------|-------|-------|-------|-------|-------| | Name | START | ADBZ | ADCEN | ADRFS | SACS3 | SACS2 | SACS1 | SACS0 | | R/W | R/W | R | R/W | R/W | R/W | R/W | R/W | R/W | | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 START: Start the A/D conversion $0 \rightarrow 1 \rightarrow 0$: Start This bit is used to initiate an A/D conversion process. The bit is normally low but if set high and then cleared low again, the A/D Converter will initiate a conversion process. Bit 6 ADBZ: A/D Converter busy flag 0: No A/D conversion is in progress 1: A/D conversion is in progress This read only flag is used to indicate whether the A/D conversion is in progress or not. When the START bit is set from low to high and then to low again, the ADBZ flag will be set to 1 to indicate that the A/D conversion is initiated. The ADBZ flag will be cleared to 0 after the A/D conversion is complete. Bit 5 ADCEN: A/D Converter function enable control 0: Disable 1: Enable This bit controls the A/D internal function. This bit should be set to one to enable the A/D Converter. If the bit is set low, then the A/D Converter will be switched off reducing the device power consumption. When the A/D Converter function is disabled, the contents of the A/D data register pair known as SADOH and SADOL will be unchanged. Bit 4 ADRFS: A/D Converter data format select 0: A/D Converter data format → SADOH=D[11:4]; SADOL=D[3:0] 1: A/D Converter data format → SADOH=D[11:8]; SADOL=D[7:0] This bit controls the format of the 12-bit converted A/D value in the two A/D data registers. Details are provided in the A/D data register section. Bit 3~0 SACS3~SACS0: A/D Converter external analog channel input select 0000: Non-existed channel, the input will be floating if selected 0001: AN1 0010: AN2 0011: AN3 0100: AN4 0101: AN5 0110: AN6 0111: AN7 1000~1111: Non-existed channel, the input will be floating if selected ### SADC1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|--------|--------|--------|--------|--------|--------|--------|--------| | Name | SAINS2 | SAINS1 | SAINS0 | SAVRS1 | SAVRS0 | SACKS2 | SACKS1 | SACKS0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~5 SAINS2~SAINS0: A/D Converter input signal select 000: External signal - External analog channel input 010: Reserved, forbidden to be used 001/011/100: Reserved, connected to ground 101/110: External signal – External analog channel input 111: Forbidden to be used Rev. 1.20 November 19, 2019 Care must be taken if the SAINS2~SAINS0 bits are set from "001~010" to select the internal analog signal to be converted. When the internal analog signal is selected to be converted, the external input pin must never be selected as the A/D input signal by properly setting the SACS3~SACS0 bits with a value from 1000 to 1111. Otherwise, the external channel input will be connected together with the internal analog signal. This will result in unpredictable situations such as an irreversible damage. ### Bit 4~3 SAVRS1~SAVRS0: A/D Converter reference voltage select 00: VREF pin 01: Internal A/D Converter power, AV_{DD} 10: Reserved, forbidden to be used 11: Internal A/D Converter power, AV_{DD} These bits are used to select the A/D Converter reference voltage.
Care must be taken if the SAVRS1~SAVRS0 bits are set to any other values except "00" to select the internal reference voltage source. When the internal A/D Converter power is selected as the reference voltage, the VREF pin cannot be configured as the reference voltage input by properly configuring the corresponding pin-shared function control bits. Otherwise, the A/D Converter internal reference voltage source will be connected together with the external reference voltage input on the VREF pin. This will result in unpredictable situations. #### Bit 2~0 SACKS2~SACKS0: A/D conversion clock source select 000: fsys 001: fsys/2 010: fsys/4 011: fsys/8 100: fsys/16 110: f_{SYS}/64 111: f_{SYS}/128 These three bits are used to select the clock source for the A/D Converter. ### SADC2 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|--------|---|---|---|---|---|---|---| | Name | VBGREN | _ | _ | _ | _ | _ | _ | _ | | R/W | R/W | _ | _ | _ | _ | _ | _ | _ | | POR | 0 | _ | _ | _ | _ | _ | _ | _ | ### Bit 7 VBGREN: Independent reference bandgap enable control 0: Disable 1: Enable When the VBGREN bit is cleared to zero, the VBG is in a pull low state. Bit 6~2 Unimplemented, read as "0" Bit 1 Unimplemented, read as "1" Bit 0 Reserved, this bit clear to "0" Rev. 1.20 113 November 19, 2019 ### A/D Converter Operation The START bit in the SADC0 register is used to start the A/D conversion. When the microcontroller sets this bit from low to high and then low again, an analog to digital conversion cycle will be initiated. The ADBZ bit in the SADC0 register is used to indicate whether the analog to digital conversion process is in progress or not. This bit will be automatically set to 1 by the microcontroller after an A/D conversion is successfully initiated. When the A/D conversion is complete, the ADBZ will be cleared to 0. In addition, the corresponding A/D interrupt request flag will be set in the interrupt control register, and if the interrupts are enabled, an appropriate internal interrupt signal will be generated. This A/D internal interrupt signal will direct the program flow to the associated A/D internal interrupt address for processing. If the A/D internal interrupt is disabled, the microcontroller can poll the ADBZ bit in the SADC0 register to check whether it has been cleared as an alternative method of detecting the end of an A/D conversion cycle. The clock source for the A/D Converter, which originates from the system clock f_{SYS}, can be chosen to be either f_{SYS} or a subdivided version of f_{SYS}. The division ratio value is determined by the SACKS2~SACKS0 bits in the SADC1 register. Although the A/D clock source is determined by the system clock f_{SYS} and by bits SACKS2~SACKS0, there are some limitations on the maximum A/D clock source speed that can be selected. As the recommended range of permissible A/D clock period, t_{ADCK}, is from 0.5µs to 10µs, care must be taken for system clock frequencies. For example, as the system clock operates at a frequency of 8MHz, the SACKS2~SACKS0 bits should not be set to 000, 001 or 111. Doing so will give A/D clock periods that are less than the minimum or larger than the maximum A/D clock period which may result in inaccurate A/D conversion values. Refer to the following table for examples, where values marked with an asterisk * show where, depending upon the device, special care must be taken, as the values may be exceeding than the specified minimum A/D Clock Period. However, the recommended A/D clock period is from 1µs to 2µs if the input signal to be converted is the temperature sensor output voltage, care must be taken for system clock frequencies. For examples, the system clock operates at a frequency of 12MHz, the SACKS2~SACKS0 bits should be set to 100, where values marked with an asterisk # in the A/D Clock Period Examples table. | | | | | A/D Clock P | Period (tadck) | | | | |------------------|---|---|---|---|--|--|--|----------------------------------| | f _{sys} | SACKS[2:0]
=000
(f _{SYS}) | SACKS[2:0]
=001
(f _{SYS} /2) | SACKS[2:0]
=010
(f _{SYS} /4) | SACKS[2:0]
=011
(f _{sys} /8) | SACKS[2:0]
=100
(f _{sys} /16) | SACKS[2:0]
=101
(f _{SYS} /32) | SACKS[2:0]
=110
(f _{SYS} /64) | SACKS[2:0]
=111
(fsys/128) | | 1MHz | 1µs | 2µs | 4µs | 8µs | 16µs * | 32µs * | 64µs * | 128µs * | | 2MHz | 500ns | 1µs | 2µs | 4µs | 8µs | 16µs * | 32µs * | 64µs * | | 4MHz | 250ns * | 500ns | 1µs | 2µs | 4µs | 8µs | 16µs * | 32µs * | | 8MHz | 125ns * | 250ns * | 500ns | 1µs | 2µs | 4µs | 8µs | 16µs * | | 12MHz | 83ns* | 167ns* | 333ns* | 667ns | 1.33µs# | 2.67µs | 5.33µs | 10.67µs* | ## A/D Clock Period Examples Controlling the power on/off function of the A/D Converter circuitry is implemented using the ADCEN bit in the SADC0 register. This bit must be set high to power on the A/D Converter. When the ADCEN bit is set high to power on the A/D Converter internal circuitry a certain delay, as indicated in the timing diagram, must be allowed before an A/D conversion is initiated. Even if no pins are selected for use as A/D inputs, if the ADCEN bit is high, then some power will still be consumed. In power conscious applications it is therefore recommended that the ADCEN is set low to reduce power consumption when the A/D Converter function is not being used. Rev. 1.20 114 November 19, 2019 ### A/D Converter Reference Voltage The reference voltage supply to the A/D Converter can be supplied from the positive power supply pin, AVDD, or from an external reference source supplied on pin VREF determined by the SAVRS1~SAVRS0 bits in the SADC1 register. As the VREF pin is pin-shared with other functions, when the VREF pin is selected as the reference voltage supply pin, the VREF pin corresponding pin-shared function control bit should first be properly configured to enable the VREF pin function then the other pin functions will be disabled automatically. However, if the AV_{DD} is selected as the reference voltage, the VREF pin must not be configured as the reference voltage input function to avoid that the internal reference voltage source is connected to the external VREF voltage. The analog input values must not be allowed to exceed the value of the selected A/D reference voltage. ### A/D Converter Input Signals All the external A/D analog channel input pins are pin-shared with the I/O pins as well as other functions. The corresponding control bits for each A/D external input pin in the PxS0 and PxS1 register determine whether the input pins are setup as A/D Converter analog inputs or whether they have other functions. If the pin is setup to be as an A/D analog channel input, the original pin functions will be disabled. In this way, pins can be changed under program control to change their function between A/D inputs and other functions. All pull high resistors, which are setup through register programming, will be automatically disconnected if the pins are setup as A/D inputs. Note that it is not necessary to first setup the A/D pin as an input in the port control register to enable the A/D input as when the pin-shared function control bits enable an A/D input, the status of the port control register will be overridden. If the external channel input is selected to be converted, the SAINS2~SAINS0 bits should be set to "000" and the SACS3~SACS0 bits can determine which external channel is selected. If the internal analog signal is selected to be converted, the SACS3~SACS0 bits must be configured with a value from 1000 to 1111 to switch off the external analog channel input. Otherwise, the internal analog signal will be connected together with the external channel input. This will result in unpredictable situations. | SAINS[2:0] | SACS[3:0] | Input Signals | Description | |---------------|-----------------|---------------|--| | 000, 101, 110 | 0001~0111 | AN1~AN7 | External pin analog input | | 000, 101, 110 | 0000, 1000~1111 | _ | Non-existed channel, input is floating | | 010 | 0000, 1000~1111 | _ | Reserved, forbidden to be used | | 001, 011, 100 | 0000, 1000~1111 | _ | Reserved, connected to ground | A/D Converter Input Signal Selection ## **Conversion Rate and Timing Diagram** A complete A/D conversion contains two parts, data sampling and data conversion. The data sampling which is defined as t_{ADS} takes 4 A/D clock cycles and the data conversion takes 12 A/D clock cycles. Therefore a total of 16 A/D clock cycles for an external input A/D conversion which is defined as t_{ADC} are necessary. Maximum single A/D conversion rate=A/D clock period/16 (External channel input signal) The accompanying diagram shows graphically the various stages involved in an analog to digital conversion process and its associated timing. After an A/D conversion process has been initiated by the application program, the microcontroller internal hardware will begin to carry out the conversion, during which time the program can continue with other functions. The time taken for the A/D conversion is 16 tadded color cycles where tadded is equal to the A/D clock period. Rev. 1.20 115 November 19, 2019 A/D Conversion Timing - External Channel Input ## Summary of A/D Conversion Steps The following summarises the individual steps that should be executed in order to implement an A/D conversion process. - Step 1 Select the required A/D conversion clock by correctly programming bits SACKS2~SACKS0 in the SADC1 register. - Step 2 Enable the A/D by setting the ADCEN bit in the SADC0 register to one. - Step 3 Select which signal is to be connected to the internal A/D Converter by correctly configuring the SAINS2~SAINS0
bits Select the external channel input to be converted, go to Step 4. Select the internal analog signal to be converted, go to Step 5. - Step 4 - If the A/D input signal comes from the external channel input selecting by configuring the SAINS bit field, the corresponding pins should be configured as A/D input function by configuring the relevant pin-shared function control bits. The desired analog channel then should be selected by configuring the SACS bit field. After this step, go to Step 6. - Step 5 Before the A/D input signal is selected to come from the internal analog signal by configuring the SAINS bit field, the corresponding external input pin must be switched to a non-existed channel input by setting the SACS3~SACS0 bits with a value from 0000, 1000 to 1111. The desired internal analog signal then can be selected by configuring the SAINS bit field. After this step, go to Step 6. - Step 6 Select the reference voltage source by configuring the SAVRS1~SAVRS0 bits in the SADC1 register. - Step 7 Select A/D Converter output data format by setting the ADRFS bit in the SADC0 register. - If A/D conversion interrupt is used, the interrupt control registers must be correctly configured to ensure the A/D interrupt function is active. The master interrupt control bit, EMI, and the A/D conversion interrupt control bit, ADE, must both be set high in advance. Rev. 1.20 116 November 19, 2019 - Step 9 The A/D conversion procedure can now be initialized by setting the START bit from low to high and then low again. - Step 10 If A/D conversion is in progress, the ADBZ flag will be set high. After the A/D conversion process is complete, the ADBZ flag will go low and then the output data can be read from SADOH and SADOL registers. Note: When checking for the end of the conversion process, if the method of polling the ADBZ bit in the SADC0 register is used, the interrupt enable step above can be omitted. ### **Programming Considerations** During microcontroller operations where the A/D Converter is not being used, the A/D internal circuitry can be switched off to reduce power consumption, by clearing bit ADCEN to 0 in the SADC0 register. When this happens, the internal A/D Converter circuits will not consume power irrespective of what analog voltage is applied to their input lines. If the A/D Converter input lines are used as normal I/Os, then care must be taken as if the input voltage is not at a valid logic level, then this may lead to some increase in power consumption. ### A/D Conversion Function As these devices contain a 12-bit A/D Converter, its full-scale converted digitised value is equal to FFFH. Since the full-scale analog input value is equal to the actual A/D Converter reference voltage, V_{REF} , this gives a single bit analog input value of V_{REF} divided by 4096. $$1 LSB=V_{REF} \div 4096$$ The A/D Converter input voltage value can be calculated using the following equation: A/D input voltage=A/D output digital value×($$V_{REF} \div 4096$$) The diagram shows the ideal transfer function between the analog input value and the digitised output value for the A/D Converter. Except for the digitised zero value, the subsequent digitised values will change at a point 0.5 LSB below where they would change without the offset, and the last full scale digitised value will change at a point 1.5 LSB below the V_{REF} level. Note that here the V_{REF} voltage is the actual A/D Converter reference voltage determined by the SAVRS field. Ideal A/D Transfer Function Rev. 1.20 117 November 19, 2019 ### A/D Conversion Programming Examples The following two programming examples illustrate how to setup and implement an A/D conversion. In the first example, the method of polling the ADBZ bit in the SADC0 register is used to detect when the conversion cycle is complete, whereas in the second example, the A/D interrupt is used to determine when the conversion is complete. #### Example: using an ADBZ polling method to detect the end of conversion ``` clr ADE ; disable ADC interrupt mov a,03H mov SADC1,a ; select f_{sys}/8 as A/D clock set ADCEN mov a,0Ch ; setup PBS0 to configure pin AN1 mov PBS0,a mov a,21h mov SADCO, a ; enable and connect AN1 channel to A/D Converter start conversion: clr START ; high pulse on start bit to initiate conversion set START ; reset A/D clr START ; start A/D polling EOC: ; poll the SADCO register ADBZ bit to detect end of A/D conversion sz ADBZ jmp polling_EOC ; continue polling mov a,SADOL ; read low byte conversion result value mov SADOL_buffer,a ; save result to user defined register ; read high byte conversion result value mov a, SADOH mov SADOH buffer,a ; save result to user defined register jmp start conversion ; start next A/D conversion ``` #### Example: using the interrupt method to detect the end of conversion ``` clr ADE ; disable ADC interrupt mov a,03H mov SADC1,a ; select f_{SYS}/8 as A/D clock set ADCEN mov a,0Ch ; setup PBSO to configure pin AN1 mov PBS0,a mov a,21h mov SADCO, a ; enable and connect AN1 channel to A/D Converter Start conversion: clr START ; high pulse on START bit to initiate conversion set START ; reset A/D clr START ; start A/D clr ADF ; clear ADC interrupt request flag ; enable ADC interrupt set ADE set EMI ; enable global interrupt ; ADC interrupt service routine ADC ISR: mov acc stack, a ; save ACC to user defined memory mov a, STATUS mov status stack,a ; save STATUS to user defined memory : : ``` Rev. 1.20 118 November 19, 2019 ``` a,SADOL ; read low byte conversion result value mov mov SADOL buffer, a ; save result to user defined register mov a, SADOH ; read high byte conversion result value mov SADOH buffer,a ; save result to user defined register EXIT INT ISR: mov a, status stack mov STATUS, a ; restore STATUS from user defined memory ; restore ACC from user defined memory a,acc stack mov reti ``` # **Electronic Paper Display – EPD** This device contains an electronic paper display (EPD) driver function, which has the advantage of good readability. With its high black and white colour contrast and reusable features, it is suitable for use in applications such as electronic shelf labels, smart cards and consumer electronics. The EPD driver consists of 64 Segments and 2 Background/Common selectable outputs. Note: The EPD driver clock source is provided by the internal clock, CLKin, which is supplied by the HIRC oscillator with the output frequency of 4MHz. **EPD Block Diagram** Rev. 1.20 119 November 19, 2019 # **EPD Driver Voltage** The EPD driver has a three level driving voltage to match the EPD characteristic. The driving voltage is generated by charge pump circuit. Note that it is necessary to first setup the VBGREN bit in the SADC2 register to enable the independent reference bandgap when the EPD Charge pump is enabled, the reference voltage, V_{BG} , will be provided to charge pump. The charge pump switching frequency is from HIRC of 4MHz, the rising time is about 40ms at V_{DD} =3V for charge pump to start-up. The V_{DHO}/V_{DLO} Charge Stage Definition ### **EPD Driver Power Supply Sequence** If the V_{DH} and V_{DL} power is supplied from external power, it is strongly recommended to follow the Holtek power supply sequence requirement. If the power supply sequence requirement is not followed, it may result in malfunction. ### **Holtek Power Supply Sequence Requirement:** 1. Power-on sequence: Turn on the power of V_{DD} and AV_{DD} first and then turn on the power of V_{DH} and $V_{\text{DL}}.$ 2. Power-off sequence: Turn off the power of V_{DH} and V_{DL} first and then turn off the power of V_{DD} and AV_{DD} . Rev. 1.20 November 19, 2019 # **EPD Driver Data Display** The device provides an area of embedded data for the EPD display. These data registers are located from 00H to 11H in Sector 3. The EPD display data contains two area to store new_data and previous_data. User can used EEPROM to backup previous_data display data. The PEPD0~PEPD7 and PEPDBG registers are used to store previous display data, while the NEPD0~NEPD7 and NEPDBG registers are used to store new display data. After display refresh, user can set NMP bit="1", move new_data to previous data registers from NEPD0~NEPD7 and NEPDBG data registers for next display refresh. Note that user must write the full data to registers at once, if write less the register bytes, the contents of the previous_data register will be incorrect. In this case, the outcome will be that the result of the data comparison between the new_data register and the previous_data register will be incorrect. ### **EPD Driver Registers** The overall EPD driver function is controlled using a series of registers. Three control registers exist to setup the operating and control function of the EPD Driver. A VDH_LV register exists to select the V_{DH} level voltage, while VDL_LV register exists to select the V_{DL} level voltage. The PEPD0~PEPD7 and PEPDBG registers are used to store previous display data, while the NEPD0~NEPD7 and NEPDBG registers are used to store new display data. In addition, LUT Registers are control the EPD output waveform. | Register | | | | | Bit | | | | |----------|-------|---------|---------|---------|---------|---------|---------|---------| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | EPDC0 | EPDEN | _ | _ | _ | _ | EPDBUSY | DRF | NMP | | EPDC1 | _ | CPEN | VDLH_EN | DDX | CPC1 | CPC0 | SGM_FL | VCOM_FL | | EPDC2 | CBS3 | CBS2 | CBS1 | CBS0 | _ | P2 | P1 | P0 | | VDH_LV | _ | VDH_LV6 | VDH_LV5 | VDH_LV4 | VDH_LV3 | VDH_LV2 | VDH_LV1 | VDH_LV0 | | VDL_LV | _ | VDL_LV6 | VDL_LV5 | VDL_LV4 | VDL_LV3 | VDL_LV2 | VDL_LV1 | VDL_LV0 | | PEPD0 | PS0 | PS1 | PS2 | PS3 | PS4 | PS5 | PS6 | PS7 | | PEPD1 | PS8 | PS9 | PS10 | PS11 | PS12 | PS13 | PS14 | PS15 | | : | : | : | : | : | : | : | : | : | | PEPD7 | PS56 | PS57 | PS58 | PS59 | PS60 | PS61 | PS62 | PS63 | | PEPDBG | PBG | _ | _ | _ | _ | _ | _ | _ | |
NEPD0 | NS0 | NS1 | NS2 | NS3 | NS4 | NS5 | NS6 | NS7 | | NEPD1 | NS8 | NS9 | NS10 | NS11 | NS12 | NS13 | NS14 | NS15 | | : | : | : | : | : | : | : | : | : | | NEPD7 | NS56 | NS57 | NS58 | NS59 | NS60 | NS61 | NS62 | NS63 | | NEPDBG | NBG | _ | _ | _ | _ | _ | _ | _ | **EPD Function Register List** Rev. 1.20 121 November 19, 2019 #### EPDC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|---|---|---|---|---------|-----|-----| | Name | EPDEN | _ | _ | _ | _ | EPDBUSY | DRF | NMP | | R/W | R/W | _ | _ | _ | _ | R | R/W | R/W | | POR | 0 | _ | _ | _ | _ | 0 | 0 | 0 | Bit 7 **EPDEN**: EPD driver enable control 0: Disable 1: Enable Before set the EPDEN bit to high, the program must be set the VBGREN bit first and waiting for $V_{\rm BG}$ output voltage stability. Bit 6~3 Unimplemented, read as "0" Bit 2 **EPDBUSY**: EPD busy flag 0: EPD idle 1: EPD busy This read only flag is used to indicate whether the EPD is busy or not. When the EPDEN bit is set high and the charge pump circuit is enabled, the EPDBUSY flag will be set high from low to indicate that the EPD is busy. The EPD can be refreshed data by setting the DRF bit to high, the EPDBUSY flag will be cleared to zero. The EPDBUSY flag will be set high again after the EPD data refresh complete. Bit 1 **DRF**: Display refresh control 0: Disable or refresh finished 1: Enable refresh and in progress If DRF bit is set high, EPD driver will refresh display according to the new_data registers, previous_data registers and LUT registers. After completing display fresh , the DRF bit will be cleared to zero automatically. Detecting when the display refresh has finished can be implemented by polling the DRF=0. The display refresh take hundreds ms to a few seconds time interval, the data registers cannot be charged when display refreshing to avoid display abnormal. Note that this bit cannot be cleared to zero by application programs. Bit 0 NMP: Move the new data from new data registers to previous_data registers 0: Disable or move finished 1: Enable move function and in progress The EPD driver supports data comparison, the EPD driving output waveform is generated by the corresponding LUT based on the DDX bit setting and the result of the new_data registers and the previous_data registers comparison. If NMP is set high, EPD driver will move new_data from new_data register to previous_data registers automatically for data comparison function. After finishing moving, NMP will be cleared to zero automatically. Note that this bit cannot be cleared to zero by application programs. The data moving must exist a delay time, detecting whether the data moving has finished can be implemented by polling the NMP=0. # • EPDC1 register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|------|---------|-----|------|------|--------|---------| | Name | _ | CPEN | VDLH_EN | DDX | CPC1 | CPC0 | SGM_FL | VCOM_FL | | R/W | _ | R/W | POR | _ | 1 | 1 | 1 | 0 | 0 | 1 | 1 | Bit 7 Unimplemented, read as "0" Bit 6 **CPEN**: Charge Pump enable control 0: Disable 1: Enable (default) Rev. 1.20 122 November 19, 2019 Bit 5 **VDLH_EN**: V_{DLI}/V_{DHI} source select 0: From VDLI/VDHI pin (VDLO/VDHO is in a floating state, external power supply) 1: Internal charge pump output VDLO/VDHO (default) Note: If EPD power source selected from internal charge pump output, the VDLI/VDHI pins must connect to VDLO/VDHO pins. Bit 4 **DDX**: Data index control 0: "0: white, 1: black/red" 1: "0: black/red, 1: white" (default) The white and black/red mean that the electronic paper color is white, black or red. The paper color selection depends on the setting of DDX bit. In addition, the black/red paper color which is select to display depends upon the condition of the V_{DH} and V_{DL} voltages. Bit 3~2 CPC1~CPC0: Charge pump clock source select 00: 4MHz (default) 01: 4MHz/2 10: 4MHz/4 11: 4MHz/8 The Charge pump clock source is supplied by the HIRC oscillator with the output frequency of 4MHz and then passes through a divider, the division ratio of which is selected by programming the CPC1~CPC0 bits. Before seting the EPDEN bit high, the program must be set the CPC1~CPC0 bits first. Bit 1 SGM_FL: Segment and BG level selection when EPD driver is enabled 0: Floating 1: Ground (default) Note: When EPD driver is disabled, the Segment and BG pins level is ground. Bit 0 VCOM_FL: COM level selection when EPD driver is enabled 0: Floating 1: Ground (default) Note: When EPD driver is disabled, the COM pin level is ground. ### • EPDC2 register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|------|------|---|-----|-----|-----| | Name | _ | _ | CBS1 | CBS0 | _ | P2 | P1 | P0 | | R/W | _ | _ | R/W | R/W | _ | R/W | R/W | R/W | | POR | _ | _ | 1 | 0 | _ | 0 | 1 | 1 | Bit 7~6 Unimplemented, read as "0" Bit 5 CBS1: COMBG1 pin output selection 0: COMBG1 pin is set as COM pin 1: COMBG1 pin is set as BG pin Bit 4 **CBS0**: COMBG0 pin output selection 0: COMBG0 pin is set as COM pin1: COMBG0 pin is set as BG pin Bit 3 Unimplemented, read as "0" Bit $2\sim 0$ **P2\simP0**: The frame rate control 000: 10Hz 001: 20Hz 010: 40Hz 011: 50Hz (default) 100: 57Hz 101: 67Hz 110: 80Hz 111: 100Hz # • VDH_LV register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---------|---------|---------|---------|---------|---------|---------| | Name | _ | VDH_LV6 | VDH_LV5 | VDH_LV4 | VDH_LV3 | VDH_LV2 | VDH_LV1 | VDH_LV0 | | R/W | _ | R/W | POR | _ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Bit 7 Unimplemented, read as "0" Bit 6~0 VDH_LV6~VDH_LV0: V_{DH} level voltage selection | VDH_LV[6:0] | V _{DH} | VDH_LV[6:0] | V _{DH} | VDH_LV[6:0] | V _{DH} | |-------------|-----------------|-------------|------------------------|-------------|------------------------| | 0000000 | 5.00 | 0011000 | 7.40 | 0110000 | 9.80 | | 0000001 | 5.10 | 0011001 | 7.50 | 0110001 | 9.90 | | 0000010 | 5.20 | 0011010 | 7.60 | 0110010 | 10.00 | | 0000011 | 5.30 | 0011011 | 7.70 | 0110011 | 10.10 | | 0000100 | 5.40 | 0011100 | 7.80 | 0110100 | 10.20 | | 0000101 | 5.50 | 0011101 | 7.90 | 0110101 | 10.30 | | 0000110 | 5.60 | 0011110 | 8.00 | 0110110 | 10.40 | | 0000111 | 5.70 | 0011111 | 8.10 | 0110111 | 10.50 | | 0001000 | 5.80 | 0100000 | 8.20 | 0111000 | 10.60 | | 0001001 | 5.90 | 0100001 | 8.30 | 0111001 | 10.70 | | 0001010 | 6.00 | 0100010 | 0100010 8.40 0111010 | | 10.80 | | 0001011 | 6.10 | 0100011 | 8.50 | 0111011 | 10.90 | | 0001100 | 6.20 | 0100100 | 8.60 | 0111100 | 11.00 | | 0001101 | 6.30 | 0100101 | 8.70 | 0111101 | 11.10 | | 0001110 | 6.40 | 0100110 | 8.80 | 0111110 | 11.20 | | 0001111 | 6.50 | 0100111 | 8.90 | 0111111 | 11.30 | | 0010000 | 6.60 | 0101000 | 9.00 | 1000000 | 11.40 | | 0010001 | 6.70 | 0101001 | 9.10 | 1000001 | 11.50 | | 0010010 | 6.80 | 0101010 | 9.20 | 1000010 | 11.60 | | 0010011 | 6.90 | 0101011 | 9.30 | 1000011 | 11.70 | | 0010100 | 7.00 | 0101100 | 9.40 | 1000100 | 11.80 | | 0010101 | 7.10 | 0101101 | 9.50 | 1000101 | 11.90 | | 0010110 | 7.20 | 0101110 | 9.60 1000110 | | 12.00 | | 0010111 | 7.30 | 0101111 | 9.70 | others | 12.00 | These bits default value is 11111111B, the V_{DHO} output voltage is equal to 12V. Rev. 1.20 124 November 19, 2019 ## VDL_LV register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---------|---------|---------|---------|---------|---------|---------| | Name | _ | VDL_LV6 | VDL_LV5 | VDL_LV4 | VDL_LV3 | VDL_LV2 | VDL_LV1 | VDL_LV0 | | R/W | _ | R/W | POR | _ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Bit 7 Unimplemented, read as "0" Bit 6~0 VDL_LV6~VDL_LV0: V_{DH} level voltage selection | VDL_LV[6:0] | V _{DL} | VDL_LV[6:0] | V _{DL} | VDL_LV[6:0] | V _{DL} | |-------------|------------------------|-------------|------------------------|-------------|------------------------| | 0000000 | 2.50 | 0011000 | 3.70 | 0110000 | 4.90 | | 0000001 | 2.55 | 0011001 | 3.75 | 0110001 | 4.95 | | 0000010 | 2.60 | 0011010 | 3.80 | 0110010 | 5.00 | | 0000011 | 2.65 | 0011011 | 3.85 | 0110011 | 5.05 | | 0000100 | 2.70 | 0011100 | 3.90 | 0110100 | 5.10 | | 0000101 | 2.75 | 0011101 | 3.95 | 0110101 | 5.15 | | 0000110 | 2.80 | 0011110 | 4.00 | 0110110 | 5.20 | | 0000111 | 2.85 | 0011111 | 4.05 | 0110111 | 5.25 | | 0001000 | 2.90 | 0100000 | 4.10 | 0111000 | 5.30 | | 0001001 | 2.95 | 0100001 | 4.15 | 0111001 | 5.35 | | 0001010 | 3.00 | 0100010 | 4.20 | 0111010 | 5.40 | | 0001011 | 3.05 | 0100011 | 4.25 | 0111011 | 5.45 | | 0001100 | 3.10 | 0100100 | 4.30 | 0111100 | 5.50 | | 0001101 | 3.15 | 0100101 | 4.35 | 0111101 | 5.55 | | 0001110 | 3.20 | 0100110 | 4.40 | 0111110 | 5.60 | | 0001111 | 3.25 | 0100111 | 4.45 | 0111111 | 5.65 | | 0010000 | 3.30 | 0101000 | 4.50 | 1000000 | 5.70 | | 0010001 | 3.35 | 0101001 | 4.55 | 1000001 | 5.75 | | 0010010 | 3.40 | 0101010 | 4.60 | 1000010 | 5.80 | | 0010011 | 3.45 | 0101011 | 4.65 | 1000011 | 5.85 | | 0010100 | 3.50 | 0101100 | 4.70 | 1000100 | 5.90 | | 0010101 | 3.55 | 0101101 | 4.75 | 1000101 | 5.95 | | 0010110 | 3.60 | 0101110 | 4.80 | 1000110 | 6.00 | | 0010111 | 3.65 | 0101111 | 4.85 | others | 6.00 | These bits default value is 1111111B, the V_{DLO} output voltage is equal to 6V. ## **LUT Registers** The LUT registers include V_{COM} LUT (LUTV) registers, BlackBlack LUT (LUT_KK) registers, BlackWhite LUT (LUT_KW) registers, WhiteBlack LUT (LUT_WK) registers and WhiteWhite LUT (LUT_WW) registers. They are used to generate EPD output waveform according to the results of data comparison and EPD characteristics. Rev. 1.20 125 November 19, 2019 The relationships among DDX bit, display data and the corresponding LUT are shown as the table. | DD | DDX=1 | | | | | | | | | |--------------------------|-----------------------|--|--|--|--|--|--|--|--| | Previous_data → New_data | The corresponding LUT | | | | | | | | | | 0 → 0 | LUT_KK | | | | | | | | | | 0 → 1 | LUT_KW | | | | | | | | | | 1 → 0 | LUT_WK | | | | | | | | | | 1 → 1 | LUT_WW | | | | | | | | | | DD | DDX=0 | | | | | | | | | |--------------------------|-----------------------|--|--|--
--|--|--|--|--| | Previous_data → New_data | The corresponding LUT | | | | | | | | | | 0 → 0 | LUT_WW | | | | | | | | | | 0 → 1 | LUT_WK | | | | | | | | | | 1 → 0 | LUT_KW | | | | | | | | | | 1 → 1 | LUT_KK | | | | | | | | | These registers only be written in when the EPD is busy. These registers cannot be charged when display freshing to avoid display abnormal. Each type LUT registers can store 5 groups of data, they are used to set the EPD driving voltage, frames number and repeat number for each group. | LUT | Register
Name | | | | E | Bit | | | | |------------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | | LVLn_V1 | LVLn_V11 | LVLn_V10 | FRMn_V15 | FRMn_V14 | FRMn_V13 | FRMn_V12 | FRMn_V11 | FRMn_V10 | | V _{сом} | LVLn_V2 | LVLn_V21 | LVLn_V20 | FRMn_V25 | FRMn_V24 | FRMn_V23 | FRMn_V22 | FRMn_V21 | FRMn_V20 | | | PHSn_V | PHSn_V7 | PHSn_V6 | PHSn_V5 | PHSn_V4 | PHSn_V3 | PHSn_V2 | PHSn_V1 | PHSn_V0 | | | LVLn_KK1 | LVLn_KK11 | LVLn_KK10 | FRMn_KK15 | FRMn_KK14 | FRMn_KK13 | FRMn_KK12 | FRMn_KK11 | FRMn_KK10 | | BlackBlack | LVLn_KK2 | LVLn_KK21 | LVLn_KK20 | FRMn_KK25 | FRMn_KK24 | FRMn_KK23 | FRMn_KK22 | FRMn_KK21 | FRMn_KK20 | | | PHSn_KK | PHSn_KK7 | PHSn_KK6 | PHSn_KK5 | PHSn_KK4 | PHSn_KK3 | PHSn_KK2 | PHSn_KK1 | PHSn_KK0 | | | LVLn_KW1 | LVLn_KW11 | LVLn_KW10 | FRMn_KW15 | FRMn_KW14 | FRMn_KW13 | FRMn_KW12 | FRMn_KW11 | FRMn_KW10 | | BlackWhite | LVLn_KW2 | LVLn_KW21 | LVLn_KW20 | FRMn_KW25 | FRMn_KW24 | FRMn_KW23 | FRMn_KW22 | FRMn_KW21 | FRMn_KW20 | | | PHSn_KW | PHSn_KW7 | PHSn_KW6 | PHSn_KW5 | PHSn_KW4 | PHSn_KW3 | PHSn_KW2 | PHSn_KW1 | PHSn_KW0 | | | LVLn_WK1 | LVLn_WK11 | LVLn_WK10 | FRMn_WK15 | FRMn_WK14 | FRMn_WK13 | FRMn_WK12 | FRMn_WK11 | FRMn_WK10 | | WhiteBlack | LVLn_WK2 | LVLn_WK21 | LVLn_WK20 | FRMn_WK25 | FRMn_WK24 | FRMn_WK23 | FRMn_WK22 | FRMn_WK21 | FRMn_WK20 | | | PHSn_WK | PHSn_WK7 | PHSn_WK6 | PHSn_WK5 | PHSn_WK4 | PHSn_WK3 | PHSn_WK2 | PHSn_WK1 | PHSn_WK0 | | | LVLn_WW1 | LVLn_WW11 | LVLn_WW10 | FRMn_WW15 | FRMn_WW14 | FRMn_WW13 | FRMn_WW12 | FRMn_WW11 | FRMn_WW10 | | WhiteWhite | LVLn_WW2 | LVLn_WW21 | LVLn_WW20 | FRMn_WW25 | FRMn_WW24 | FRMn_WW23 | FRMn_WW22 | FRMn_WW21 | FRMn_WW20 | | | PHSn_WW | PHSn_WW7 | PHSn_WW6 | PHSn_WW5 | PHSn_WW4 | PHSn_WW3 | PHSn_WW2 | PHSn_WW1 | PHSn_WW0 | EPD LUT Register List (n=0~4) # • LVLn_V1 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----------|----------|----------|----------|----------|----------|----------|----------| | Name | LVLn_V11 | LVLn_V10 | FRMn_V15 | FRMn_V14 | FRMn_V13 | FRMn_V12 | FRMn_V11 | FRMn_V10 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 LVLn_V11~LVLn_V10: V_{COM} LUT Phase n voltage Level 1 selection $\begin{array}{l} 00:\,V_{DL} \\ 01:\,V_{DH} \\ 10:\,0V \\ 11:\,Floating \end{array}$ Bit 5~0 FRMn_V15~FRMn_V10: V_{COM} LUT Phase n frame 1 number selection 000000: 0 000001: 1 : 111111: 63 Rev. 1.20 126 November 19, 2019 If FRMn_V1[5:0] and FRMn_V2[5:0] bits are both set to "000000", the Phase n and later phasess will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when FRM2_V1[5:0] and FRM2_V2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all V_{SS} level. ### LVLn_V2 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----------|----------|----------|----------|----------|----------|----------|----------| | Name | LVLn_V21 | LVLn_V20 | FRMn_V25 | FRMn_V24 | FRMn_V23 | FRMn_V22 | FRMn_V21 | FRMn_V20 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 LVLn_V21~LVLn_V20: V_{COM} LUT Phase n voltage Level 2 selection $\begin{array}{l} 00: \, V_{DL} \\ 01: \, V_{DH} \\ 10: \, 0V \\ 11: \, Floating \end{array}$ Bit 5~0 FRMn_V25~FRMn_V20: V_{COM} LUT Phase n frame 2 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_V1[5:0] and FRMn_V2[5:0] bits are both set to "000000", the Phase n and later phasess will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when FRM2_V1[5:0] and FRM2_V2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase 2~4 have no waveform output, these phases output are all $V_{\rm SS}$ level. #### • PHSn_V Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---------|---------|---------|---------|---------|---------|---------|---------| | Name | PHSn_V7 | PHSn_V6 | PHSn_V5 | PHSn_V4 | PHSn_V3 | PHSn_V2 | PHSn_V1 | PHSn_V0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 PHSn V7~PHSn V0: V_{COM} LUT Phase n repeats times selection 00000000: 0 00000001: 1 00000010: 2 00000011: 3 : 11111111: 255 If PHSn_V7~PHSn_V0 bits are set to "00000000", the Phase n and later phasess will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when PHS1_V7~PHS1_V0 bits are set to "00000000", the Phase 1 has repeat times of 0. The Phase 1~4 have no waveform output, these phases output are all V_{SS} level. When PHS2_V7 \sim PHS2_V0 bits are set to "00000000", the Phase 2 has repeat times of 0, The Phase 2 \sim 4 have no waveform output, these phases output are all V_{SS} level. Rev. 1.20 127 November 19, 2019 ### • LVLn_ KK1 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Name | LVLn_KK11 | LVLn_KK10 | FRMn_KK15 | FRMn_KK14 | FRMn_KK13 | FRMn_KK12 | FRMn_KK11 | FRMn_KK10 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 LVLn_KK11~LVLn_KK10: BlackBlack LUT Phase n voltage Level 1 selection 00: V_{DL} 01: V_{DH} 10: 0V 11: Floating Bit 5~0 FRMn KK15~FRMn KK10: BlackBlack LUT Phase n frame 1 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_KK1[5:0] and FRMn_KK2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all V_{SS} level even if those groups have setting values. For example, when FRM2_KK1[5:0] and FRM2_KK2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all V_{SS} level. ### • LVLn_KK2 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Name | LVLn_KK21 | LVLn_KK20 | FRMn_KK25 | FRMn_KK24 | FRMn_KK23 | FRMn_KK22 | FRMn_KK21 | FRMn_KK20 | | R/W | POR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Bit 7~6 LVLn_KK21~LVLn_KK20: BlackBlack LUT Phase n voltage Level 2 selection 00: V_{DL} 01: V_{DH} 10: 0V 11: Floating Bit 5~0 FRMn_KK25~FRMn_KK20: BlackBlack LUT Phase n frame 2 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_KK1[5:0] and FRMn_KK2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all V_{SS} level even if those groups have setting values. For example, when FRM2_KK1[5:0] and FRM2_KK2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all V_{SS} level. Rev. 1.20 128 November 19, 2019 ### • PHSn_KK Register (n=0~4) | Bit | 7 | 6 | 6 5 | | 3 | 2 | 1 | 0 | |------|----------|----------|----------|----------|----------|----------|----------|----------| | Name | PHSn_KK7 | PHSn_KK6 | PHSn_KK5 | PHSn_KK4 | PHSn_KK3 | PHSn_KK2 | PHSn_KK1 | PHSn_KK0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 PHSn_KK7~PHSn_KK0: BlackBlack LUT Phase n repeats times selection 00000000: 0 00000001: 1 00000010: 2 00000011: 3 : If PHSn_KK7~PHSn_KK0 bits are set to "00000000", the Phase n and later phases will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when PHS1_KK7~PHS1_KK0 bits are set to "00000000", the Phase 1 has repeat times of 0. The Phase 1~4 have no waveform output, these phases output are all $V_{\rm SS}$ level. When PHS2_KK7~PHS2_KK0 bits are set to "00000000", the Phase 2 has repeat times of 0, The Phase 2~4 have no waveform output, these phases output are all $V_{\rm SS}$ level. ### • LVLn KW1 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Name | LVLn_KW11 | LVLn_KW10 | FRMn_KW15 | FRMn_KW14 | FRMn_KW13 | FRMn_KW12 | FRMn_KW11 | FRMn_KW10 | | | R/W | | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Bit 7~6 LVLn_KW11~LVLn_KW10: BlackWhite LUT Phase n voltage Level 1 selection 00: V_{DL} 01: V_{DH} 10: 0V 11: Floating Bit 5~0 FRMn_KW15~FRMn_KW10: BlackWhite LUT Phase n frame 1 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_KW1[5:0] and FRMn_WW2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when FRM2_KW1[5:0] and FRM2_KW2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all V_{SS} level. Rev. 1.20 129 November 19, 2019 ### • LVLn_KW2 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Name | LVLn_KW21 | LVLn_KW20 | FRMn_KW25 | FRMn_KW24 | FRMn_KW23 | FRMn_KW22 | FRMn_KW21 | FRMn_KW20 | | R/W | POR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Bit 7~6 LVLn KW21~LVLn KW20: BlackWhite LUT Phase n voltage Level 2 selection $\begin{array}{l} 00: \, V_{DL} \\ 01: \, V_{DH} \\ 10: \, 0V \\ 11: \, Floating \end{array}$ Bit 5~0 FRMn_KW25~FRMn_KW20: BlackWhite LUT Phase n frame 2 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_KW1[5:0] and
FRMn_KW2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all V_{SS} level even if those groups have setting values. For example, when FRM2_KW1[5:0] and FRM2_KW2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all $V_{\rm SS}$ level. ### • PHSn_KW Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----------|----------|----------|----------|----------|----------|----------|----------| | Name | PHSn_KW7 | PHSn_KW6 | PHSn_KW5 | PHSn_KW4 | PHSn_KW3 | PHSn_KW2 | PHSn_KW1 | PHSn_KW0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 PHSn_KW7~PHSn_KW0: BlackWhite LUT Phase n repeats times selection 00000000: 0 00000001: 1 00000010: 2 00000011: 3 : 11111111: 255 If PHSn_KW7~PHSn_KW0 bits are set to "00000000", the Phase n and later phases will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when PHS1_KW7~PHS1_KW0 bits are set to "00000000", the Phase 1 has repeat times of 0. The Phase $1\sim4$ have no waveform output, these phases output are all V_{SS} level. When PHS2_KW7~PHS2_KW0 bits are set to "00000000", the Phase 2 has repeat times of 0, The Phase 2~4 have no waveform output, these phases output are all $V_{\rm SS}$ level. Rev. 1.20 130 November 19, 2019 ### • LVLn_WK1 Register (n=0~4) | Bit | 7 | 6 | 5 | 5 4 | | 2 | 1 | 0 | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Name | LVLn_WK11 | LVLn_WK10 | FRMn_WK15 | FRMn_WK14 | FRMn_WK13 | FRMn_WK12 | FRMn_WK11 | FRMn_WK10 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 LVLn_WK11~LVLn_WK10: WhiteBlack LUT Phase n voltage Level 1 selection $\begin{array}{l} 00: \, V_{DL} \\ 01: \, V_{DH} \\ 10: \, 0V \\ 11: \, Floating \end{array}$ Bit 5~0 FRMn_WK15~FRMn_WK10: WhiteBlack LUT Phase n frame 1 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_WK1[5:0] and FRMn_WK2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all V_{SS} level even if those groups have setting values. For example, when FRM2_WK1[5:0] and FRM2_WK2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all $V_{\rm SS}$ level. ## • LVLn_WK2 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Name | LVLn_WK21 | LVLn_WK20 | FRMn_WK25 | FRMn_WK24 | FRMn_WK23 | FRMn_WK22 | FRMn_WK21 | FRMn_WK20 | | R/W | POR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Bit 7~6 LVLn WK21~LVLn WK20: WhiteBlack LUT Phase n voltage Level 2 selection 00: V_{DL} 01: V_{DH} 10: 0V 11: Floating Bit 5~0 FRMn_WK25~FRMn_WK20: WhiteBlack LUT Phase n frame 2 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_WK1[5:0] and FRMn_WK2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all V_{SS} level even if those groups have setting values. For example, when FRM2_WK1[5:0] and FRM2_WK2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all V_{SS} level. Rev. 1.20 131 November 19, 2019 ### • PHSn_WK Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |------|----------|----------|----------|----------|----------|----------|----------|----------|--| | Name | PHSn_WK7 | PHSn_WK6 | PHSn_WK5 | PHSn_WK4 | PHSn_WK3 | PHSn_WK2 | PHSn_WK1 | PHSn_WK0 | | | R/W | | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Bit 7~0 PHSn_WK7~PHSn_WK0: WhiteBlack LUT Phase n repeats times selection 00000000: 0 00000001: 1 00000010: 2 00000011: 3 : 11111111: 255 If PHSn_WK7~PHSn_WK0 bits are set to "00000000", the Phase n and later phases will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when PHS1_WK7~PHS1_WK0 bits are set to "00000000", the Phase 1 has repeat times of 0. The Phase $1\sim4$ have no waveform output, these phases output are all V_{SS} level. When PHS2_WK7~PHS2_WK0 bits are set to "00000000", the Phase 2 has repeat times of 0, The Phase 2~4 have no waveform output, these phases output are all $V_{\rm SS}$ level. #### • LVLn WW1 Register (n=0~4) | Bit | 7 | 6 | 5 | 5 4 | | 2 | 1 | 0 | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Name | LVLn_WW11 | LVLn_WW10 | FRMn_WW15 | FRMn_WW14 | FRMn_WW13 | FRMn_WW12 | FRMn_WW11 | FRMn_WW10 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 LVLn_WW11~LVLn_WW10: WhiteWhite LUT Phase n voltage Level 1 selection 00: V_{DL} 01: V_{DH} 10: 0V 11: Floating Bit 5~0 FRMn_WW15~FRMn_WW10: WhiteWhite LUT Phase n frame 1 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_WW1[5:0] and FRMn_WW2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all V_{SS} level even if those groups have setting values. For example, when FRM2_WW1[5:0] and FRM2_WW2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase 2~4 have no waveform output, these phases output are all V_{SS} level. Rev. 1.20 November 19, 2019 ### • LVLn_WW2 Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Name | LVLn_WW21 | LVLn_WW20 | FRMn_WW25 | FRMn_WW24 | FRMn_WW23 | FRMn_WW22 | FRMn_WW21 | FRMn_WW20 | | R/W | POR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Bit 7~6 LVLn_WW21~LVLn_WW20: WhiteWhite LUT Phase n voltage Level 2 selection $\begin{array}{l} 00: \, V_{DL} \\ 01: \, V_{DH} \\ 10: \, 0V \\ 11: \, Floating \end{array}$ Bit 5~0 FRMn_WW25~FRMn_WW20: WhiteWhite LUT Phase n frame 2 number selection 000000: 0 000001: 1 : 111111: 63 If FRMn_WW1[5:0] and FRMn_WW2[5:0] bits are both set to "000000", the Phase n and later phases will have no waveform output, These phases output are all V_{SS} level even if those groups have setting values. For example, when FRM2_WW1[5:0] and FRM2_WW2[5:0] bits are both set to "000000", the Phase 2 frame number is 0. The Phase $2\sim4$ have no waveform output, these phases output are all $V_{\rm SS}$ level. ### • PHSn_WW Register (n=0~4) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----------|----------|----------|----------|----------|----------|----------|----------| | Name | PHSn_WW7 | PHSn_WW6 | PHSn_WW5 | PHSn_WW4 | PHSn_WW3 | PHSn_WW2 | PHSn_WW1 | PHSn_WW0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~0 PHSn_WW7~PHSn_WW0: WhiteWhite LUT Phase n repeats times selection 00000000: 0 00000001: 1 00000010: 2 00000011: 3 : If PHSn_WW7~PHSn_WW0 bits are set to "00000000", the Phase n and later phases will have no waveform output, These phases output are all $V_{\rm SS}$ level even if those groups have setting values. For example, when PHS1_WW7~PHS1_WW0 bits are set to "00000000", the Phase 1 has repeat times of 0. The Phase $1\sim4$ have no waveform output, these phases output are all V_{SS} level. When PHS2_WW7~PHS2_WW0 bits are set to "00000000", the Phase 2 has repeat times of 0, The Phase 2~4 have no waveform output, these phases output are all $V_{\rm SS}$ level. Rev. 1.20 133 November 19, 2019 ### **EPD Driver Voltage Source and Biasing** The EPD function power is sourced from external AVDD and EVSS pins and Common, Background and Segment pins are driving by internal charge pump output voltage. The charge pump used two external capacitor to pump voltage, the VDHO and VDLO pins output the pump voltage while the VDHI, VDLI pins input the voltage to Common, Background and Segment pins, which are used for driver electrical paper. The users can use the VDH_LV and VDL_LV registers to control VDHO, VDLO pins output voltage respectively. ## **EPD Driver Output Waveforms** The device provides the Look-Up Table (LUT) for EPD driver function to driving electronic paper. Users can use V_{COM} LUT (LUTV) registers, BlackBlack LUT (LUT_KK) registers, BlackWhite LUT (LUT_KW) registers, WhiteBlack LUT (LUT_WK) registers and WhiteWhite LUT (LUT_WW) registers to control Common, Background and Segment pins output. The following example shows the relationships between LUT registers setting and output waveform. | Look up Table | Phase 0 | | Р | Phase 1 | | Phase 2 | | Phase 3 | | | Phase 4 | | | | | |---------------|---------|-----|-----|---------|-----|---------|-----|---------|-----|-----|---------|-----|-----|-----|-----| | LUTV (COM) | 05h | 05h | 01h | 0Ah | 0Ah | 01h | 85h | 45h | 03h | 05h | 05h | 01h | 05h | 05h | 01h | | LUT_KK (SEG) | 05h | 05h | 01h | 8Ah | 0Ah | 01h | 45h | 85h | 03h | 05h | 05h | 01h | 45h | 45h | 01h | | LUT_KW (SEG) | 45h | 45h | 01h | 0Ah | 0Ah | 01h | 45h | 85h | 03h | 85h | 85h | 01h | 85h | 85h | 01h | | LUT_WK (SEG) | 85h | 85h | 01h | 8Ah | 0Ah | 01h | 45h | 85h | 03h | 45h | 45h | 01h | 45h | 45h | 01h | | LUT_WW (SEG) | 85h | 85h | 01h | 0Ah | 8Ah | 01h | 45h | 85h | 03h | 05h | 05h | 01h | 85h | 85h | 01h | According to the LUT registers setting, the output waveforms are shown as below. Rev. 1.20 134 November 19, 2019 Note: 1. T=1/f, the parameter is setting by P0~P2 bits in the EPDC2 register. 2. The Background the same to SEG waveform is controlled by LUT table. # Universal Serial Interface Module - USIM The device contains a Universal Serial Interface Module, which includes the four-line SPI interface, the two-line I²C interface and the two-line UART interface types, to allow an easy method of communication with external peripheral hardware. Having relatively simple communication protocols, these serial interface types allow the microcontroller to interface to external SPI, I²C or UART based hardware
such as sensors, Flash or EEPROM memory, etc. The USIM interface pins are pin-shared with other I/O pins therefore the USIM interface functional pins must first be selected using the corresponding pin-shared function selection bits. As all the interface types share the same pins and registers, the choice of whether the UART, SPI or I²C type is used is made using the UART mode selection bit, named UMD, and the SPI/I²C operating mode control bits, named SIM2~SIM0, in the SIMC0 register. These pull-high resistors of the USIM pin-shared I/O are selected using pull-high control registers when the USIM function is enabled and the corresponding pins are used as USIM input pins. #### SPI Interface This SPI interface function, which is part of the Universal Serial Interface Module, should not be confused with the other independent SPI function, which is described in another section of this datasheet. The SPI interface is often used to communicate with external peripheral devices such as sensors, Flash or EEPROM memory devices etc. Originally developed by Motorola, the four line SPI interface is a synchronous serial data interface that has a relatively simple communication protocol simplifying the programming requirements when communicating with external hardware devices. The communication is full duplex and operates as a slave/master type, where the device can be either master or slave. Although the SPI interface specification can control multiple slave devices from a single master, but the device provides only one \overline{SCS} pin. If the master needs to control multiple slave devices from a single master, the master can use I/O pin to select the slave devices. ### **SPI Interface Operation** The SPI interface is a full duplex synchronous serial data link. It is a four line interface with pin names SDI, SDO, SCK and \overline{SCS} . Pins SDI and SDO are the Serial Data Input and Serial Data Output lines, the SCK pin is the Serial Clock line and \overline{SCS} is the Slave Select line. As the SPI interface pins are pin-shared with normal I/O pins and with the I²C/UART function pins, the SPI interface pins must first be selected by configuring the pin-shared function selection bits and setting the correct bits in the SIMC0 and SIMC2 registers. Communication between devices connected to the SPI interface is carried out in a slave/master mode with all data transfer initiations being implemented by the master. The Master also controls the clock signal. As the device only contains a single \overline{SCS} pin only one slave device can be utilized. The \overline{SCS} pin is controlled by software, set CSEN bit to 1 to enable \overline{SCS} pin function, set CSEN bit to 0 the \overline{SCS} pin will be floating state. **SPI Master/Slave Connection** Rev. 1.20 136 November 19, 2019 The SPI function in the device offers the following features: - Full duplex synchronous data transfer - · Both Master and Slave modes - · LSB first or MSB first data transmission modes - · Transmission complete flag - · Rising or falling active clock edge The status of the SPI interface pins is determined by a number of factors such as whether the device is in the master or slave mode and upon the condition of certain control bits such as CSEN and SIMEN. ## **SPI Registers** There are three internal registers which control the overall operation of the SPI interface. These are the SIMD data register and two control registers, SIMC0 and SIMC2. Note that the SIMC2 and SIMD registers and their POR values are only available when the SPI mode is selected by properly configuring the UMD and SIM2~SIM0 bits in the SIMC0 register. | Register | | Bit | | | | | | | | | | | | | |----------|------|------|--------|------|---------|---------|-------|--------|--|--|--|--|--|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | SIMC0 | SIM2 | SIM1 | SIM0 | UMD | SIMDEB1 | SIMDEB0 | SIMEN | SIMICF | | | | | | | | SIMC2 | D7 | D6 | CKPOLB | CKEG | MLS | CSEN | WCOL | TRF | | | | | | | | SIMD | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | **SPI Register List** ## **SPI Data Register** The SIMD register is used to store the data being transmitted and received. The same register is used by both the SPI and I²C functions. Before the device writes data to the SPI bus, the actual data to be transmitted must be placed in the SIMD register. After the data is received from the SPI bus, the device can read it from the SIMD register. Any transmission or reception of data from the SPI bus must be made via the SIMD register. Rev. 1.20 137 November 19, 2019 ### SIMD Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | х | Х | Х | Х | х | Х | Х | Х | "x": unknown Bit 7~0 **D7~D0**: USIM SPI/I²C data register bit 7~bit 0 ### **SPI Control Registers** There are also two control registers for the SPI interface, SIMC0 and SIMC2. The SIMC0 register is used to control the enable/disable function and to set the data transmission clock frequency. The SIMC2 register is used for other control functions such as LSB/MSB selection, write collision flag etc. ### SIMC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|-----|---------|---------|-------|--------| | Name | SIM2 | SIM1 | SIM0 | UMD | SIMDEB1 | SIMDEB0 | SIMEN | SIMICF | | R/W | POR | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | Bit 7~5 SIM2~SIM0: USIM SPI/I²C Operating Mode Control 000: SPI master mode; SPI clock is $f_{\rm SYS}/4$ 001: SPI master mode; SPI clock is $f_{\rm SYS}/16$ 010: SPI master mode; SPI clock is $f_{\rm SYS}/64$ 011: SPI master mode; SPI clock is $f_{\rm SUB}$ 100: SPI master mode; SPI clock is CTM0 CCRP match frequency/2 101: SPI slave mode 110: I²C slave mode 111: Unused mode When the UMD bit is cleared to zero, these bits setup the SPI or I^2C operating mode of the USIM function. As well as selecting if the I^2C or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced from CTM0 and f_{SUB} . If the SPI Slave Mode is selected then the clock will be supplied by an external Master device. Bit 4 UMD: UART mode selection bit 0: SPI or I²C mode 1: UART mode This bit is used to select the UART mode. When this bit is cleared to zero, the actual SPI or I²C mode can be selected using the SIM2~SIM0 bits. Note that the UMD bit must be set low for SPI or I²C mode. Bit 3~2 **SIMDEB1~SIMDEB0**: I²C Debounce Time Selection These bits are only available when the USIM is configured to operate in the I²C mode. Refer to the I²C register section. Bit 1 SIMEN: USIM SPI/I²C Enable Control 0: Disable 1: Enable The bit is the overall on/off control for the USIM SPI/I²C interface. When the SIMEN bit is cleared to zero to disable the USIM SPI/I²C interface, the SDI, SDO, SCK and \overline{SCS} , or SDA and SCL lines will lose their SPI or I²C function and the USIM operating current will be reduced to a minimum value. When the bit is high the USIM SPI/I²C interface is enabled. If the USIM is configured to operate as an SPI interface via the UMD and SIM2~SIM0 bits, the contents of the SPI control registers will remain at the Rev. 1.20 138 November 19, 2019 previous settings when the SIMEN bit changes from low to high and should therefore be first initialised by the application program. If the USIM is configured to operate as an I²C interface via the UMD and SIM2~SIM0 bits and the SIMEN bit changes from low to high, the contents of the I²C control bits such as HTX and TXAK will remain at the previous settings and should therefore be first initialised by the application program while the relevant I²C flags such as HCF, HAAS, HBB, SRW and RXAK will be set to their default states. Bit 0 SIMICF: USIM SPI Incomplete Flag 0: USIM SPI incomplete condition is not occurred 1: USIM SPI incomplete condition is occurred This bit is only available when the USIM is configured to operate in an SPI slave mode. If the SPI operates in the slave mode with the SIMEN and CSEN bits both being set high but the \overline{SCS} line is pulled high by the external master device before the SPI data transfer is completely finished, the SIMICF bit will be set high together with the TRF bit. When this condition occurs, the corresponding interrupt will occur if the interrupt function is enabled. However, the TRF bit will not be set high if the SIMICF bit is set high by software application program. #### SIMC2 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|--------|------|-----|------|------|-----| | Name | D7 | D6 | CKPOLB | CKEG | MLS | CSEN | WCOL | TRF | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 **D7~D6**: Undefined bits These bits can be read or written by the application program. Bit 5 **CKPOLB**: SPI clock line base condition selection 0: The SCK line will be high when the clock is inactive 1: The SCK line will be low when the clock is inactive The CKPOLB bit determines the base condition of the clock line, if the bit is high, then the SCK line will be low when the clock is inactive. When the CKPOLB bit is low, then the SCK line will be high when the clock is inactive. Bit 4 CKEG: SPI SCK clock active edge type selection CKPOLB=0 0: SCK is high base level and data capture at SCK rising edge 1: SCK is high base level and data capture at SCK falling edge CKPOLB=1 0: SCK is low base level and data capture at SCK falling edge 1: SCK is low base level and data capture at SCK rising edge The CKEG and CKPOLB bits are used to setup the way that the clock signal outputs and inputs data on the SPI bus. These two bits must be configured before data transfer is executed otherwise an erroneous clock edge may be generated. The CKPOLB bit determines the base condition of the clock line, if the bit is high, then the SCK line will be low when the
clock is inactive. When the CKPOLB bit is low, then the SCK line will be high when the clock is inactive. The CKEG bit determines active clock edge type which depends upon the condition of CKPOLB bit. Bit 3 MLS: SPI data shift order 0: LSB first 1: MSB first This is the data shift select bit and is used to select how the data is transferred, either MSB or LSB first. Setting the bit high will select MSB first and low for LSB first. Rev. 1.20 139 November 19, 2019 Bit 2 CSEN: SPI SCS pin control 0: Disable 1: Enable The CSEN bit is used as an enable/disable for the \overline{SCS} pin. If this bit is low, then the \overline{SCS} pin will be disabled and placed into a floating condition. If the bit is high the \overline{SCS} pin will be enabled and used as a select pin. Bit 1 WCOL: SPI write collision flag 0: No collision1: Collision The WCOL flag is used to detect if a data collision has occurred. If this bit is high it means that data has been attempted to be written to the SIMD register during a data transfer operation. This writing operation will be ignored if data is being transferred. The bit can be cleared to zero by the application program. Bit 0 TRF: SPI Transmit/Receive complete flag 0: SPI data is being transferred 1: SPI data transmission is completed The TRF bit is the Transmit/Receive Complete flag and is set "1" automatically when an SPI data transmission is completed, but must set to "0" by the application program. It can be used to generate an interrupt. #### **SPI Communication** After the SPI interface is enabled by setting the SIMEN bit high, then in the Master Mode, when data is written to the SIMD register, transmission/reception will begin simultaneously. When the data transfer is completed, the TRF flag will be set high automatically, but must be cleared using the application program. In the Slave Mode, when the clock signal from the master has been received, any data in the SIMD register will be transmitted and any data on the SDI pin will be shifted into the SIMD register. The master should output an \overline{SCS} signal to enable the slave devices before a clock signal is provided. The slave data to be transferred should be well prepared at the appropriate moment relative to the SCK signal depending upon the configurations of the CKPOLB bit and CKEG bit. The accompanying timing diagram shows the relationship between the slave data and SCK signal for various configurations of the CKPOLB and CKEG bits. The SPI will continue to function in certain IDLE Modes if the clock source used by the SPI interface is still active. Rev. 1.20 140 November 19, 2019 Note: For SPI slave mode, if SIMEN=1 and CSEN=0, SPI is always enabled and ignores the \overline{SCS} level. SPI Slave Mode Timing - CKEG=1 Rev. 1.20 141 November 19, 2019 **SPI Transfer Control Flow Chart** ### SPI Bus Enable/Disable To enable the SPI bus, set CSEN=1 and \overline{SCS} =0, then wait for data to be written into the SIMD (TXRX buffer) register. For the Master Mode, after data has been written to the SIMD (TXRX buffer) register, then transmission or reception will start automatically. When all the data has been transferred, the TRF bit should be set. For the Slave Mode, when clock pulses are received on SCK, data in the TXRX buffer will be shifted out or data on SDI will be shifted in. When the SPI bus is disabled, SCK, SDI, SDO and SCS can become I/O pins or other pin-shared functions using the corresponding pin-shared control bits. ### **SPI Operation Steps** All communication is carried out using the 4-line interface for either Master or Slave Mode. The CSEN bit in the SIMC2 register controls the overall function of the SPI interface. Setting this bit high will enable the SPI interface by allowing the \overline{SCS} line to be active, which can then be used to control the SPI interface. If the CSEN bit is low, the SPI interface will be disabled and the \overline{SCS} line will be in a floating condition and can therefore not be used for control of the SPI interface. If the CSEN bit and the SIMEN bit in the SIMC0 are set high, this will place the SDI line in a Rev. 1.20 142 November 19, 2019 floating condition and the SDO line high. If in Master Mode the SCK line will be either high or low depending upon the clock polarity selection bit CKPOLB in the SIMC2 register. If in Slave Mode the SCK line will be in a floating condition. If the SIMEN bit is low, then the bus will be disabled and SCS, SDI, SDO and SCK will all become I/O pins or the other functions using the corresponding pin-shared control bits. In the Master Mode the Master will always generate the clock signal. The clock and data transmission will be initiated after data has been written into the SIMD register. In the Slave Mode, the clock signal will be received from an external master device for both data transmission and reception. The following sequences show the order to be followed for data transfer in both Master and Slave Mode. #### **Master Mode** • Step 1 Select the SPI Master mode and clock source using the UMD and SIM2~SIM0 bits in the SIMC0 control register. • Step 2 Setup the CSEN bit and setup the MLS bit to choose if the data is MSB or LSB first, this setting must be the same with the Slave devices. Step 3 Setup the SIMEN bit in the SIMC0 control register to enable the SPI interface. • Step 4 For write operations: write the data to the SIMD register, which will actually place the data into the TXRX buffer. Then use the SCK and \overline{SCS} lines to output the data. After this, go to step 5. For read operations: the data transferred in on the SDI line will be stored in the TXRX buffer until all the data has been received at which point it will be latched into the SIMD register. • Step 5 Check the WCOL bit if set high then a collision error has occurred so return to step 4. If equal to zero then go to the following step. • Step 6 Check the TRF bit or wait for a USIM SPI serial bus interrupt. Step 7 Read data from the SIMD register. • Step 8 Clear TRF. • Step 9 Go to step 4. ### Slave Mode • Step 1 Select the SPI Slave mode using the UMD and SIM2~SIM0 bits in the SIMC0 control register. • Step 2 Setup the CSEN bit and setup the MLS bit to choose if the data is MSB or LSB first, this setting must be the same with the Master devices. • Step 3 Setup the SIMEN bit in the SIMC0 control register to enable the SPI interface. Step 4 For write operations: write the data to the SIMD register, which will actually place the data into the TXRX buffer. Then wait for the master clock SCK and \overline{SCS} signal. After this, go to step 5. For read operations: the data transferred in on the SDI line will be stored in the TXRX buffer until all the data has been received at which point it will be latched into the SIMD register. - Step 5 Check the WCOL bit if set high then a collision error has occurred so return to step 4. If equal to zero then go to the following step. - Step 6 Check the TRF bit or wait for a USIM SPI serial bus interrupt. - Step 7 Read data from the SIMD register. - Step 8 Clear TRF. - Step 9 Go to step 4. ### **Error Detection** The WCOL bit in the SIMC2 register is provided to indicate errors during data transfer. The bit is set by the SPI serial Interface but must be cleared by the application program. This bit indicates that a data collision has occurred which happens if a write to the SIMD register takes place during a data transfer operation and will prevent the write operation from continuing. ### I²C Interface The I²C interface is used to communicate with external peripheral devices such as sensors, EEPROM memory etc. Originally developed by Philips, it is a two line low speed serial interface for synchronous serial data transfer. The advantage of only two lines for communication, relatively simple communication protocol and the ability to accommodate multiple devices on the same bus has made it an extremely popular interface type for many applications. I²C Master Slave Bus Connection ### I²C Interface Operation The I²C serial interface is a two line interface, a serial data line, SDA, and serial clock line, SCL. As many devices may be connected together on the same bus, their outputs are both open drain types. For this reason it is necessary that external pull-high resistors are connected to these outputs. Note that no chip select line exists, as each device on the I²C bus is identified by a unique address which will be transmitted and received on the I²C bus. When two devices communicate with each other on the bidirectional I²C bus, one is known as the master device and one as the slave device. Both master and slave can transmit and receive data, however, it is the master device that has overall control of the bus. For the device, which only operates in slave mode, there are two methods of transferring data on the I²C bus, the slave transmit mode and the slave receive mode. The pull-high control function pin-shared with SCL/SDA pin is still applicable even if I²C device is activated and the related internal pull-high register could be controlled by its corresponding pull-high control register. Rev. 1.20 144 November 19, 2019 I²C Block Diagram I²C Interface Operation The SIMDEB1 and SIMDEB0 bits determine the debounce time of the I²C interface. This uses the internal clock to in effect add a debounce time to the external clock to reduce the possibility of glitches on the clock line causing erroneous operation. The debounce time, if selected, can be chosen to be either 2 or 4 system clocks. To achieve the required I²C data transfer speed, there exists a relationship between the system clock, f_{SYS}, and the I²C debounce time. For either the I²C Standard or Fast mode operation, users must take care of the selected system clock frequency and the configured debounce time to match the criterion shown in the following table. | I ² C Debounce Time Selection | I ² C Standard Mode (100kHz) | I ² C Fast Mode (400kHz) |
--|---|-------------------------------------| | 2 system clock debounce | f _{SYS} > 4MHz | f _{SYS} > 10MHz | | 4 system clock debounce | f _{SYS} > 8MHz | f _{SYS} > 20MHz | I²C Minimum f_{SYS} Frequency Requirements Rev. 1.20 145 November 19, 2019 ### I²C Registers There are three control registers associated with the I²C bus, SIMC0, SIMC1 and SIMTOC, one address register SIMA and one data register, SIMD. Note that the SIMC1, SIMD, SIMA and SIMTOC registers and their POR values are only available when the I²C mode is selected by properly configuring the UMD and SIM2~SIM0 bits in the SIMC0 register. | Register | Bit | | | | | | | | | |----------|---------|--------|---------|---------|---------|---------|---------|---------|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | SIMC0 | SIM2 | SIM1 | SIM0 | UMD | SIMDEB1 | SIMDEB0 | SIMEN | SIMICF | | | SIMC1 | HCF | HAAS | HBB | HTX | TXAK | SRW | IAMWU | RXAK | | | SIMD | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | SIMA | SIMA6 | SIMA5 | SIMA4 | SIMA3 | SIMA2 | SIMA1 | SIMA0 | D0 | | | SIMTOC | SIMTOEN | SIMTOF | SIMTOS5 | SIMTOS4 | SIMTOS3 | SIMTOS2 | SIMTOS1 | SIMTOS0 | | I²C Register List #### I²C Data Register The SIMD register is used to store the data being transmitted and received. The same register is used by both the SPI and I²C functions. Before the device writes data to the I²C bus, the actual data to be transmitted must be placed in the SIMD register. After the data is received from the I²C bus, the device can read it from the SIMD register. Any transmission or reception of data from the I²C bus must be made via the SIMD register. #### SIMD Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | Х | Х | Х | Х | Х | Х | Х | х | "x": unknown Bit 7~0 **D7~D0**: USIM SPI/I²C data register bit 7~bit 0 #### I²C Address Register The SIMA register is also used by the SPI interface but has the name SIMC2. The SIMA register is the location where the 7-bit slave address of the slave device is stored. Bits $7\sim1$ of the SIMA register define the device slave address. Bit 0 is not defined. When a master device, which is connected to the I^2C bus, sends out an address, which matches the slave address in the SIMA register, the slave device will be selected. #### SIMA Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-----| | Name | SIMA6 | SIMA5 | SIMA4 | SIMA3 | SIMA2 | SIMA1 | SIMA0 | D0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~1 **SIMA6~SIMA0**: I²C slave address SIMA6~SIMA0 is the I²C slave address bit 6~bit 0. Bit 0 **D0**: Reserved bit, can be read or written Rev. 1.20 146 November 19, 2019 ### I²C Control Registers There are three control registers for the I²C interface, SIMC0, SIMC1 and SIMTOC. The SIMC0 register is used to control the enable/disable function and to set the data transmission clock frequency. The SIMC1 register contains the relevant flags which are used to indicate the I²C communication status. Another register, SIMTOC, is used to control the I²C time-out function and is described in the corresponding section. #### SIMC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|-----|---------|---------|-------|--------| | Name | SIM2 | SIM1 | SIM0 | UMD | SIMDEB1 | SIMDEB0 | SIMEN | SIMICF | | R/W | POR | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ### Bit 7~5 SIM2~SIM0: USIM SPI/I²C Operating Mode Control 000: SPI master mode; SPI clock is $f_{\rm SYS}/4$ 001: SPI master mode; SPI clock is $f_{\rm SYS}/16$ 010: SPI master mode; SPI clock is $f_{\rm SYS}/64$ 011: SPI master mode; SPI clock is f_{SUB} 100: SPI master mode; SPI clock is CTM0 CCRP match frequency/2 101: SPI slave mode 110: I²C slave mode 111: Unused mode When the UMD bit is cleared to zero, these bits setup the SPI or I²C operating mode of the USIM function. As well as selecting if the I²C or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced from CTM0 and f_{SUB}. If the SPI Slave Mode is selected then the clock will be supplied by an external Master device. ## Bit 4 UMD: UART mode selection bit 0: SPI or I²C mode 1: UART mode This bit is used to select the UART mode. When this bit is cleared to zero, the actual SPI or I²C mode can be selected using the SIM2~SIM0 bits. Note that the UMD bit must be set low for SPI or I²C mode. #### Bit 3~2 **SIMDEB1~SIMDEB0**: I²C Debounce Time Selection 00: Undefined 01: 2 system clock debounce 1x: 4 system clock debounce These bits are used to select the I²C debounce time when the USIM is configured as the I²C interface function by setting the UMD bit to "0" and SIM2~SIM0 bits to "110". #### Bit 1 SIMEN: USIM SPI/I²C Enable Control 0: Disable 1: Enable The bit is the overall on/off control for the USIM SPI/I²C interface. When the SIMEN bit is cleared to zero to disable the USIM SPI/I²C interface, the SDI, SDO, SCK and SCS, or SDA and SCL lines will lose their SPI or I²C function and the USIM operating current will be reduced to a minimum value. When the bit is high the USIM SPI/I²C interface is enabled. If the USIM is configured to operate as an SPI interface via the UMD and SIM2~SIM0 bits, the contents of the SPI control registers will remain at the previous settings when the SIMEN bit changes from low to high and should therefore be first initialised by the application program. If the USIM is configured to operate as an I²C interface via the UMD and SIM2~SIM0 bits and the SIMEN bit changes from low to high, the contents of the I²C control bits such as HTX and TXAK will remain at the previous settings and should therefore be first initialised by the application Rev. 1.20 147 November 19, 2019 program while the relevant I²C flags such as HCF, HAAS, HBB, SRW and RXAK will be set to their default states. Bit 0 SIMICF: USIM SPI Incomplete Flag This bit is only available when the USIM is configured to operate in an SPI slave mode. Refer to the SPI register section. #### SIMC1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|------|-----|-----|------|-----|-------|------| | Name | HCF | HAAS | HBB | HTX | TXAK | SRW | IAMWU | RXAK | | R/W | R | R | R | R/W | R/W | R | R/W | R | | POR | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Bit 7 HCF: I²C Bus data transfer completion flag 0: Data is being transferred 1: Completion of an 8-bit data transfer The HCF flag is the data transfer flag. This flag will be zero when data is being transferred. Upon completion of an 8-bit data transfer the flag will go high and an interrupt will be generated. Bit 6 HAAS: I²C Bus address match flag 0: Not address match 1: Address match The HAAS flag is the address match flag. This flag is used to determine if the slave device address is the same as the master transmit address. If the addresses match then this bit will be high, if there is no match then the flag will be low. Bit 5 **HBB**: I²C Bus busy flag 0: I2C Bus is not busy 1: I²C Bus is busy The HBB flag is the I²C busy flag. This flag will be "1" when the I²C bus is busy which will occur when a START signal is detected. The flag will be set to "0" when the bus is free which will occur when a STOP signal is detected. Bit 4 HTX: I²C slave device is transmitter or receiver selection 0: Slave device is the receiver 1: Slave device is the transmitter Bit 3 TXAK: I²C Bus transmit acknowledge flag 0: Slave send acknowledge flag 1: Slave do not send acknowledge flag The TXAK bit is the transmit acknowledge flag. After the slave device receipt of 8 bits of data, this bit will be transmitted to the bus on the 9th clock from the slave device. The slave device must always set TXAK bit to "0" before further data is received. Bit 2 SRW: I²C Slave Read/Write flag 0: Slave device should be in receive mode 1: Slave device should be in transmit mode The SRW flag is the I²C Slave Read/Write flag. This flag determines whether the master device wishes to transmit or receive data from the I²C bus. When the transmitted address and slave address is match, that is when the HAAS flag is set high, the slave device will check the SRW flag to determine whether it should be in transmit mode or receive mode. If the SRW flag is high, the master is requesting to read data from the bus, so the slave device should be in transmit mode. When the SRW flag is zero, the master will write data to the bus, therefore the slave device should be in receive mode to read this data. Rev. 1.20 148 November 19, 2019 Bit 1 IAMWU: I²C Address Match Wake-up control 0: Disable 1: Enable This bit should be set high to enable the I²C address match wake up from the SLEEP or IDLE Mode. If the IAMWU bit has been set before entering either the SLEEP or IDLE mode to enable the I²C address match wake up, then this bit must be cleared to zero by the application program after wake-up to ensure correction device operation. Bit 0 RXAK: I²C Bus Receive acknowledge flag 0: Slave receive acknowledge flag 1: Slave does not receive acknowledge flag The RXAK flag is the receiver acknowledge flag. When the RXAK flag is "0", it means that a acknowledge signal has been received at the 9th clock, after 8 bits of data have been transmitted. When the slave device in the transmit mode, the slave device checks the RXAK flag to determine if the master receiver wishes to receive the next byte. The slave transmitter will therefore continue sending out data until the RXAK flag is "1". When this occurs, the slave transmitter will release the SDA line to allow the master to send a STOP signal to release the I²C Bus. #### I²C Bus Communication Communication on the I²C bus requires four separate steps, a START signal, a slave device address transmission, a data transmission and finally a
STOP signal. When a START signal is placed on the I²C bus, all devices on the bus will receive this signal and be notified of the imminent arrival of data on the bus. The first seven bits of the data will be the slave address with the first bit being the MSB. If the address of the slave device matches that of the transmitted address, the HAAS bit in the SIMC1 register will be set and an USIM interrupt will be generated. After entering the interrupt service routine, the slave device must first check the condition of the HAAS and SIMTOF bits to determine whether the interrupt source originates from an address match or from the completion of an 8-bit data transfer completion or from the I²C bus time-out occurrence. During a data transfer, note that after the 7-bit slave address has been transmitted, the following bit, which is the 8th bit, is the read/write bit whose value will be placed in the SRW bit. This bit will be checked by the slave device to determine whether to go into transmit or receive mode. Before any transfer of data to or from the I²C bus, the microcontroller must initialise the bus, the following are steps to achieve this: - Step 1 Set the UMD, SIM2~SIM0 and SIMEN bits in the SIMC0 register to "0", "110" and "1" respectively to enable the I²C bus. - Step 2 Write the slave address of the device to the I²C bus address register SIMA. - Step 3 Set the USIME interrupt enable bit of the interrupt control register to enable the USIM interrupt. Rev. 1.20 149 November 19, 2019 I²C Bus Initialisation Flow Chart ### I²C Bus Start Signal The START signal can only be generated by the master device connected to the I²C bus and not by the slave device. This START signal will be detected by all devices connected to the I²C bus. When detected, this indicates that the I²C bus is busy and therefore the HBB bit will be set. A START condition occurs when a high to low transition on the SDA line takes place when the SCL line remains high. #### I²C Slave Address The transmission of a START signal by the master will be detected by all devices on the I²C bus. To determine which slave device the master wishes to communicate with, the address of the slave device will be sent out immediately following the START signal. All slave devices, after receiving this 7-bit address data, will compare it with their own 7-bit slave address. If the address sent out by the master matches the internal address of the microcontroller slave device, then an internal USIM I²C bus interrupt signal will be generated. The next bit following the address, which is the 8th bit, defines the read/write status and will be saved to the SRW bit of the SIMC1 register. The slave device will then transmit an acknowledge bit, which is a low level, as the 9th bit. The slave device will also set the status flag HAAS when the addresses match. As a USIM I²C bus interrupt signal can come from three sources, when the program enters the interrupt subroutine, the HAAS and SIMTOF bits should be examined to see whether the interrupt source has come from a matching slave address or from the completion of a data byte transfer or from the I²C bus time-out occurrence. When a slave address is matched, the device must be placed in either the transmit mode and then write data to the SIMD register, or in the receive mode where it must implement a dummy read from the SIMD register to release the SCL line. #### I²C Bus Read/Write Signal The SRW bit in the SIMC1 register defines whether the master device wishes to read data from the I^2C bus or write data to the I^2C bus. The slave device should examine this bit to determine if it is to be a transmitter or a receiver. If the SRW flag is "1" then this indicates that the master device wishes to read data from the I^2C bus, therefore the slave device must be setup to send data to the I^2C bus as a transmitter. If the SRW flag is "0" then this indicates that the master wishes to send data to the I^2C bus, therefore the slave device must be setup to read data from the I^2C bus as a receiver. Rev. 1.20 150 November 19, 2019 ### I²C Bus Slave Address Acknowledge Signal After the master has transmitted a calling address, any slave device on the I²C bus, whose own internal address matches the calling address, must generate an acknowledge signal. The acknowledge signal will inform the master that a slave device has accepted its calling address. If no acknowledge signal is received by the master then a STOP signal must be transmitted by the master to end the communication. When the HAAS flag is high, the addresses have matched and the slave device must check the SRW flag to determine if it is to be a transmitter or a receiver. If the SRW flag is high, the slave device should be setup to be a transmitter so the HTX bit in the SIMC1 register should be set to "1". If the SRW flag is low, then the microcontroller slave device should be setup as a receiver and the HTX bit in the SIMC1 register should be set to "0". #### I²C Bus Data and Acknowledge Signal The transmitted data is 8-bit wide and is transmitted after the slave device has acknowledged receipt of its slave address. The order of serial bit transmission is the MSB first and the LSB last. After receipt of 8 bits of data, the receiver must transmit an acknowledge signal, level "0", before it can receive the next data byte. If the slave transmitter does not receive an acknowledge bit signal from the master receiver, then the slave transmitter will release the SDA line to allow the master to send a STOP signal to release the I²C Bus. The corresponding data will be stored in the SIMD register. If setup as a transmitter, the slave device must first write the data to be transmitted into the SIMD register. If setup as a receiver, the slave device must read the transmitted data from the SIMD register. When the slave receiver receives the data byte, it must generate an acknowledge bit, known as TXAK, on the 9th clock. The slave device, which is setup as a transmitter will check the RXAK bit in the SIMC1 register to determine if it is to send another data byte, if not then it will release the SDA line and await the receipt of a STOP signal from the master. I²C Communication Timing Diagram Note: When a slave address is matched, the device must be placed in either the transmit mode and then write data to the SIMD register, or in the receive mode where it must implement a dummy read from the SIMD register to release the SCL line. Rev. 1.20 151 November 19, 2019 I²C Bus ISR Flow Chart #### I²C Time-out Control In order to reduce the problem of I^2C lockup due to reception of erroneous clock sources, a time-out function is provided. If the clock source to the I^2C is not received for a while, then the I^2C circuitry and registers will be reset after a certain time-out period. The time-out counter starts counting on an I^2C bus "START" & "address match" condition, and is cleared by an SCL falling edge. Before the next SCL falling edge arrives, if the time elapsed is greater than the time-out setup by the SIMTOC register, then a time-out condition will occur. The time-out function will stop when an I^2C "STOP" condition occurs. Rev. 1.20 152 November 19, 2019 When an I²C time-out counter overflow occurs, the counter will stop and the SIMTOEN bit will be cleared to zero and the SIMTOF bit will be set high to indicate that a time-out condition has occurred. The time-out condition will also generate an interrupt which uses the USIM interrupt vector. When an I²C time-out occurs, the I²C internal circuitry will be reset and the registers will be reset into the following condition: | Registers | After I ² C Time-out | |-------------------|---------------------------------| | SIMD, SIMA, SIMC0 | No change | | SIMC1 | Reset to POR condition | I²C Registers after Time-out The SIMTOF flag can be cleared by the application program. There are 64 time-out periods which can be selected using SIMTOS bit field in the SIMTOC register. The time-out time is given by the formula: $((1\sim64)\times32)/f_{SUB}$. This gives a time-out period which ranges from about 1ms to 64ms. ### SIMTOC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---------|--------|---------|---------|---------|---------|---------|---------| | Name | SIMTOEN | SIMTOF | SIMTOS5 | SIMTOS4 | SIMTOS3 | SIMTOS2 | SIMTOS1 | SIMTOS0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 SIMTOEN: USIM I²C Time-out control 0: Disable 1: Enable Bit 6 SIMTOF: USIM I²C Time-out flag 0: No time-out occurred1: Time-out occurred This bit is set high when time-out occurs and can only be cleared to zero by application program. Bit 5~0 **SIMTOS5~SIMTOS0**: USIM I²C Time-out period selection I²C time-out clock source is f_{SUB}/32. I^2C time-out time is equal to (SIMTOS[5:0]+1)×(32/ f_{SUB}). Rev. 1.20 153 November 19, 2019 ### **UART Interface** The device contains an integrated full-duplex asynchronous serial communications UART interface that enables communication with external devices that contain a serial interface. The UART function has many features and can transmit and receive data serially by transferring a frame of data with eight or nine data bits per transmission as well as being able to detect errors when the data is overwritten or incorrectly framed. The UART function shares the same internal interrupt vector with the SPI and I²C interfaces which can be used to indicate when a reception occurs or when a transmission terminates. The integrated UART function contains the following features: - Full-duplex, asynchronous communication - 8 or 9 bits character length - · Even, odd or no parity options - · One or two stop bits - Baud rate generator with 8-bit prescaler - · Parity, framing, noise and overrun error detection - Support for interrupt on address detect (last character bit=1) - · Separately enabled transmitter and receiver - · 2-byte Deep FIFO Receive Data Buffer - RX pin wake-up function - · Transmit and receive
interrupts - Interrupts can be initialized by the following conditions: - Transmitter Empty - · Transmitter Idle - Receiver Full - · Receiver Overrun - Address Mode Detect **UART Data Transfer Block Diagram** ## **UART External Pins** To communicate with an external serial interface, the internal UART has two external pins known as TX and RX. The TX and RX pins are the UART transmitter and receiver pins respectively. The TX and RX pin function should first be selected by the corresponding pin-shared function selection register before the UART function is used. Along with the UMD bit, the UREN bit, the UTXEN and URXEN bits, if set, will setup these pins to their respective TX output and RX input conditions and disable any pull-high resistor option which may exist on the TX and RX pins. When the TX or RX Rev. 1.20 154 November 19, 2019 pin function is disabled by clearing the UMD, UREN, UTXEN or URXEN bit, the TX or RX pin will be set to a floating state. At this time whether the internal pull-high resistor is connected to the TX or RX pin or not is determined by the corresponding I/O pull-high function control bit. #### **UART Data Transfer Scheme** The above block diagram shows the overall data transfer structure arrangement for the UART. The actual data to be transmitted from the MCU is first transferred to the UTXR_RXR register by the application program. The data will then be transferred to the Transmit Shift Register from where it will be shifted out, LSB first, onto the TX pin at a rate controlled by the Baud Rate Generator. Only the UTXR_RXR register is mapped onto the MCU Data Memory, the Transmit Shift Register is not mapped and is therefore inaccessible to the application program. Data to be received by the UART is accepted on the external RX pin, from where it is shifted in, LSB first, to the Receiver Shift Register at a rate controlled by the Baud Rate Generator. When the shift register is full, the data will then be transferred from the shift register to the internal UTXR_RXR register, where it is buffered and can be manipulated by the application program. Only the UTXR_RXR register is mapped onto the MCU Data Memory, the Receiver Shift Register is not mapped and is therefore inaccessible to the application program. It should be noted that the actual register for data transmission and reception only exists as a single shared register in the Data Memory. This shared register known as the UTXR_RXR register is used for both data transmission and data reception. #### **UART Status and Control Registers** There are six control registers associated with the UART function. The UMD bit in the SIMC0 register can be used to select the UART mode. The UUSR, UUCR1 and UUCR2 registers control the overall function of the UART, while the UBRG register controls the Baud rate. The actual data to be transmitted and received on the serial interface is managed through the UTXR_RXR data register. Note that UART related registers and their POR values are only available when the UART mode is selected by setting the UMD bit in the SIMC0 register to "1". | Register | Bit | | | | | | | | |----------|--------|--------|--------|--------|---------|---------|--------|--------| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SIMC0 | SIM2 | SIM1 | SIM0 | UMD | SIMDEB1 | SIMDEB0 | SIMEN | SIMICF | | UUSR | UPERR | UNF | UFERR | UOERR | URIDLE | URXIF | UTIDLE | UTXIF | | UUCR1 | UREN | UBNO | UPREN | UPRT | USTOPS | UTXBRK | URX8 | UTX8 | | UUCR2 | UTXEN | URXEN | UBRGH | UADDEN | UWAKE | URIE | UTIIE | UTEIE | | UTXR_RXR | UTXRX7 | UTXRX6 | UTXRX5 | UTXRX4 | UTXRX3 | UTXRX2 | UTXRX1 | UTXRX0 | | UBRG | UBRG7 | UBRG6 | UBRG5 | UBRG4 | UBRG3 | UBRG2 | UBRG1 | UBRG0 | **UART Register List** #### SIMC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|-----|---------|---------|-------|--------| | Name | SIM2 | SIM1 | SIM0 | UMD | SIMDEB1 | SIMDEB0 | SIMEN | SIMICF | | R/W | POR | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | Bit 7~5 SIM2~SIM0: USIM SPI/I²C Operating Mode Control When the UMD bit is cleared to zero, these bits setup the SPI or I²C operating mode of the USIM function. Refer to the SPI or I²C register section for more details. Rev. 1.20 155 November 19, 2019 Bit 4 UMD: UART mode selection bit 0: SPI or I²C mode 1: UART mode This bit is used to select the UART mode. When this bit is cleared to zero, the actual SPI or I²C mode can be selected using the SIM2~SIM0 bits. Note that the UMD bit must be set low for SPI or I²C mode. Bit 3~2 **SIMDEB1~SIMDEB0**: I²C Debounce Time Selection Refer to the I2C register section. Bit 1 SIMEN: USIM SPI/I²C Enable Control This bit is only available when the USIM is configured to operate in an SPI or I²C mode with the UMD bit set low. Refer to the SPI or I²C register section for more details. Bit 0 SIMICF: USIM SPI Incomplete Flag Refer to the SPI register section. #### UUSR Register The UUSR register is the status register for the UART, which can be read by the program to determine the present status of the UART. All flags within the UUSR register are read only. Further explanation on each of the flags is given below: | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-----|-------|-------|--------|-------|--------|-------| | Name | UPERR | UNF | UFERR | UOERR | URIDLE | URXIF | UTIDLE | UTXIF | | R/W | R | R | R | R | R | R | R | R | | POR | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Bit 7 **UPERR**: Parity error flag 0: No parity error is detected 1: Parity error is detected The UPERR flag is the parity error flag. When this read only flag is "0", it indicates a parity error has not been detected. When the flag is "1", it indicates that the parity of the received word is incorrect. This error flag is applicable only if Parity mode (odd or even) is selected. The flag can also be cleared to zero by a software sequence which involves a read to the status register UUSR followed by an access to the UTXR_RXR data register. Bit 6 UNF: Noise flag 0: No noise is detected 1: Noise is detected The UNF flag is the noise flag. When this read only flag is "0", it indicates no noise condition. When the flag is "1", it indicates that the UART has detected noise on the receiver input. The UNF flag is set during the same cycle as the URXIF flag but will not be set in the case of as overrun. The UNF flag can be cleared to zero by a software sequence which will involve a read to the status register UUSR followed by an access to the UTXR RXR data register. Bit 5 UFERR: Framing error flag 0: No framing error is detected 1: Framing error is detected The UFERR flag is the framing error flag. When this read only flag is "0", it indicates that there is no framing error. When the flag is "1", it indicates that a framing error has been detected for the current character. The flag can also be cleared to zero by a software sequence which will involve a read to the status register UUSR followed by an access to the UTXR RXR data register. Rev. 1.20 156 November 19, 2019 Bit 4 **UOERR**: Overrun error flag 0: No overrun error is detected 1: Overrun error is detected The UOERR flag is the overrun error flag which indicates when the receiver buffer has overflowed. When this read only flag is "0", it indicates that there is no overrun error. When the flag is "1", it indicates that an overrun error occurs which will inhibit further transfers to the UTXR_RXR receive data register. The flag is cleared to zero by a software sequence, which is a read to the status register UUSR followed by an access to the UTXR_RXR data register. Bit 3 URIDLE: Receiver status 0: Data reception is in progress (Data being received) 1: No data reception is in progress (Receiver is idle) The URIDLE flag is the receiver status flag. When this read only flag is "0", it indicates that the receiver is between the initial detection of the start bit and the completion of the stop bit. When the flag is "1", it indicates that the receiver is idle. Between the completion of the stop bit and the detection of the next start bit, the URIDLE bit is "1" indicating that the UART receiver is idle and the RX pin stays in logic high condition. Bit 2 URXIF: Receive UTXR RXR data register status 0: UTXR RXR data register is empty 1: UTXR RXR data register has available data The URXIF flag is the receive data register status flag. When this read only flag is "0", it indicates that the UTXR_RXR read data register is empty. When the flag is "1", it indicates that the UTXR_RXR read data register contains new data. When the contents of the shift register are transferred to the UTXR_RXR register, an interrupt is generated if URIE=1 in the UUCR2 register. If one or more errors are detected in the received word, the appropriate receive-related flags UNF, UFERR, and/or UPERR are set within the same clock cycle. The URXIF flag will eventually be cleared to zero when the UUSR register is read with URXIF set, followed by a read from the UTXR_RXR register, and if the UTXR_RXR register has no more new data available. Bit 1 UTIDLE: Transmission idle 0: Data transmission is in progress (Data being transmitted) 1: No data transmission is in progress (Transmitter is idle) The UTIDLE flag is known as the transmission complete flag. When this read only flag is "0", it indicates that a transmission is in progress. This flag will be set high when the UTXIF flag is "1" and when there is no transmit data or break character being transmitted. When UTIDLE is equal to "1", the TX pin becomes idle with the pin state in logic high condition. The UTIDLE flag is cleared to zero by reading the UUSR register with UTIDLE set and then writing to the UTXR_RXR register. The flag is not generated when a data character or a break is queued and ready to be sent. Bit 0 UTXIF: Transmit UTXR_RXR data register status 0: Character is not transferred to the transmit shift register 1: Character has transferred to the transmit shift register (UTXR_RXR data register is empty) The UTXIF flag is the transmit
data register empty flag. When this read only flag is "0", it indicates that the character is not transferred to the transmitter shift register. When the flag is "1", it indicates that the transmitter shift register has received a character from the UTXR_RXR data register. The UTXIF flag is cleared to zero by reading the UART status register (UUSR) with UTXIF set and then writing to the UTXR_RXR data register. Note that when the UTXEN bit is set, the UTXIF flag bit will also be set since the transmit data register is not yet full. Rev. 1.20 157 November 19, 2019 #### UUCR1 Register The UUCR1 register together with the UUCR2 register are the two UART control registers that are used to set the various options for the UART function, such as overall on/off control, parity control, data transfer bit length etc. Further explanation on each of the bits is given below: | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|-------|------|--------|--------|------|------| | Name | UREN | UBNO | UPREN | UPRT | USTOPS | UTXBRK | URX8 | UTX8 | | R/W R | W | | POR | 0 | 0 | 0 | 0 | 0 | 0 | Х | 0 | "x": unknown Bit 7 UREN: UART function enable control 0: Disable UART. TX and RX pins are in a floating state 1: Enable UART. TX and RX pins function as UART pins The UREN bit is the UART enable bit. When this bit is equal to "0", the UART will be disabled and the RX pin as well as the TX pin will be set in a floating state. When the bit is equal to "1", the UART will be enabled if the UMD bit is set and the TX and RX pins will function as defined by the UTXEN and URXEN enable control bits. When the UART is disabled, it will empty the buffer so any character remaining in the buffer will be discarded. In addition, the value of the baud rate counter will be reset. If the UART is disabled, all error and status flags will be reset. Also the UTXEN, URXEN, UTXBRK, URXIF, UOERR, UFERR, UPERR and UNF bits will be cleared to zero, while the UTIDLE, UTXIF and URIDLE bits will be set high. Other control bits in UUCR1, UUCR2 and UBRG registers will remain unaffected. If the UART is active and the UREN bit is cleared to zero, all pending transmissions and receptions will be terminated and the module will be reset as defined above. When the UART is re-enabled, it will restart in the same configuration. Bit 6 UBNO: Number of data transfer bits selection 0: 8-bit data transfer 1: 9-bit data transfer This bit is used to select the data length format, which can have a choice of either 8-bit or 9-bit format. When this bit is equal to "1", a 9-bit data length format will be selected. If the bit is equal to "0", then an 8-bit data length format will be selected. If 9-bit data length format is selected, then bits URX8 and UTX8 will be used to store the 9th bit of the received and transmitted data respectively. Bit 5 UPREN: Parity function enable control 0: Parity function is disabled 1: Parity function is enabled This is the parity enable bit. When this bit is equal to "1", the parity function will be enabled. If the bit is equal to "0", then the parity function will be disabled. Bit 4 **UPRT**: Parity type selection bit 0: Even parity for parity generator 1: Odd parity for parity generator This bit is the parity type selection bit. When this bit is equal to "1", odd parity type will be selected. If the bit is equal to "0", then even parity type will be selected. Bit 3 USTOPS: Number of Stop bits selection 0: One stop bit format is used 1: Two stop bits format is used This bit determines if one or two stop bits are to be used. When this bit is equal to "1", two stop bits are used. If this bit is equal to "0", then only one stop bit is used. Bit 2 UTXBRK: Transmit break character 0: No break character is transmitted 1: Break characters transmit The UTXBRK bit is the Transmit Break Character bit. When this bit is "0", there are no break characters and the TX pin operates normally. When the bit is "1", there are Rev. 1.20 158 November 19, 2019 transmit break characters and the transmitter will send logic zeros. When this bit is equal to "1", after the buffered data has been transmitted, the transmitter output is held low for a minimum of a 13-bit length and until the UTXBRK bit is reset. Bit 1 URX8: Receive data bit 8 for 9-bit data transfer format (read only) This bit is only used if 9-bit data transfers are used, in which case this bit location will store the 9th bit of the received data known as URX8. The UBNO bit is used to determine whether data transfers are in 8-bit or 9-bit format. Bit 0 UTX8: Transmit data bit 8 for 9-bit data transfer format (write only) This bit is only used if 9-bit data transfers are used, in which case this bit location will store the 9th bit of the transmitted data known as UTX8. The UBNO bit is used to determine whether data transfers are in 8-bit or 9-bit format. ### UUCR2 Register The UUCR2 register is the second of the two UART control registers and serves several purposes. One of its main functions is to control the basic enable/disable operation of the UART Transmitter and Receiver as well as enabling the various USIM UART mode interrupt sources. The register also serves to control the baud rate speed, receiver wake-up enable and the address detect enable. Further explanation on each of the bits is given below: | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|--------|-------|------|-------|-------| | Name | UTXEN | URXEN | UBRGH | UADDEN | UWAKE | URIE | UTIIE | UTEIE | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 UTXEN: UART Transmitter enabled control 0: UART transmitter is disabled 1: UART transmitter is enabled The bit named UTXEN is the Transmitter Enable Bit. When this bit is equal to "0", the transmitter will be disabled with any pending data transmissions being aborted. In addition the buffers will be reset. In this situation the TX pin will be set in a floating state. If the UTXEN bit is equal to "1" and the UMD and UREN bit are also equal to "1", the transmitter will be enabled and the TX pin will be controlled by the UART. Clearing the UTXEN bit during a transmission will cause the data transmission to be aborted and will reset the transmitter. If this situation occurs, the TX pin will be set in a floating state. Bit 6 URXEN: UART Receiver enabled control 0: UART receiver is disabled 1: UART receiver is enabled The bit named URXEN is the Receiver Enable Bit. When this bit is equal to "0", the receiver will be disabled with any pending data receptions being aborted. In addition the receive buffers will be reset. In this situation the RX pin will be set in a floating state. If the URXEN bit is equal to "1" and the UMD and UREN bit are also equal to "1", the receiver will be enabled and the RX pin will be controlled by the UART. Clearing the URXEN bit during a reception will cause the data reception to be aborted and will reset the receiver. If this situation occurs, the RX pin will be set in a floating state. Bit 5 UBRGH: Baud Rate speed selection 0: Low speed baud rate 1: High speed baud rate The bit named UBRGH selects the high or low speed mode of the Baud Rate Generator. This bit, together with the value placed in the baud rate register UBRG, controls the Baud Rate of the UART. If this bit is equal to "1", the high speed mode is selected. If the bit is equal to "0", the low speed mode is selected. Rev. 1.20 159 November 19, 2019 Bit 4 UADDEN: Address detect function enable control 0: Address detect function is disabled 1: Address detect function is enabled The bit named UADDEN is the address detect function enable control bit. When this bit is equal to "1", the address detect function is enabled. When it occurs, if the 8th bit, which corresponds to URX7 if UBNO=0 or the 9th bit, which corresponds to URX8 if UBNO=1, has a value of "1", then the received word will be identified as an address, rather than data. If the corresponding interrupt is enabled, an interrupt request will be generated each time the received word has the address bit set, which is the 8th or 9th bit depending on the value of UBNO. If the address bit known as the 8th or 9th bit of the received word is "0" with the address detect function being enabled, an interrupt will not be generated and the received data will be discarded. Bit 3 UWAKE: RX pin wake-up UART function enable control 0: RX pin wake-up UART function is disabled 1: RX pin wake-up UART function is enabled This bit is used to control the wake-up UART function when a falling edge on the RX pin occurs. Note that this bit is only available when the UART clock (f_H) is switched off. There will be no RX pin wake-up UART function if the UART clock (f_H) exists. If the UWAKE bit is set high as the UART clock (f_H) is switched off, a UART wake-up request will be initiated when a falling edge on the RX pin occurs. When this request happens and the corresponding interrupt is enabled, an RX pin wake-up UART interrupt will be generated to inform the MCU to wake up the UART function by switching on the UART clock (f_H) via the application program. Otherwise, the UART function cannot resume even if there is a falling edge on the RX pin when the UWAKE bit is cleared to zero. Bit 2 URIE: Receiver interrupt enable control 0: Receiver related interrupt is disabled 1: Receiver related interrupt is enabled This bit enables or disables the receiver interrupt. If this bit is equal to "1" and when the receiver overrun flag UOERR or receive data available flag URXIF is set, the USIM interrupt request flag USIMF will be set. If this bit is equal to "0", the USIM interrupt request flag USIMF will not be influenced by the condition of the UOERR or URXIF flags. Bit 1 UTIIE: Transmitter Idle interrupt enable control 0: Transmitter idle interrupt is disabled 1: Transmitter idle interrupt is enabled This bit enables or disables the transmitter idle interrupt. If this bit is equal to "1" and when the transmitter idle flag UTIDLE is set, due to a transmitter
idle condition, the USIM interrupt request flag USIMF will be set. If this bit is equal to "0", the USIM interrupt request flag USIMF will not be influenced by the condition of the UTIDLE flag. Bit 0 UTEIE: Transmitter Empty interrupt enable control 0: Transmitter empty interrupt is disabled 1: Transmitter empty interrupt is enabled This bit enables or disables the transmitter empty interrupt. If this bit is equal to "1" and when the transmitter empty flag UTXIF is set, due to a transmitter empty condition, the USIM interrupt request flag USIMF will be set. If this bit is equal to "0", the USIM interrupt request flag USIMF will not be influenced by the condition of the UTXIF flag. Rev. 1.20 160 November 19, 2019 #### UTXR_RXR Register The UTXR_RXR register is the data register which is used to store the data to be transmitted on the TX pin or being received from the RX pin. | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|--------|--------|--------|--------|--------|--------|--------|--------| | Name | UTXRX7 | UTXRX6 | UTXRX5 | UTXRX4 | UTXRX3 | UTXRX2 | UTXRX1 | UTXRX0 | | R/W | POR | Х | х | Х | х | х | Х | Х | Х | "x": unknown Bit 7~0 UTXRX7~UTXRX0: UART Transmit/Receive Data bit 7~bit 0 ### UBRG Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|-------|-------|-------|-------|-------|-------| | Name | UBRG7 | UBRG6 | UBRG5 | UBRG4 | UBRG3 | UBRG2 | UBRG1 | UBRG0 | | R/W | POR | Х | х | Х | Х | х | Х | Х | х | "x": unknown Bit 7~0 **UBRG7~UBRG0**: Baud Rate values By programming the UBRGH bit in UUCR2 register which allows selection of the related formula described above and programming the required value in the UBRG register, the required baud rate can be setup. Note: Baud rate= $f_H/[64\times(N+1)]$ if UBRGH=0. Baud rate= $f_H/[16\times(N+1)]$ if UBRGH=1. #### **Baud Rate Generator** To setup the speed of the serial data communication, the UART function contains its own dedicated baud rate generator. The baud rate is controlled by its own internal free running 8-bit timer, the period of which is determined by two factors. The first of these is the value placed in the baud rate register UBRG and the second is the value of the UBRGH bit in the control register UUCR2. The UBRGH bit decides if the baud rate generator is to be used in a high speed mode or low speed mode, which in turn determines the formula that is used to calculate the baud rate. The value N in the UBRG register which is used in the following baud rate calculation formula determines the division factor. Note that N is the decimal value placed in the UBRG register and has a range of between 0 and 255. | UUCR2 UBRGH Bit | 0 | 1 | |-----------------|----------------------------|----------------------------| | Baud Rate (BR) | f _H /[64 (N+1)] | f _H /[16 (N+1)] | By programming the UBRGH bit which allows selection of the related formula and programming the required value in the UBRG register, the required baud rate can be setup. Note that because the actual baud rate is determined using a discrete value, N, placed in the UBRG register, there will be an error associated between the actual and requested value. The following example shows how the UBRG register value N and the error value can be calculated. ## Calculating the Baud Rate and Error Values For a clock frequency of 4MHz, and with UBRGH cleared to zero determine the UBRG register value N, the actual baud rate and the error value for a desired baud rate of 4800. From the above table the desired band rate $BR=f_H/[64 (N+1)]$ Re-arranging this equation gives $N=[f_H/(BR\times64)]-1$ Giving a value for $N=[4000000/(4800\times64)] - 1=12.0208$ Rev. 1.20 161 November 19, 2019 To obtain the closest value, a decimal value of 12 should be placed into the UBRG register. This gives an actual or calculated baud rate value of BR=4000000/[64×(12+1)]=4808 Therefore the error is equal to (4808 - 4800)/4800=0.16% #### **UART Setup and Control** For data transfer, the UART function utilizes a non-return-to-zero, more commonly known as NRZ, format. This is composed of one start bit, eight or nine data bits, and one or two stop bits. Parity is supported by the UART hardware, and can be setup to be even, odd or no parity. For the most common data format, 8 data bits along with no parity and one stop bit, denoted as 8, N, 1, is used as the default setting, which is the setting at power-on. The number of data bits and stop bits, along with the parity, are setup by programming the corresponding UBNO, UPRT, UPREN, and USTOPS bits in the UUCR1 register. The baud rate used to transmit and receive data is setup using the internal 8-bit baud rate generator, while the data is transmitted and received LSB first. Although the UART transmitter and receiver are functionally independent, they both use the same data format and baud rate. In all cases stop bits will be used for data transmission. #### **Enabling/Disabling the UART Interface** The basic on/off function of the internal UART function is controlled using the UREN bit in the UUCR1 register. When the UART mode is selected by setting the UMD bit in the SIMC0 register to "1", if the UREN, UTXEN and URXEN bits are set, then these two UART pins will act as normal TX output pin and RX input pin respectively. If no data is being transmitted on the TX pin, then it will default to a logic high value. Clearing the UREN bit will disable the TX and RX pins and allow these two pins to be used as normal I/O or other pin-shared functional pins by configuring the corresponding pin-shared control bits. When the UART function is disabled the buffer will be reset to an empty condition, at the same time discarding any remaining residual data. Disabling the UART will also reset the error and status flags with bits UTXEN, URXEN, UTXBRK, URXIF, UOERR, UFERR, UPERR and UNF being cleared while bits UTIDLE, UTXIF and URIDLE will be set. The remaining control bits in the UUCR1, UUCR2 and UBRG registers will remain unaffected. If the UREN bit in the UUCR1 register is cleared while the UART is active, then all pending transmissions and receptions will be immediately suspended and the UART will be reset to a condition as defined above. If the UART is then subsequently re-enabled, it will restart again in the same configuration. #### **Data, Parity and Stop Bit Selection** The format of the data to be transferred is composed of various factors such as data bit length, parity on/off, parity type, address bits and the number of stop bits. These factors are determined by the setup of various bits within the UUCR1 register. The UBNO bit controls the number of data bits which can be set to either 8 or 9, the UPRT bit controls the choice of odd or even parity, the UPREN bit controls the parity on/off function and the USTOPS bit decides whether one or two stop bits are to be used. The following table shows various formats for data transmission. The address bit, which is the MSB of the data byte, identifies the frame as an address character or data if the address detect function is enabled. The number of stop bits, which can be either one or two, is independent of the data length and is only used for the transmitter. There is only one stop bit for the receiver. Rev. 1.20 162 November 19, 2019 | Start Bit | Data Bits | Address Bit | Parity Bit | Stop Bit | |----------------|-----------------|-------------|------------|----------| | Example of 8-I | oit Data Format | S | | | | 1 | 8 | 0 | 0 | 1 | | 1 | 7 | 0 | 1 | 1 | | 1 | 7 | 1 | 0 | 1 | | Example of 9-I | oit Data Format | s | | | | 1 | 9 | 0 | 0 | 1 | | 1 | 8 | 0 | 1 | 1 | | 1 | 8 | 1 | 0 | 1 | **Transmitter Receiver Data Format** The following diagram shows the transmit and receive waveforms for both 8-bit and 9-bit data formats. #### **UART Transmitter** Data word lengths of either 8 or 9 bits can be selected by programming the UBNO bit in the UUCR1 register. When UBNO bit is set, the word length will be set to 9 bits. In this case the 9th bit, which is the MSB, needs to be stored in the UTX8 bit in the UUCR1 register. At the transmitter core lies the Transmitter Shift Register, more commonly known as the TSR, whose data is obtained from the transmit data register, which is known as the UTXR RXR register. The data to be transmitted is loaded into this UTXR RXR register by the application program. The TSR register is not written to with new data until the stop bit from the previous transmission has been sent out. As soon as this stop bit has been transmitted, the TSR can then be loaded with new data from the UTXR RXR register, if it is available. It should be noted that the TSR register, unlike many other registers, is not directly mapped into the Data Memory area and as such is not available to the application program for direct read/write operations. An actual transmission of data will normally be enabled when the UTXEN bit is set, but the data will not be transmitted until the UTXR RXR register has been loaded with data and the baud rate generator has defined a shift clock source. However, the transmission can also be initiated by first loading data into the UTXR RXR register, after which the UTXEN bit can be set. When a transmission of data begins, the TSR is normally empty, in which case a transfer to the UTXR RXR register will result in an immediate transfer to the TSR. If during a transmission the UTXEN bit is cleared, the transmission will immediately cease and the transmitter will be reset. The TX output pin can then be configured as the I/O or other pin-shared function by configuring the corresponding pin-shared control bits. #### **Transmitting Data** When the UART is transmitting data, the data is shifted on the TX pin from the shift register, with the least significant bit first. In the transmit mode, the UTXR_RXR register forms a buffer between the internal bus and the transmitter shift register. It should be noted that if 9-bit data format has been selected, then the MSB will be taken from the UTX8 bit in the
UUCR1 register. The steps to initiate a data transfer can be summarized as follows: Make the correct selection of the UBNO, UPRT, UPREN and USTOPS bits to define the required word length, parity type and number of stop bits. Rev. 1.20 163 November 19, 2019 - Setup the UBRG register to select the desired baud rate. - Set the UTXEN bit to ensure that the TX pin is used as a UART transmitter pin. - Access the UUSR register and write the data that is to be transmitted into the UTXR_RXR register. Note that this step will clear the UTXIF bit. This sequence of events can now be repeated to send additional data. It should be noted that when UTXIF=0, data will be inhibited from being written to the UTXR_RXR register. Clearing the UTXIF flag is always achieved using the following software sequence: - 1. A UUSR register access - 2. A UTXR RXR register write execution The read-only UTXIF flag is set by the UART hardware and if set indicates that the UTXR_RXR register is empty and that other data can now be written into the UTXR_RXR register without overwriting the previous data. If the UTEIE bit is set then the UTXIF flag will generate an interrupt. During a data transmission, a write instruction to the UTXR_RXR register will place the data into the UTXR_RXR register, which will be copied to the shift register at the end of the present transmission. When there is no data transmission in progress, a write instruction to the UTXR_RXR register will place the data directly into the shift register, resulting in the commencement of data transmission, and the UTXIF bit being immediately set. When a frame transmission is complete, which happens after stop bits are sent or after the break frame, the UTIDLE bit will be set. To clear the UTIDLE bit the following software sequence is used: - 1. A UUSR register access - 2. A UTXR RXR register write execution Note that both the UTXIF and UTIDLE bits are cleared by the same software sequence. #### **Transmit Break** If the UTXBRK bit is set then break characters will be sent on the next transmission. Break character transmission consists of a start bit, followed by 13×N '0' bits and stop bits, where N=1, 2, etc. If a break character is to be transmitted then the UTXBRK bit must be first set by the application program, and then cleared to generate the stop bits. Transmitting a break character will not generate a transmit interrupt. Note that a break condition length is at least 13 bits long. If the UTXBRK bit is continually kept at a logic high level then the transmitter circuitry will transmit continuous break characters. After the application program has cleared the UTXBRK bit, the transmitter will finish transmitting the last break character and subsequently send out one or two stop bits. The automatic logic highs at the end of the last break character will ensure that the start bit of the next frame is recognized. #### **UART Receiver** The UART is capable of receiving word lengths of either 8 or 9 bits. If the UBNO bit is set, the word length will be set to 9 bits with the MSB being stored in the URX8 bit of the UUCR1 register. At the receiver core lies the Receive Serial Shift Register, commonly known as the RSR. The data which is received on the RX external input pin is sent to the data recovery block. The data recovery block operating speed is 16 times that of the baud rate, while the main receive serial shifter operates at the baud rate. After the RX pin is sampled for the stop bit, the received data in RSR is transferred to the receive data register, if the register is empty. The data which is received on the external RX input pin is sampled three times by a majority detect circuit to determine the logic level that has been placed onto the RX pin. It should be noted that the RSR register, unlike many other registers, is not directly mapped into the Data Memory area and as such is not available to the application program for direct read/write operations. Rev. 1.20 164 November 19, 2019 #### **Receiving Data** When the UART receiver is receiving data, the data is serially shifted in on the external RX input pin, LSB first. In the read mode, the UTXR_RXR register forms a buffer between the internal bus and the receiver shift register. The UTXR_RXR register is a two byte deep FIFO data buffer, where two bytes can be held in the FIFO while a third byte can continue to be received. Note that the application program must ensure that the data is read from UTXR_RXR before the third byte has been completely shifted in, otherwise this third byte will be discarded and an overrun error UOERR will be subsequently indicated. The steps to initiate a data transfer can be summarized as follows: - Make the correct selection of UBNO, UPRT and UPREN bits to define the word length, parity type. - Setup the UBRG register to select the desired baud rate. - Set the URXEN bit to ensure that the RX pin is used as a UART receiver pin. At this point the receiver will be enabled which will begin to look for a start bit. When a character is received the following sequence of events will occur: - The URXIF bit in the UUSR register will be set when the UTXR_RXR register has data available. There will be at most one more character available before an overrun error occurs. - When the contents of the shift register have been transferred to the UTXR_RXR register, then if the URIE bit is set, an interrupt will be generated. - If during reception, a frame error, noise error, parity error, or an overrun error has been detected, then the error flags can be set. The URXIF bit can be cleared using the following software sequence: - 1. A UUSR register access - 2. A UTXR RXR register read execution #### **Receive Break** Any break character received by the UART will be managed as a framing error. The receiver will count and expect a certain number of bit times as specified by the values programmed into the UBNO bit plus one stop bit. If the break is much longer than 13 bit times, the reception will be considered as complete after the number of bit times specified by UBNO plus one stop bit. The URXIF bit is set, UFERR is set, zeros are loaded into the receive data register, interrupts are generated if appropriate and the URIDLE bit is set. A break is regarded as a character that contains only zeros with the UFERR flag set. If a long break signal has been detected, the receiver will regard it as a data frame including a start bit, data bits and the invalid stop bit and the UFERR flag will be set. The receiver must wait for a valid stop bit before looking for the next start bit. The receiver will not make the assumption that the break condition on the line is the next start bit. The break character will be loaded into the buffer and no further data will be received until stop bits are received. It should be noted that the URIDLE read only flag will go high when the stop bits have not yet been received. The reception of a break character on the UART registers will result in the following: - The framing error flag, UFERR, will be set. - The receive data register, UTXR_RXR, will be cleared. - · The UOERR, UNF, UPERR, URIDLE or URXIF flags will possibly be set. ### **Idle Status** When the receiver is reading data, which means it will be in between the detection of a start bit and the reading of a stop bit, the receiver status flag in the UUSR register, otherwise known as the URIDLE flag, will have a zero value. In between the reception of a stop bit and the detection of the next start bit, the URIDLE flag will have a high value, which indicates the receiver is in an idle condition. Rev. 1.20 165 November 19, 2019 #### **Receiver Interrupt** The read only receive interrupt flag URXIF in the UUSR register is set by an edge generated by the receiver. An interrupt is generated if URIE=1, when a word is transferred from the Receive Shift Register, RSR, to the Receive Data Register, UTXR_RXR. An overrun error can also generate an interrupt if URIE=1. #### **Managing Receiver Errors** Several types of reception errors can occur within the UART module, the following section describes the various types and how they are managed by the UART. #### Overrun Error - UOERR The UTXR_RXR register is composed of a two byte deep FIFO data buffer, where two bytes can be held in the FIFO register, while a third byte can continue to be received. Before this third byte has been entirely shifted in, the data should be read from the UTXR_RXR register. If this is not done, the overrun error flag UOERR will be consequently indicated. In the event of an overrun error occurring, the following will happen: - · The UOERR flag in the UUSR register will be set. - The UTXR RXR contents will not be lost. - The shift register will be overwritten. - An interrupt will be generated if the URIE bit is set. The UOERR flag can be cleared by an access to the UUSR register followed by a read to the UTXR RXR register. #### Noise Error - UNF Over-sampling is used for data recovery to identify valid incoming data and noise. If noise is detected within a frame the following will occur: - The read only noise flag, UNF, in the UUSR register will be set on the rising edge of the URXIF bit. - Data will be transferred from the Shift register to the UTXR RXR register. - No interrupt will be generated. However this bit rises at the same time as the URXIF bit which itself generates an interrupt. Note that the UNF flag is reset by a UUSR register read operation followed by a UTXR_RXR register read operation. ### Framing Error - UFERR The read only framing error flag, UFERR, in the UUSR register, is set if a zero is detected instead of stop bits. If two stop bits are selected, both stop bits must be high; otherwise the UFERR flag will be set. The UFERR flag and the received data will be recorded in the UUSR and UTXR_RXR registers respectively, and the flag is cleared in any reset. ## Parity Error - UPERR The read only parity error flag, UPERR, in the UUSR register, is set if the
parity of the received word is incorrect. This error flag is only applicable if the parity is enabled, UPREN=1, and if the parity type, odd or even is selected. The read only UPERR flag and the received data will be recorded in the UUSR and UTXR_RXR registers respectively. It is cleared on any reset, it should be noted that the flags, UFERR and UPERR, in the UUSR register should first be read by the application program before reading the data word. Rev. 1.20 166 November 19, 2019 #### **UART Interrupt Structure** Several individual UART conditions can trigger an USIM interrupt. When these conditions exist, a low pulse will be generated to get the attention of the microcontroller. These conditions are a transmitter data register empty, transmitter idle, receiver data available, receiver overrun, address detect and an RX pin wake-up. When any of these conditions are created, if the global interrupt enable bit and the USIM interrupt control bit are enabled and the stack is not full, the program will jump to its corresponding interrupt vector where it can be serviced before returning to the main program. Four of these conditions have the corresponding UUSR register flags which will generate an USIM interrupt if its associated interrupt enable control bit in the UUCR2 register is set. The two transmitter interrupt conditions have their own corresponding enable control bits, while the two receiver interrupt conditions have a shared enable control bit. These enable bits can be used to mask out individual USIM UART mode interrupt sources. The address detect condition, which is also an USIM UART mode interrupt source, does not have an associated flag, but will generate an USIM interrupt when an address detect condition occurs if its function is enabled by setting the UADDEN bit in the UUCR2 register. An RX pin wake-up, which is also an USIM UART mode interrupt source, does not have an associated flag, but will generate an USIM interrupt if the UART clock (fh) source is switched off and the UWAKE and URIE bits in the UUCR2 register are set when a falling edge on the RX pin occurs. Note that in the event of an RX wake-up interrupt occurring, there will be a certain period of delay, commonly known as the System Start-up Time, for the oscillator to restart and stabilize before the system resumes normal operation. Note that the UUSR register flags are read only and cannot be cleared or set by the application program, neither will they be cleared when the program jumps to the corresponding interrupt servicing routine, as is the case for some of the other interrupts. The flags will be cleared automatically when certain actions are taken by the UART, the details of which are given in the UART register section. The overall UART interrupt can be disabled or enabled by the USIM interrupt enable control bit in the interrupt control register of the microcontroller to decide whether the interrupt requested by the UART module is masked out or allowed. **UART Interrupt Structure** Rev. 1.20 167 November 19, 2019 #### **Address Detect Mode** Setting the Address Detect Mode bit, UADDEN, in the UUCR2 register, enables this special mode. If this bit is enabled then an additional qualifier will be placed on the generation of a Receiver Data Available interrupt, which is requested by the URXIF flag. If the UADDEN bit is enabled, then when data is available, an interrupt will only be generated, if the highest received bit has a high value. Note that the USIME and EMI interrupt enable bits must also be enabled for correct interrupt generation. This highest address bit is the 9th bit if UBNO=1 or the 8th bit if UBNO=0. If this bit is high, then the received word will be defined as an address rather than data. A Data Available interrupt will be generated every time the last bit of the received word is set. If the UADDEN bit is not enabled, then a Receiver Data Available interrupt will be generated each time the URXIF flag is set, irrespective of the data last bit status. The address detect mode and parity enable are mutually exclusive functions. Therefore if the address detect mode is enabled, then to ensure correct operation, the parity function should be disabled by resetting the parity enable bit UPREN to zero. | UADDEN | Bit 9 if UBNO=1,
Bit 8 if UBNO=0 | USIM Interrupt
Generated | | | |--------|-------------------------------------|-----------------------------|--|--| | 0 | 0 | $\sqrt{}$ | | | | 0 | 1 | √ | | | | 4 | 0 | × | | | | 1 | 1 | √ | | | **UADDEN Bit Function** #### **UART Power Down and Wake-up** When the UART clock (f_H) is off, the UART will cease to function, all clock sources to the module are shutdown. If the UART clock (f_H) is off while a transmission is still in progress, then the transmission will be paused until the UART clock source derived from the microcontroller is activated. In a similar way, if the MCU enters the IDLE or SLEEP mode while receiving data, then the reception of data will likewise be paused. When the MCU enters the IDLE or SLEEP mode, note that the UUSR, UUCR1, UUCR2, transmit and receive registers, as well as the UBRG register will not be affected. It is recommended to make sure first that the UART data transmission or reception has been finished before the microcontroller enters the IDLE or SLEEP mode. The UART function contains a receiver RX pin wake-up function, which is enabled or disabled by the UWAKE bit in the UUCR2 register. If this bit, along with the UART mode selection bit, UMD, the UART enable bit, UREN, the receiver enable bit, URXEN and the receiver interrupt bit, URIE, are all set when the UART clock (f_H) is off, then a falling edge on the RX pin will trigger an RX pin wake-up UART interrupt. Note that as it takes certain system clock cycles after a wake-up, before normal microcontroller operation resumes, any data received during this time on the RX pin will be ignored. For a UART wake-up interrupt to occur, in addition to the bits for the wake-up being set, the global interrupt enable bit, EMI, and the USIM interrupt enable bit, USIME, must be set. If the EMI and USIME bits are not set then only a wake up event will occur and no interrupt will be generated. Note also that as it takes certain system clock cycles after a wake-up before normal microcontroller resumes, the USIM interrupt will not be generated until after this time has elapsed. Rev. 1.20 168 November 19, 2019 ## Serial Peripheral Interface - SPIA The device contains an independent SPI function. It is important not to confuse this independent SPI function with the additional one contained within the combined USIM function, which is described in another section of this datasheet. This independent SPI function will carry the name SPIA to distinguish it from the other one in the USIM. The SPIA interface is often used to communicate with external peripheral devices such as sensors, Flash or EEPROM memory devices etc. Originally developed by Motorola, the four line SPIA interface is a synchronous serial data interface that has a relatively simple communication protocol simplifying the programming requirements when communicating with external hardware devices. The communication is full duplex and operates as a slave/master type, where the device can be either master or slave. Although the SPIA interface specification can control multiple slave devices from a single master, however the device is provided with only one \overline{SCSA} pin. If the master needs to control multiple slave devices from a single master, the master can use I/O pins to select the slave devices. ## **SPIA Interface Operation** The SPIA interface is a full duplex synchronous serial data link. It is a four line interface with pin names SDIA, SDOA, SCKA and \overline{SCSA} . Pins SDIA and SDOA are the Serial Data Input and Serial Data Output lines, the SCKA pin is the Serial Clock line and \overline{SCSA} is the Slave Select line. As the SPIA interface pins are pin-shared with normal I/O pins, the SPIA interface must first be enabled by configuring the corresponding selection bits in the pin-shared function selection registers. The SPIA can be disabled or enabled using the SPIAEN bit in the SPIACO register. Communication between devices connected to the SPIA interface is carried out in a slave/master mode with all data transfer initiations being implemented by the master. The Master also controls the clock signal. As the device only contains a single \overline{SCSA} pin only one slave device can be utilized. The \overline{SCSA} pin is controlled by the application program, set the SACSEN bit to "1" to enable the \overline{SCSA} pin function and clear the SACSEN bit to "0" to place the \overline{SCSA} pin into a floating condition. **SPIA Master/Slave Connection** The SPIA function in the device offers the following features: - · Full duplex synchronous data transfer - Both Master and Slave modes - LSB first or MSB first data transmission modes - · Transmission complete flag - · Rising or falling active clock edge The status of the SPIA interface pins is determined by a number of factors such as whether the device is in the master or slave mode and upon the condition of certain control bits such as SACSEN and SPIAEN. Rev. 1.20 169 November 19, 2019 ## **SPIA Registers** There are three internal registers which control the overall operation of the SPIA interface. These are the SPIAD data register and two registers, SPIAC0 and SPIAC1. | Register | | Bit | | | | | | | | | | |----------|--------|--------|----------|--------|-------|--------|--------|---------|--|--|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | SPIAC0 | SASPI2 | SASPI1 | SASPI0 | _ | _ | _ | SPIAEN | SPIAICF | | | | | SPIAC1 | _ | _ | SACKPOLB | SACKEG | SAMLS | SACSEN | SAWCOL | SATRF | | | | | SPIAD | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | **SPIA Register List** ## **SPIA Data Register** The SPIAD register is used to store the data being transmitted and
received. Before the device writes data to the SPIA bus, the actual data to be transmitted must be placed in the SPIAD register. After the data is received from the SPIA bus, the device can read it from the SPIAD register. Any transmission or reception of data from the SPIA bus must be made via the SPIAD register. ### SPIAD Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----|-----| | Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | R/W | POR | Х | Х | Х | Х | Х | Х | Х | Х | "x": unknown Bit 7~0 **D7~D0**: SPIA data register bit 7~bit 0 #### **SPIA Control Registers** There are also two control registers for the SPIA interface, SPIAC0 and SPIAC1. The SPIAC0 register is used to control the enable/disable function and to set the data transmission clock frequency. The SPIAC1 register is used for other control functions such as LSB/MSB selection, write collision flag etc. Rev. 1.20 170 November 19, 2019 ### SPIAC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|--------|--------|--------|---|---|---|--------|---------| | Name | SASPI2 | SASPI1 | SASPI0 | _ | _ | _ | SPIAEN | SPIAICF | | R/W | R/W | R/W | R/W | _ | _ | _ | R/W | R/W | | POR | 1 | 1 | 1 | _ | _ | _ | 0 | 0 | Bit 7~5 SASPI2~SASPI0: SPIA Operating Mode Control 000: SPIA master mode; SPIA clock is f_{SYS}/4 001: SPIA master mode; SPIA clock is f_{SYS}/16 010: SPIA master mode; SPIA clock is f_{SYS}/64 011: SPIA master mode; SPIA clock is f_{SUB} 100: SPIA master mode; SPIA clock is CTM0 CCRP match frequency/2 101: SPIA slave mode 11x: Unimplemented These bits are used to control the SPIA Master/Slave selection and the SPIA Master clock frequency. The SPIA clock is a function of the system clock but can also be chosen to be sourced from CTM0 and f_{SUB}. If the SPIA Slave Mode is selected then the clock will be supplied by an external Master device. Bit 4~2 Unimplemented, read as "0" Bit 1 SPIAEN: SPIA Enable Control 0: Disable 1: Enable The bit is the overall on/off control for the SPIA interface. When the SPIAEN bit is cleared to zero to disable the SPIA interface, the SDIA, SDOA, SCKA and $\overline{\text{SCSA}}$ lines will lose their SPIA function and the SPIA operating current will be reduced to a minimum value. When the bit is high the SPIA interface is enabled. Bit 0 SPIAICF: SPIA Incomplete Flag 0: SPIA incomplete condition is not occurred 1: SPIA incomplete condition is occured This bit is only available when the SPIA is configured to operate in an SPIA slave mode. If the SPIA operates in the slave mode with the SPIAEN and SACSEN bits both being set high but the SCSA line is pulled high by the external master device before the SPIA data transfer is completely finished, the SPIAICF bit will be set high together with the SATRF bit. When this condition occurs, the corresponding interrupt will occur if the interrupt function is enabled. However, the SATRF bit will not be set high if the SPIAICF bit is set high by software application program. #### SPIAC1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|----------|--------|-------|--------|--------|-------| | Name | _ | _ | SACKPOLB | SACKEG | SAMLS | SACSEN | SAWCOL | SATRF | | R/W | _ | _ | R/W | R/W | R/W | R/W | R/W | R/W | | POR | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 Unimplemented, read as "0" Bit 5 SACKPOLB: SPIA clock line base condition selection 0: The SCKA line will be high when the clock is inactive 1: The SCKA line will be low when the clock is inactive The SACKPOLB bit determines the base condition of the clock line, if the bit is high, then the SCKA line will be low when the clock is inactive. When the SACKPOLB bit is low, then the SCKA line will be high when the clock is inactive. Bit 4 SACKEG: SPIA SCKA clock active edge type selection SACKPOLB=0 0: SCKA has high base level with data capture on SCKA rising edge 1: SCKA has high base level with data capture on SCKA falling edge SACKPOLB=1 Rev. 1.20 171 November 19, 2019 0: SCKA has low base level with data capture on SCKA falling edge 1: SCKA has low base level with data capture on SCKA rising edge The SACKEG and SACKPOLB bits are used to setup the way that the clock signal outputs and inputs data on the SPIA bus. These two bits must be configured before a data transfer is executed otherwise an erroneous clock edge may be generated. The SACKPOLB bit determines the base condition of the clock line, if the bit is high, then the SCKA line will be low when the clock is inactive. When the SACKPOLB bit is low, then the SCKA line will be high when the clock is inactive. The SACKEG bit determines active clock edge type which depends upon the condition of the SACKPOLB bit. Bit 3 SAMLS: SPIA data shift order 0: LSB first 1: MSB first This is the data shift select bit and is used to select how the data is transferred, either MSB or LSB first. Setting the bit high will select MSB first and low for LSB first. Bit 2 SACSEN: SPIA SCSA pin control 0: Disable 1: Enable The SACSEN bit is used as an enable/disable for the \overline{SCSA} pin. If this bit is low, then the \overline{SCSA} pin will be disabled and placed into a floating condition. If the bit is high the \overline{SCSA} pin will be enabled and used as a select pin. Bit 1 SAWCOL: SPIA write collision flag 0: No collision 1: Collision The SAWCOL flag is used to detect if a data collision has occurred. If this bit is high it means that data has been attempted to be written to the SPIAD register during a data transfer operation. This writing operation will be ignored if data is being transferred. The bit can be cleared to zero by the application program. Bit 0 SATRF: SPIA Transmit/Receive complete flag 0: SPIA data is being transferred 1: SPIA data transmission is completed The SATRF bit is the Transmit/Receive Complete flag and is set "1" automatically when an SPIA data transmission is completed, but must set to zero by the application program. It can be used to generate an interrupt. #### **SPIA Communication** After the SPIA interface is enabled by setting the SPIAEN bit high, then in the Master Mode, when data is written to the SPIAD register, transmission/reception will begin simultaneously. When the data transfer is complete, the SATRF flag will be set automatically, but must be cleared using the application program. In the Slave Mode, when the clock signal from the master has been received, any data in the SPIAD register will be transmitted and any data on the SDIA pin will be shifted into the SPIAD register. The master should output an SCSA signal to enable the slave device before a clock signal is provided. The slave data to be transferred should be well prepared at the appropriate moment relative to the SCKA signal depending upon the configurations of the SACKPOLB bit and SACKEG bit. The accompanying timing diagram shows the relationship between the slave data and SACK signal for various configurations of the SACKPOLB and SACKEG bits. The SPIA will continue to function if the clock source used by the SPIA interface is still active. The SPIA will continue to function in certain IDLE Modes if the clock source used by the SPIA interface is still active. Rev. 1.20 November 19, 2019 #### SPIA Slave Mode Timing - SACKEG=0 Note: For SPIA slave mode, if <u>SPIAEN=1</u> and SACSEN=0, SPIA is always enabled and ignores the <u>SCSA</u> level. SPIA Slave Mode Timing - SACKEG=1 Rev. 1.20 173 November 19, 2019 **SPIA Transfer Control Flow Chart** Rev. 1.20 174 November 19, 2019 #### SPIA Bus Enable/Disable To enable the SPIA bus, set SACSEN=1 and \overline{SCSA} =0, then wait for data to be written into the SPIAD (TXRX buffer) register. For the Master Mode, after data has been written to the SPIAD (TXRX buffer) register, then transmission or reception will start automatically. When all the data has been transferred the SATRF bit should be set. For the Slave Mode, when clock pulses are received on SCKA, data in the TXRX buffer will be shifted out or data on SDIA will be shifted in. When the SPIA bus is disabled, SCKA, SDIA, SDOA, SCSAcan become I/O pins or other pin-shared functions using the corresponding pin-shared control bits. ## **SPIA Operation Steps** All communication is carried out using the 4-line interface for either Master or Slave Mode. The SACSEN bit in the SPIAC1 register controls the overall function of the SPIA interface. Setting this bit high will enable the SPIA interface by allowing the \overline{SCSA} line to be active, which can then be used to control the SPIA interface. If the SACSEN bit is low, the SPIA interface will be disabled and the \overline{SCSA} line will be in a floating condition and can therefore not be used for control of the SPIA interface. If the SACSEN bit and the SPIAEN bit in the SPIAC0 register are set high, this will place the SDIA line in a floating condition and the SDOA line high. If in Master Mode the SCKA line will be either high or low depending upon the clock polarity selection bit SACKPOLB in the SPIAC1 register. If in Slave Mode the SCKA line will be in a floating condition. If SPIAEN is low then the bus will be disabled and \overline{SCSA} , SDIA, SDOA and SCKA will all become I/O pins or the other functions using the corresponding pin-shared control bits. In the Master Mode the Master will always generate the clock signal. The clock and data transmission will be initiated after data has been written into the SPIAD register. In the Slave Mode, the clock signal will be received from an external master device for both data transmission and reception. The following sequences show the order to be followed for data transfer in both Master and Slave Mode. #### **Master Mode:** - Step 1 Select the clock source and Master mode using the SASPI2~SASPI0 bits in the SPIAC0 control register. - Step 2 Setup the SACSEN bit and setup the SAMLS bit to choose if the data is MSB or LSB first, this must be same as the Slave device. - Step 3 Setup the SPIAEN bit in the SPIAC0
control register to enable the SPIA interface. - For write operations: write the data to the SPIAD register, which will actually place the data into the TXRX buffer. Then use the SCKA and SCSA lines to output the data. After this go to step 5. For read operations: the data transferred in on the SDIA line will be stored in the TXRX buffer until all the data has been received at which point it will be latched into the SPIAD register. - Step 5 Check the SAWCOL bit if set high then a collision error has occurred so return to step 4. If equal to zero then go to the following step. - Step 6 Check the SATRF bit or wait for a SPIA serial bus interrupt. Rev. 1.20 175 November 19, 2019 - Step 7 Read data from the SPIAD register. - Step 8 Clear SATRF. - Step 9 Go to step 4. #### Slave Mode: - Step 1 Select the SPIA Slave mode using the SASPI2~SASPI0 bits in the SPIAC0 control register. - Step 2 Setup the SACSEN bit and setup the SAMLS bit to choose if the data is MSB or LSB first, this setting must be the same with the Master device. - Step 3 Setup the SPIAEN bit in the SPIAC0 control register to enable the SPIA interface. - Step 4 For write operations: write the data to the SPIAD register, which will actually place the data into the TXRX buffer. Then wait for the master clock SCKA and SCSA signal. After this, go to step 5. For read operations: the data transferred in on the SDIA line will be stored in the TXRX buffer until all the data has been received at which point it will be latched into the SPIAD register. - Step 5 Check the SAWCOL bit if set high then a collision error has occurred so return to step 4. If equal to zero then go to the following step. - Step 6 Check the SATRF bit or wait for a SPIA serial bus interrupt. - Step 7 Read data from the SPIAD register. - Step 8 Clear SATRF. - Step 9 Go to step 4. #### **Error Detection** The SAWCOL bit in the SPIAC1 register is provided to indicate errors during data transfer. The bit is set by the SPIA serial Interface but must be cleared by the application program. This bit indicates a data collision has occurred which happens if a write to the SPIAD register takes place during a data transfer operation and will prevent the write operation from continuing. Rev. 1.20 176 November 19, 2019 ## Interrupts Interrupts are an important part of any microcontroller system. When an external event or an internal function such as a Timer Module requires microcontroller attention, their corresponding interrupt will enforce a temporary suspension of the main program allowing the microcontroller to direct attention to their respective needs. The device contains several external interrupt and internal interrupt functions. The external interrupts are generated by the action of the external INT0~INT3 pins, while the internal interrupts are generated by various internal functions such as the Timer Modules (TM), Time Bases, Low Voltage Detector (LVD), EEPROM, A/D Converter, Electronic Paper Display (EPD), SPIA and the USIM module. ## **Interrupt Registers** Overall interrupt control, which basically means the setting of request flags when certain microcontroller conditions occur and the setting of interrupt enable bits by the application program, is controlled by a series of registers, located in the Special Purpose Data Memory. The registers fall into three categories. The first is the INTC0~INTC3 registers which setup the primary interrupts, the second is the MFI0~MFI2 registers which setup the Multi-function interrupts. Finally there is an INTEG register to setup the external interrupts trigger edge type. Each register contains a number of enable bits to enable or disable individual registers as well as interrupt flags to indicate the presence of an interrupt request. The naming convention of these follows a specific pattern. First is listed an abbreviated interrupt type, then the (optional) number of that interrupt followed by either an "E" for enable/disable bit or "F" for request flag. | Function | Enable Bit | Request Flag | Note | |----------------|------------|--------------|--------| | Global | EMI | _ | _ | | INTn Pin | INTnE | INTnF | n=0~3 | | Multi-function | MFnE | MFnF | n=0~2 | | Time Base | TBnE | TBnF | n=0~1 | | LVD | LVE | LVF | _ | | EEPROM | DEE | DEF | _ | | USIM | USIME | USIMF | _ | | SPIA | SPIAE | SPIAF | _ | | A/D Converter | ADE | ADF | _ | | EPD | EPDRFF | EPDRFE | _ | | EPD | EPDCPF | EPDCPE | _ | | | CTMnPE | CTMnPF | n=0~1 | | TM | CTMnAE | CTMnAF | 11-0~1 | | I IVI | STMPE | STMPF | | | | STMAE | STMAF | _ | Interrupt Register Bit Naming Conventions | Register | | Bit | | | | | | | | | | |----------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--| | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | INTEG | INT3S1 | INT3S0 | INT2S1 | INT2S0 | INT1S1 | INT1S0 | INT0S1 | INT0S0 | | | | | INTC0 | _ | USIMF | INT1F | INT0F | USIME | INT1E | INT0E | EMI | | | | | INTC1 | MF2F | MF1F | MF0F | SPIAF | MF2E | MF1E | MF0E | SPIAE | | | | | INTC2 | INT3F | INT2F | TB1F | TB0F | INT3E | INT2E | TB1E | TB0E | | | | | INTC3 | _ | EPDRFF | EPDCPF | ADF | _ | EPDRFE | EPDCPE | ADE | | | | | MFI0 | CTM1AF | CTM1PF | CTM0AF | CTM0PF | CTM1AE | CTM1PE | CTM0AE | CTM0PE | | | | | MFI1 | _ | _ | STMAF | STMPF | _ | _ | STMAE | STMPE | | | | | MFI2 | _ | _ | DEF | LVF | _ | _ | DEE | LVE | | | | **Interrupt Register List** Rev. 1.20 177 November 19, 2019 ### • INTEG Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|--------|--------|--------|--------|--------|--------|--------|--------| | Name | INT3S1 | INT3S0 | INT2S1 | INT2S0 | INT1S1 | INT1S0 | INT0S1 | INT0S0 | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 INT3S1~INT3S0: Interrupt Edge Control for INT3 Pin 00: Disable 01: Rising edge 10: Falling edge 11: Rising and falling edges Bit 5~4 INT2S1~INT2S0: Interrupt Edge Control for INT2 Pin 00: Disable 01: Rising edge 10: Falling edge 11: Rising and falling edges Bit 3~2 INT1S1~INT1S0: Interrupt Edge Control for INT1 Pin 00: Disable 01: Rising edge 10: Falling edge 11: Rising and falling edges Bit 1~0 INT0S1~INT0S0: Interrupt Edge Control for INT0 Pin 00: Disable 01: Rising edge 10: Falling edge 11: Rising and falling edges ## • INTC0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|-------|-------|-------|-------|-------|-------|-----| | Name | _ | USIMF | INT1F | INT0F | USIME | INT1E | INT0E | EMI | | R/W | _ | R/W | POR | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 Unimplemented, read as "0" Bit 6 USIMF: USIM Interrupt Request Flag 0: No request1: Interrupt request Bit 5 INT1F: External Interrupt 1 Request Flag 0: No request1: Interrupt request Bit 4 INT0F: External Interrupt 0 Request Flag 0: No request 1: Interrupt request Bit 3 USIME: USIM Interrupt Control 0: Disable 1: Enable Bit 2 INT1E: External Interrupt 1 Control 0: Disable 1: Enable Bit 1 INT0E: External Interrupt 0 Control 0: Disable 1: Enable Bit 0 **EMI**: Global Interrupt Control 0: Disable 1: Enable Rev. 1.20 178 November 19, 2019 ### • INTC1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|-------|------|------|------|-------| | Name | MF2F | MF1F | MF0F | SPIAF | MF2E | MF1E | MF0E | SPIAE | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 MF2F: Multi-function Interrupt 2 Request Flag 0: No request1: Interrupt request Bit 6 MF1F: Multi-function Interrupt 1 Request Flag 0: No request1: Interrupt request Bit 5 MF0F: Multi-function Interrupt 0 Request Flag 0: No request1: Interrupt request Bit 4 SPIAF: SPIA Interrupt Request Flag 0: No request1: Interrupt request Bit 3 MF2E: Multi-function Interrupt 2 Control 0: Disable 1: Enable Bit 2 MF1E: Multi-function Interrupt 1 Control 0: Disable 1: Enable Bit 1 MF0E: Multi-function Interrupt 0 Control 0: Disable 1: Enable Bit 0 SPIAE: SPIA Interrupt Control 0: Disable 1: Enable ## • INTC2 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|-------|------|------|-------|-------|------|------| | Name | INT3F | INT2F | TB1F | TB0F | INT3E | INT2E | TB1E | TB0E | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 INT3F: External Interrupt 3 Request Flag 0: No request1: Interrupt request Bit 6 INT2F: External Interrupt 2 Request Flag 0: No request1: Interrupt request Bit 5 TB1F: Time Base 1 Interrupt Request Flag 0: No request1: Interrupt request Bit 4 TB0F: Time Base 0 Interrupt Request Flag 0: No request1: Interrupt request Bit 3 INT3E: External Interrupt 3 Control 0: Disable 1: Enable Bit 2 INT2E: External Interrupt 2 Control 0: Disable 1: Enable Bit 1 TB1E: Time Base 1 Interrupt Control 0: Disable 1: Enable Bit 0 **TB0E**: Time Base 0 Interrupt Control 0: Disable 1: Enable #### • INTC3 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|--------|--------|-----|---|--------|--------|-----| | Name | _ | EPDRFF | EPDCPF | ADF | _ | EPDRFE | EPDCPE | ADE | | R/W | _ | R/W | R/W | R/W | _ | R/W | R/W | R/W | | POR | _ | 0 | 0 | 0 | _ | 0 | 0 | 0 | Bit 7 Unimplemented, read as "0" Bit 6 **EPDRFF**: EPD refresh finished interrupt request flag 0: No request1: Interrupt request Bit 5 **EPDCPF**: EPD Charge pump voltage stable interrupt request flag 0: No request1: Interrupt request Bit 4 ADF: A/D Converter interrupt request flag 0: No request1: Interrupt request Bit 3 Unimplemented, read as "0" Bit 2 **EPDRFE**: EPD refresh finished interrupt control 0: Disable 1: Enable Bit 1 **EPDCPE**: EPD Charge pump voltage stable interrupt control 0: Disable 1: Enable Bit 0 ADE: A/D Converter interrupt control 0: Disable 1: Enable ## MFI0 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|--------|--------|--------|--------|--------|--------|--------|--------| | Name | CTM1AF | CTM1PF | CTM0AF | CTM0PF | CTM1AE | CTM1PE | CTM0AE | CTM0PE | | R/W | POR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7 CTM1AF: CTM1 Comparator A match interrupt request flag 0: No request1: Interrupt request Bit 6 CTM1PF: CTM1 Comparator P match interrupt request flag 0: No request 1: Interrupt request Bit
5 CTM0AF: CTM0 Comparator A match interrupt request flag 0: No request1: Interrupt request Rev. 1.20 180 November 19, 2019 Bit 4 CTM0PF: CTM0 Comparator P match interrupt request flag 0: No request1: Interrupt request Bit 3 CTM1AE: CTM1 Comparator A match interrupt control 0: Disable 1: Enable Bit 2 CTM1PE: CTM1 Comparator P match interrupt control 0: Disable 1: Enable Bit 1 CTM0AE: CTM0 Comparator A match interrupt control 0: Disable 1: Enable Bit 0 CTM0PE: CTM0 Comparator P match interrupt control 0: Disable 1: Enable #### • MFI1 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|-------|-------|---|---|-------|-------| | Name | _ | _ | STMAF | STMPF | _ | _ | STMAE | STMPE | | R/W | _ | _ | R/W | R/W | _ | _ | R/W | R/W | | POR | _ | _ | 0 | 0 | | _ | 0 | 0 | Bit 7~6 Unimplemented, read as "0" Bit 5 STMAF: STM Comparator A match interrupt request flag 0: No request1: Interrupt request Bit 4 STMPF: STM Comparator P match interrupt request flag 0: No request1: Interrupt request Bit 3~2 Unimplemented, read as "0" Bit 1 STMAE: STM Comparator A match interrupt control 0: Disable 1: Enable Bit 0 STMPE: STM Comparator P match interrupt control 0: Disable 1: Enable #### MFI2 Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|-----|-----|---|---|-----|-----| | Name | - | _ | DEF | LVF | _ | _ | DEE | LVE | | R/W | _ | _ | R/W | R/W | _ | _ | R/W | R/W | | POR | _ | _ | 0 | 0 | _ | _ | 0 | 0 | Bit 7~6 Unimplemented, read as "0" Bit 5 **DEF**: Data EEPROM interrupt request flag 0: No request1: Interrupt request Bit 4 LVF: LVD interrupt request flag 0: No request1: Interrupt request Bit 3~2 Unimplemented, read as "0" Bit 1 **DEE**: Data EEPROM interrupt control 0: Disable1: Enable Bit 0 LVE: LVD interrupt control 0: Disable 1: Enable #### **Interrupt Operation** When the conditions for an interrupt event occur, such as a TM Comparator P, Comparator A match or an EEPROM Write cycle ends etc., the relevant interrupt request flag will be set. Whether the request flag actually generates a program jump to the relevant interrupt vector is determined by the condition of the interrupt enable bit. If the enable bit is set high then the program will jump to its relevant vector; if the enable bit is zero then although the interrupt request flag is set an actual interrupt will not be generated and the program will not jump to the relevant interrupt vector. The global interrupt enable bit, if cleared to zero, will disable all interrupts. When an interrupt is generated, the Program Counter, which stores the address of the next instruction to be executed, will be transferred onto the stack. The Program Counter will then be loaded with a new address which will be the value of the corresponding interrupt vector. The microcontroller will then fetch its next instruction from this interrupt vector. The instruction at this vector will usually be a "JMP" which will jump to another section of program which is known as the interrupt service routine. Here is located the code to control the appropriate interrupt. The interrupt service routine must be terminated with a "RETI", which retrieves the original Program Counter address from the stack and allows the microcontroller to continue with normal execution at the point where the interrupt occurred. The various interrupt enable bits, together with their associated request flags, are shown in the accompanying diagrams with their order of priority. Some interrupt sources have their own individual vector while others share the same multi-function interrupt vector. Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the global interrupt enable bit, EMI bit will be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if other interrupt requests occur during this interval, although the interrupt will not be immediately serviced, the request flag will still be recorded. If an interrupt requires immediate servicing while the program is already in another interrupt service routine, the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired, the stack must be prevented from becoming full. In case of simultaneous requests, the accompanying diagram shows the priority that is applied. All of the interrupt request flags when set will wake-up the device if it is in SLEEP or IDLE Mode, however to prevent a wake-up from occurring the corresponding flag should be set before the device is in SLEEP or IDLE Mode. Rev. 1.20 182 November 19, 2019 #### **External Interrupt** The external interrupts are controlled by signal transitions on the pins INT0~INT3. An external interrupt request will take place when the external interrupt request flags, INT0F~INT3F, are set, which will occur when a transition, whose type is chosen by the edge select bits, appears on the external interrupt pins. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and respective external interrupt enable bit, INT0E~INT3E, must first be set. Additionally the correct interrupt edge type must be selected using the INTEG register to enable the external interrupt function and to choose the trigger edge type. As the external interrupt pins are pin-shared with I/O pins, they can only be configured as external interrupt pins if their external interrupt enable bit in the corresponding interrupt register has been set and the external interrupt pin is selected by the corresponding pin-shared function selection bits. The pin must also be setup as an input by setting the corresponding bit in the port control register. When the interrupt is enabled, the stack is not full and the correct transition type appears on the external interrupt pin, a subroutine call to the external interrupt vector, will take place. When the interrupt is serviced, the external interrupt request flags, INT0F~INT3F, will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-high resistor selections on the external interrupt pins will remain valid even if the pin is used as an Rev. 1.20 183 November 19, 2019 external interrupt input. The INTEG register is used to select the type of active edge that will trigger the external interrupt. A choice of either rising or falling or both edge types can be chosen to trigger an external interrupt. Note that the INTEG register can also be used to disable the external interrupt function. #### **Multi-function Interrupt** Within the device there are seven Multi-function interrupts. Unlike the other independent interrupts, these interrupts have no independent source, but rather are formed from other existing interrupt sources, namely the TM interrupts, LVD interrup and EEPROM write operation interrupt. A Multi-function interrupt request will take place when any of the Multi-function interrupt request flags MFnF are set. The Multi-function interrupt flags will be set when any of their included functions generate an interrupt request flag. To allow the program to branch to its respective interrupt vector address, when the Multi-function interrupt is enabled and the stack is not full, and either one of the interrupts contained within each of Multi-function interrupt occurs, a subroutine call to one of the Multi-function interrupt vectors will take place. When the interrupt is serviced, the related Multi-Function request flag will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts. However, it must be noted that, although the Multi-function Interrupt request flags will be automatically reset when the interrupt is serviced, the request flags from the original source of the Multi-function interrupts will not be automatically reset and must be manually reset by the application program. #### **Timer Module Interrupts** The Compact and Standard type TMs each has two interrupts, one comes from the comparator A match situation and the other comes from the comparator P match situation. All of the TM interrupts are contained within the Multi-function Interrupts. For all of the TM types there are two interrupt request flags and two enable control bits. A TM interrupt request will take place when any of the TM request flags are set, a situation which occurs when a TM comparator P or A match situation happens. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, respective TM Interrupt enable bit, and relevant Multi-function Interrupt enable bit, MFnE, must first be set. When the interrupt is enabled, the stack is not full and a TM comparator match situation occurs, a subroutine call to the relevant Multi-function Interrupt vector locations, will take place. When the TM interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts. However, only the related MFnF flag will be automatically cleared. As the TM interrupt request flags will not be automatically cleared, they have to be cleared by the application program. ### LVD Interrupt The Low Voltage Detector Interrupt is contained within the Multi-function Interrupt. A LVD Interrupt request will take place when the LVD Interrupt request flag, LVF, is set, which occurs when the Low Voltage Detector function detects a low power supply voltage. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, Low Voltage Interrupt enable bit, LVE, and associated Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to the Multi-function Interrupt vector, will take place. When the Low Voltage Interrupt
is serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the Multi-function interrupt request flag will be also automatically cleared. As the LVF flag will not be automatically cleared, it has to be cleared by the application program. Rev. 1.20 184 November 19, 2019 #### **EEPROM Interrupt** The EEPROM Interrupt is contained within the Multi-function Interrupt. An EEPROM Interrupt request will take place when the EEPROM Interrupt request flag, DEF, is set, which occurs when an EEPROM Write cycle ends. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and EEPROM Interrupt enable bit, DEE, and associated Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not full and an EEPROM Write cycle ends, a subroutine call to the respective EEPROM Interrupt vector will take place. When the EEPROM Interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the Multi-function interrupt request flag will be also automatically cleared. As the DEF flag will not be automatically cleared, it has to be cleared by the application program. #### A/D Converter Interrupt The A/D Converter Interrupt is controlled by the termination of an A/D conversion process. An A/D Converter Interrupt request will take place when the A/D Converter Interrupt request flag, ADF, is set, which occurs when the A/D conversion process finishes. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and A/D Converter Interrupt enable bit, ADE, must first be set. When the interrupt is enabled, the stack is not full and the A/D conversion process has ended, a subroutine call to the A/D Converter Interrupt vector, will take place. When the interrupt is serviced, the A/D Converter Interrupt flag, ADF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts. ### **Universal Serial Interface Module Interrupt** The Universal Serial Interface Module Interrupt, also known as the USIM interrupt, will take place when the USIM Interrupt request flag, USIMF, is set. As the USIM interface can operate in three modes which are SPI mode, I²C mode and UART mode, the USIMF flag can be set by different conditions depending on the selected interface mode. If the SPI or I²C mode is selected, the USIM interrupt can be triggered when a byte of data has been received or transmitted by the USIM SPI or I²C interface, or an I²C slave address match occurs, or an I²C bus time-out occurs. If the UART mode is selected, several individual UART conditions including a transmitter data register empty, transmitter idle, receiver data available, receiver overrun, address detect and an RX pin wake-up, can generate a USIM interrupt with the USIMF flag bit set high. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the Serial Interface Interrupt enable bit, USIME, must first be set. When the interrupt is enabled, the stack is not full and any of the above described situations occurs, a subroutine call to the respective Interrupt vector, will take place. When the interrupt is serviced, the Universal Serial Interface Interrupt flag, USIMF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts. Note that if the USIM interrupt is triggered by the UART interface, after the interrupt has been serviced, the UUSR register flags will only be cleared when certain actions are taken by the UART, the details of which are given in the UART section. #### **SPIA Interface Interrupt** An SPIA Interrupt request will take place when the SPIA Interrupt request flag, SPIAF, is set, which occurs when a byte of data has been received or transmitted by the SPIA interface. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the Serial Interface Interrupt enable bit, SPIAE, must first be set. When the interrupt is enabled, Rev. 1.20 185 November 19, 2019 the stack is not full and a byte of data has been transmitted or received by the SPIA interface, a subroutine call to the respective Interrupt vector will take place. When the SPIA Interface Interrupt is serviced, the SPIAF flag will be automatically cleared, the EMI bit will also be automatically cleared to disable other interrupts. #### **EPD Charge Pump Voltage Ready Interrupt** An EPD Charge Pump Voltage Ready Interrupt request will take place when the EPD Charge Pump Voltage Ready Interrupt request flag, EPDCPF, is set. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the EPD Charge Pump Voltage Ready Interrupt enable bit, EPDCPE, must first be set. When the interrupt is enabled, the stack is not full and the EPD Charge pump voltage stable, a subroutine call to the respective Interrupt vector will take place. When the EPD Charge Pump Voltage Ready Interrupt is serviced, the EPDCPF flag will be automatically cleared, the EMI bit will also be automatically cleared to disable other interrupts. #### **EPD Refresh Finished Interrupt** An EPD Refresh Finished Interrupt request will take place when the EPD refresh finished Interrupt request flag, EPDRFF, is set. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the EPD Refresh Finished Interrupt enable bit, EPDRFE, must first be set. When the interrupt is enabled, the stack is not full and the EPD refresh finished, a subroutine call to the respective Interrupt vector, will take place. When the Refresh Finished Interrupt is serviced, the EPDRFF flag will be automatically cleared, the EMI bit will also be automatically cleared to disable other interrupts. #### **Time Base Interrupts** The function of the Time Base Interrupts is to provide regular time signal in the form of an internal interrupt. They are controlled by the overflow signals from their respective timer functions. When these happens their respective interrupt request flags, TB0F or TB1F will be set. To allow the program to branch to their respective interrupt vector addresses, the global interrupt enable bit, EMI, and Time Base enable bits, TB0E or TB1E, must first be set. When the interrupt is enabled, the stack is not full and the Time Base overflows, a subroutine call to their respective vector locations will take place. When the interrupt is serviced, the respective interrupt request flag, TB0F or TB1F, will be automatically cleared, the EMI bit will also be automatically cleared to disable other interrupts. The purpose of the Time Base Interrupt is to provide an interrupt signal at fixed time periods. Its clock source, f_{PSC0} or f_{PSC1} , originates from the internal clock source $f_{LXT}/8$ and then passes through a divider, the division ratio of which is selected by programming the appropriate bits in the TB0C and TB1C registers to obtain longer interrupt periods whose value ranges. Rev. 1.20 186 November 19, 2019 #### • PSCnR Register (n=0~1) | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|---|---|---|---|---|--------| | Name | _ | _ | _ | _ | _ | _ | _ | PSCnEN | | R/W | _ | _ | _ | _ | _ | _ | _ | R/W | | POR | _ | _ | _ | _ | _ | _ | _ | 0 | Bit 7~1 Unimplemented, read as "0" Bit 0 **PSCnEN**: Prescaler n clock enable control 0: Disable 1: Enable This PSCnEN bit is the Prescaler n clock enable/disable control bit. When the Prescaler clock is disabled, it can reduce extra power consumption. Prescaler n clock is sourced from the LXT oscillator output frequency of f_{LXT}/8. ### • TB0C Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|---|---|---|---|------|------|------| | Name | TB0ON | _ | _ | _ | _ | TB02 | TB01 | TB00 | | R/W | R/W | _ | _ | _ | _ | R/W | R/W | R/W | | POR | 0 | _ | _ | _ | _ | 0 | 0 | 0 | Bit 7 **TB0ON**: Time Base 0 Control 0: Disable 1: Enable Bit 6~3 Unimplemented, read as "0" Bit 2~0 **TB02~TB00**: Select Time Base 0 Time-out Period $\begin{array}{l} 000:\ 2^8/f_{PSC0} \\ 001:\ 2^9/f_{PSC0} \\ 010:\ 2^{10}/f_{PSC0} \\ 011:\ 2^{11}/f_{PSC0} \\ 100:\ 2^{12}/f_{PSC0} \\ 101:\ 2^{13}/f_{PSC0} \\ 110:\ 2^{14}/f_{PSC0} \\ 111:\ 2^{15}/f_{PSC0} \end{array}$ #### • TB1C Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------|---|---|---|---|------|------|------| | Name | TB10N | _ | _ | _ | _ | TB12 | TB11 | TB10 | | R/W | R/W | _ | _ | _ | _ | R/W | R/W | R/W | | POR | 0 | _ | _ | _ | _ | 0 | 0 | 0 | Bit 7 **TB1ON**: Time Base 1 Control 0: Disable 1: Enable Bit 6~3 Unimplemented, read as "0" Bit 2~0 **TB12~TB10**: Select Time Base 1 Time-out Period $\begin{array}{l} 000:\ 2^8/f_{PSC1} \\ 001:\ 2^9/f_{PSC1} \\ 010:\ 2^{10}/f_{PSC1} \\ 011:\ 2^{11}/f_{PSC1} \\ 100:\ 2^{12}/f_{PSC1} \\ 100:\ 2^{12}/f_{PSC1} \\ 101:\ 2^{13}/f_{PSC1} \\ 110:\ 2^{14}/f_{PSC1} \\ 111:\ 2^{15}/f_{PSC1} \end{array}$ ### **Interrupt Wake-up Function** Each of the interrupt functions has the capability of waking up the microcontroller when in the SLEEP or IDLE Mode. A wake-up is generated when an interrupt request flag changes from low to high and is independent of whether the interrupt is enabled or not. Therefore, even though the device is in the SLEEP or IDLE Mode and its system oscillator stopped, situations such as external edge transitions on the external interrupt pins or a low power supply voltage may cause their respective interrupt flag to be set high and consequently generate an interrupt. Care must therefore be taken if spurious wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then the corresponding interrupt request flag should be set high before the device enters the SLEEP or IDLE Mode. The interrupt enable bits have no effect on the interrupt wake-up
function. #### **Programming Considerations** By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being serviced, however, once an interrupt request flag is set, it will remain in this condition in the interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by the application program. Where a certain interrupt is contained within a Multi-function interrupt, then when the interrupt service routine is executed, as only the Multi-function interrupt request flags, MFnF, will be automatically cleared, the individual request flag for the function needs to be cleared by the application program. It is recommended that programs do not use the "CALL" instruction within the interrupt service subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately. If only one stack is left and the interrupt is not well controlled, the original control sequence will be damaged once a CALL subroutine is executed in the interrupt subroutine. Every interrupt has the capability of waking up the microcontroller when it is in SLEEP or IDLE Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is required to prevent a certain interrupt from waking up the microcontroller then its respective request flag should be first set high before enter SLEEP or IDLE Mode. As only the Program Counter is pushed onto the stack, then when the interrupt is serviced, if the contents of the accumulator, status register or other registers are altered by the interrupt service program, their contents should be saved to the memory at the beginning of the interrupt service routine. To return from an interrupt subroutine, either a RET or RETI instruction may be executed. The RETI instruction in addition to executing a return to the main program also automatically sets the EMI bit high to allow further interrupts. The RET instruction however only executes a return to the main program leaving the EMI bit in its present zero state and therefore disabling the execution of further interrupts. Rev. 1.20 188 November 19, 2019 ## Low Voltage Detector - LVD The device has a Low Voltage Detector function, also known as LVD. This enabled the device to monitor the power supply voltage, V_{DD} , and provide a warning signal should it fall below a certain level. This function may be especially useful in battery applications where the supply voltage will gradually reduce as the battery ages, as it allows an early warning battery low signal to be generated. The Low Voltage Detector also has the capability of generating an interrupt signal. #### **LVD Register** The Low Voltage Detector function is controlled using a single register with the name LVDC. Four bits in this register, VLVD3 \sim VLVD0, are used to select one of sixteen fixed voltages below which a low voltage condition will be determined. A low voltage condition is indicated when the LVDO bit is set. If the LVDO bit is low, this indicates that the V_{DD} voltage is above the preset low voltage value. The LVDEN bit is used to control the overall on/off function of the low voltage detector. Setting the bit high will enable the low voltage detector. Clearing the bit to zero will switch off the internal low voltage detector circuits. As the low voltage detector will consume a certain amount of power, it may be desirable to switch off the circuit when not in use, an important consideration in power sensitive battery powered applications. #### LVDC Register | Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|---|---|------|-------|-------|-------|-------|-------| | Name | _ | _ | LVDO | LVDEN | VLVD3 | VLVD2 | VLVD1 | VLVD0 | | R/W | _ | _ | R | R/W | R/W | R/W | R/W | R/W | | POR | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | Bit 7~6 Unimplemented, read as "0" Bit 5 LVDO: LVD Output Flag 0: No Low Voltage Detect 1: Low Voltage Detect Bit 4 LVDEN: Low Voltage Detector Control 0: Disable 1: Enable Bit 3~0 VLVD3~VLVD0: Select LVD Voltage 0000: 1.8V 0001: 1.9V 0010: 2.0V 0011: 2.1V 0100: 2.2V 0101: 2.3V 0110: 2.4V 0110: 2.4V 0111: 2.5V 1000: 2.6V 1000. 2.0 V 1001: 2.7V 1010: 2.8V 1011: 2.9V 1100: 3.0V 1101: 3.3V 1110: 3.6V 1111: 4.0V #### **LVD Operation** The Low Voltage Detector function operates by comparing the power supply voltage, V_{DD} , with a pre-specified voltage level stored in the LVDC register. This has a range of between 1.8V and 4.0V. When the power supply voltage, V_{DD} , falls below this pre-determined value, the LVDO bit will be set high indicating a low power supply voltage condition. When the device is in the SLEEP mode, the low voltage detector will be disabled even if the LVDEN bit is high. After enabling the Low Voltage Detector, a time delay $t_{\rm LVDS}$ should be allowed for the circuitry to stabilise before reading the LVDO bit. Note also that as the $V_{\rm DD}$ voltage may rise and fall rather slowly, at the voltage nears that of $V_{\rm LVD}$, there may be multiple bit LVDO transitions. The Low Voltage Detector has its own interrupt which is contained within one of the Multi-function interrupts, providing an alternative means of low voltage detection, in addition to polling the LVDO bit. The interrupt will only be generated after a delay of $t_{\rm LVD}$ after the LVDO bit has been set high by a low voltage condition. When the device is in the SLEEP mode, the low voltage detector will be disabled even if the LVDEN bit is high. In this case, the LVF interrupt request flag will be set, causing an interrupt to be generated if $V_{\rm DD}$ falls below the preset LVD voltage. This will cause the device to wake-up from the IDLE Mode, however if the Low Voltage Detector wake up function is not required then the LVF flag should be first set high before the device enters the IDLE Mode. ## **Configuration Options** Configuration options refer to certain options within the MCU that are programmed into the device during the programming process. During the development process, these options are selected using the HT-IDE software development tools. All options must be defined for proper system function, the details of which are shown in the table. | No. | Options | | | |-------------------|--|--|--| | Oscillator Option | | | | | 1 | HIRC frequency selection:
f _{HIRC} – 4MHz, 8MHz or 12MHz | | | Note: When the HIRC has been configured at a frequency shown in this table, the HIRC1 and HIRC0 bits should also be setup to select the same frequency to achieve the HIRC frequency accuracy specified in the A.C. Characteristics. Rev. 1.20 190 November 19, 2019 ## **Application Circuits** Note: VDHO and VDLO pins boost capacitor can be sized by electronic paper size. #### **Instruction Set** #### Introduction Central to the successful operation of any microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to perform certain operations. In the case of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to enable programmers to implement their application with the minimum of programming overheads. For easier understanding of the various instruction codes, they have been subdivided into several functional groupings. #### **Instruction Timing** Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are required. One instruction cycle is equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions would be implemented within 0.5µs and branch or call instructions would be implemented within 1µs. Although instructions which require one more cycle to implement are generally limited to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions which involve manipulation of the Program Counter Low register or PCL will also take one more cycle to implement. As instructions which change the contents of the PCL will imply a direct jump to that new address, one more cycle will be required. Examples of such instructions would be "CLR PCL" or "MOV PCL, A". For the case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then this will also take one more cycle, if no skip is involved then only one cycle is required. ### Moving and Transferring Data The transfer of data within the microcontroller program is one of the most frequently used operations. Making use of several kinds of MOV instructions, data can be transferred from registers to the Accumulator and vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most important data transfer applications is to receive data from the input ports and transfer data to the output ports. #### **Arithmetic Operations** The ability to perform certain arithmetic operations and data manipulation is a necessary feature of most microcontroller applications. Within the Holtek microcontroller instruction set are a range of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for subtraction. The increment and decrement instructions such as INC, INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the values in the destination specified. Rev. 1.20 192 November 19, 2019 ### **Logical and Rotate Operation** The standard logical operations such as AND, OR, XOR and CPL all have their own instruction within the Holtek microcontroller instruction set. As with the case of most instructions involving data manipulation, data must pass through the Accumulator which may involve additional
programming steps. In all logical data operations, the zero flag may be set if the result of the operation is zero. Another form of logical data manipulation comes from the rotate instructions such as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for serial port programming applications where data can be rotated from an internal register into the Carry bit from where it can be examined and the necessary serial bit set high or low. Another application which rotate data operations are used is to implement multiplication and division calculations. #### **Branches and Control Transfer** Program branching takes the form of either jumps to specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subroutine call, the program must return to the instruction immediately when the subroutine has been carried out. This is done by placing a return instruction "RET" in the subroutine which will cause the program to jump back to the address right after the CALL instruction. In the case of a JMP instruction, the program simply jumps to the desired location. There is no requirement to jump back to the original jumping off point as in the case of the CALL instruction. One special and extremely useful set of branch instructions are the conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program will continue with the next instruction or skip over it and jump to the following instruction. These instructions are the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits. #### Bit Operations The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek microcontrollers. This feature is especially useful for output port bit programming where individual bits or port pins can be directly set high or low using either the "SET [m].i" or "CLR [m].i" instructions respectively. The feature removes the need for programmers to first read the 8-bit output port, manipulate the input data to ensure that other bits are not changed and then output the port with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used. #### **Table Read Operations** Data storage is normally implemented by using registers. However, when working with large amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program Memory to be setup as a table where data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be referenced and retrieved from the Program Memory. #### Other Operations In addition to the above functional instructions, a range of other instructions also exist such as the "HALT" instruction for Power-down operations and instructions to control the operation of the Watchdog Timer for reliable program operations under extreme electric or electromagnetic environments. For their relevant operations, refer to the functional related sections. Rev. 1.20 193 November 19, 2019 ## **Instruction Set Summary** The instructions related to the data memory access in the following table can be used when the desired data memory is located in Data Memory sector 0. #### **Table Conventions** x: Bits immediate data m: Data Memory address A: Accumulator i: 0~7 number of bits addr: Program memory address | Mnemonic | Description | Cycles | Flag Affected | |----------------|---|-------------------|----------------------| | Arithmetic | | | - | | ADD A,[m] | Add Data Memory to ACC | 1 | Z, C, AC, OV, SC | | ADDM A,[m] | Add ACC to Data Memory | 1 Note | Z, C, AC, OV, SC | | ADD A,x | Add immediate data to ACC | 1 | Z, C, AC, OV, SC | | ADC A,[m] | Add Data Memory to ACC with Carry | 1 | Z, C, AC, OV, SC | | ADCM A,[m] | Add ACC to Data memory with Carry | 1 Note | Z, C, AC, OV, SC | | SUB A,x | Subtract immediate data from the ACC | 1 | Z, C, AC, OV, SC, CZ | | SUB A,[m] | Subtract Data Memory from ACC | 1 | Z, C, AC, OV, SC, CZ | | SUBM A,[m] | Subtract Data Memory from ACC with result in Data Memory | 1 Note | Z, C, AC, OV, SC, CZ | | SBC A,x | Subtract immediate data from ACC with Carry | 1 | Z, C, AC, OV, SC, CZ | | SBC A,[m] | Subtract Data Memory from ACC with Carry | 1 | Z, C, AC, OV, SC, CZ | | SBCM A,[m] | Subtract Data Memory from ACC with Carry, result in Data Memory | 1 Note | Z, C, AC, OV, SC, CZ | | DAA [m] | Decimal adjust ACC for Addition with result in Data Memory | 1 Note | С | | Logic Operatio | n | | | | AND A,[m] | Logical AND Data Memory to ACC | 1 | Z | | OR A,[m] | Logical OR Data Memory to ACC | 1 | Z | | XOR A,[m] | Logical XOR Data Memory to ACC | 1 | Z | | ANDM A,[m] | Logical AND ACC to Data Memory | 1 Note | Z | | ORM A,[m] | Logical OR ACC to Data Memory | 1 Note | Z | | XORM A,[m] | Logical XOR ACC to Data Memory | 1 Note | Z | | AND A,x | Logical AND immediate Data to ACC | 1 | Z | | OR A,x | Logical OR immediate Data to ACC | 1 | Z | | XOR A,x | Logical XOR immediate Data to ACC | 1 | Z | | CPL [m] | Complement Data Memory | 1 Note | Z | | CPLA [m] | Complement Data Memory with result in ACC | 1 | Z | | Increment & De | ecrement | | | | INCA [m] | Increment Data Memory with result in ACC | 1 | Z | | INC [m] | Increment Data Memory | 1 Note | Z | | DECA [m] | Decrement Data Memory with result in ACC | 1 | Z | | DEC [m] | Decrement Data Memory | 1 ^{Note} | Z | | Rotate | | | | | RRA [m] | Rotate Data Memory right with result in ACC | 1 | None | | RR [m] | Rotate Data Memory right | 1 ^{Note} | None | | RRCA [m] | Rotate Data Memory right through Carry with result in ACC | 1 | С | | RRC [m] | Rotate Data Memory right through Carry | 1 ^{Note} | С | | RLA [m] | Rotate Data Memory left with result in ACC | 1 | None | | RL [m] | Rotate Data Memory left | 1 ^{Note} | None | | RLCA [m] | Rotate Data Memory left through Carry with result in ACC | 1 | С | | RLC [m] | Rotate Data Memory left through Carry | 1 Note | С | Rev. 1.20 194 November 19, 2019 | Mnemonic | Description | Cycles | Flag Affected | |---------------|---|-------------------|---------------| | Data Move | | | | | MOV A,[m] | Move Data Memory to ACC | 1 | None | | MOV [m],A | Move ACC to Data Memory | 1 ^{Note} | None | | MOV A,x | Move immediate data to ACC | 1 | None | | Bit Operation | 1 | | | | CLR [m].i | Clear bit of Data Memory | 1 ^{Note} | None | | SET [m].i | Set bit of Data Memory | 1 ^{Note} | None | | Branch Oper | ation | | | | JMP addr | Jump unconditionally | 2 | None | | SZ [m] | Skip if Data Memory is zero | 1 ^{Note} | None | | SZA [m] | Skip if Data Memory is zero with data movement to ACC | 1 ^{Note} | None | | SZ [m].i | Skip if bit i of Data Memory is zero | 1 ^{Note} | None | | SNZ [m] | Skip if Data Memory is not zero | 1 ^{Note} | None | | SNZ [m].i | Skip if bit i of Data Memory is not zero | 1 ^{Note} | None | | SIZ [m] | Skip if increment Data Memory is zero | 1 ^{Note} | None | | SDZ [m] | Skip if decrement Data Memory is zero | 1 ^{Note} | None | | SIZA [m] | Skip if increment Data Memory is zero with result in ACC | 1 ^{Note} | None | | SDZA [m] | Skip if decrement Data Memory is zero with result in ACC | 1 ^{Note} | None | | CALL addr | Subroutine call | 2 | None | | RET | Return from subroutine | 2 | None | | RET A,x | Return from subroutine and load immediate data to ACC | 2 | None | | RETI | Return from interrupt | 2 | None | | Table Read C | Operation | | | | TABRD [m] | Read table (specific page) to TBLH and Data Memory | 2 ^{Note} | None | | TABRDL [m] | Read table (last page) to TBLH and Data Memory | 2 ^{Note} | None | | ITABRD [m] | Increment table pointer TBLP first and Read table to TBLH and Data Memory | 2 ^{Note} | None | | ITABRDL [m] | Increment table pointer TBLP first and Read table (last page) to TBLH and Data Memory | 2 ^{Note} | None | | Miscellaneou | ıs | | | | NOP | No operation | 1 | None | | CLR [m] | Clear Data Memory | 1 ^{Note} | None | | SET [m] | Set Data Memory | 1 ^{Note} | None | | CLR WDT | Clear Watchdog Timer | 1 | TO, PDF | | SWAP [m] | Swap nibbles of Data Memory | 1 ^{Note} | None | | SWAPA [m] | Swap nibbles of Data Memory with result in ACC | 1 | None | | HALT | Enter power down mode | 1 | TO, PDF | - Note: 1. For skip instructions, if the result of the comparison involves a skip then up to three cycles are required, if no skip takes place only one cycle is required. - 2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution. - 3. For the "CLR WDT" instruction the TO and PDF flags may be affected by the execution status. The TO and PDF flags are cleared after the "CLR WDT" instructions is executed. Otherwise the TO and PDF flags remain unchanged. Rev. 1.20 195 November 19, 2019 ### **Extended Instruction Set** The extended instructions are used to support the full range address access for the data memory. When the accessed data memory is located in any data memory sections except sector 0, the extended instruction can be used to access the data memory instead of using the indirect addressing access to improve the CPU firmware performance. | Mnemonic | Description | Cycles | Flag Affected | |----------------|---|-------------------|----------------------| | Arithmetic | | | | | LADD A,[m] | Add Data Memory to ACC | 2 | Z, C, AC, OV, SC | | LADDM A,[m] |
Add ACC to Data Memory | 2 ^{Note} | Z, C, AC, OV, SC | | LADC A,[m] | Add Data Memory to ACC with Carry | 2 | Z, C, AC, OV, SC | | LADCM A,[m] | Add ACC to Data memory with Carry | 2 ^{Note} | Z, C, AC, OV, SC | | LSUB A,[m] | Subtract Data Memory from ACC | 2 | Z, C, AC, OV, SC, CZ | | LSUBM A,[m] | Subtract Data Memory from ACC with result in Data Memory | 2 ^{Note} | Z, C, AC, OV, SC, CZ | | LSBC A,[m] | Subtract Data Memory from ACC with Carry | 2 | Z, C, AC, OV, SC, CZ | | LSBCM A,[m] | Subtract Data Memory from ACC with Carry, result in Data Memory | 2 ^{Note} | Z, C, AC, OV, SC, CZ | | LDAA [m] | Decimal adjust ACC for Addition with result in Data Memory | 2 ^{Note} | С | | Logic Operatio | n | | | | LAND A,[m] | Logical AND Data Memory to ACC | 2 | Z | | LOR A,[m] | Logical OR Data Memory to ACC | 2 | Z | | LXOR A,[m] | Logical XOR Data Memory to ACC | 2 | Z | | LANDM A,[m] | Logical AND ACC to Data Memory | 2 ^{Note} | Z | | LORM A,[m] | Logical OR ACC to Data Memory | 2 ^{Note} | Z | | LXORM A,[m] | Logical XOR ACC to Data Memory | 2 ^{Note} | Z | | LCPL [m] | Complement Data Memory | 2 ^{Note} | Z | | LCPLA [m] | Complement Data Memory with result in ACC | 2 | Z | | Increment & De | ecrement | | | | LINCA [m] | Increment Data Memory with result in ACC | 2 | Z | | LINC [m] | Increment Data Memory | 2 ^{Note} | Z | | LDECA [m] | Decrement Data Memory with result in ACC | 2 | Z | | LDEC [m] | Decrement Data Memory | 2 ^{Note} | Z | | Rotate | | | | | LRRA [m] | Rotate Data Memory right with result in ACC | 2 | None | | LRR [m] | Rotate Data Memory right | 2 ^{Note} | None | | LRRCA [m] | Rotate Data Memory right through Carry with result in ACC | 2 | С | | LRRC [m] | Rotate Data Memory right through Carry | 2 ^{Note} | С | | LRLA [m] | Rotate Data Memory left with result in ACC | 2 | None | | LRL [m] | Rotate Data Memory left | 2 ^{Note} | None | | LRLCA [m] | Rotate Data Memory left through Carry with result in ACC | 2 | С | | LRLC [m] | Rotate Data Memory left through Carry | 2 ^{Note} | С | | Data Move | | | | | LMOV A,[m] | Move Data Memory to ACC | 2 | None | | LMOV [m],A | Move ACC to Data Memory | 2 ^{Note} | None | | Bit Operation | | | | | LCLR [m].i | Clear bit of Data Memory | 2 ^{Note} | None | | LSET [m].i | Set bit of Data Memory | 2 ^{Note} | None | Rev. 1.20 196 November 19, 2019 | Mnemonic | Description | Cycles | Flag Affected | |---------------|---|-------------------|---------------| | Branch | | | | | LSZ [m] | Skip if Data Memory is zero | 2 ^{Note} | None | | LSZA [m] | Skip if Data Memory is zero with data movement to ACC | 2 ^{Note} | None | | LSNZ [m] | Skip if Data Memory is not zero | 2 ^{Note} | None | | LSZ [m].i | Skip if bit i of Data Memory is zero | 2 ^{Note} | None | | LSNZ [m].i | Skip if bit i of Data Memory is not zero | 2 ^{Note} | None | | LSIZ [m] | Skip if increment Data Memory is zero | 2 ^{Note} | None | | LSDZ [m] | Skip if decrement Data Memory is zero | 2 ^{Note} | None | | LSIZA [m] | Skip if increment Data Memory is zero with result in ACC | 2 ^{Note} | None | | LSDZA [m] | Skip if decrement Data Memory is zero with result in ACC | 2 ^{Note} | None | | Table Read | | | | | LTABRD [m] | Read table to TBLH and Data Memory | 3 ^{Note} | None | | LTABRDL [m] | Read table (last page) to TBLH and Data Memory | 3 ^{Note} | None | | LITABRD [m] | Increment table pointer TBLP first and Read table to TBLH and Data Memory | 3 ^{Note} | None | | LITABRDL [m] | Increment table pointer TBLP first and Read table (last page) to TBLH and Data Memory | 3 ^{Note} | None | | Miscellaneous | s | | | | LCLR [m] | Clear Data Memory | 2 ^{Note} | None | | LSET [m] | Set Data Memory | 2 ^{Note} | None | | LSWAP [m] | Swap nibbles of Data Memory | 2 ^{Note} | None | | LSWAPA [m] | Swap nibbles of Data Memory with result in ACC | 2 | None | Note: 1. For these extended skip instructions, if the result of the comparison involves a skip then up to four cycles are required, if no skip takes place two cycles is required. Rev. 1.20 197 November 19, 2019 ^{2.} Any extended instruction which changes the contents of the PCL register will also require three cycles for execution. ### **Instruction Definition** ADC A,[m] Add Data Memory to ACC with Carry Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC + [m] + C$ Affected flag(s) OV, Z, AC, C, SC ADCM A,[m] Add ACC to Data Memory with Carry Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The result is stored in the specified Data Memory. Operation $[m] \leftarrow ACC + [m] + C$ Affected flag(s) OV, Z, AC, C, SC ADD A,[m] Add Data Memory to ACC Description The contents of the specified Data Memory and the Accumulator are added. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C, SC ADD A,x Add immediate data to ACC Description The contents of the Accumulator and the specified immediate data are added. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC + x$ Affected flag(s) OV, Z, AC, C, SC ADDM A,[m] Add ACC to Data Memory Description The contents of the specified Data Memory and the Accumulator are added. The result is stored in the specified Data Memory. Operation $[m] \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C, SC AND A,[m] Logical AND Data Memory to ACC Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "AND" [m]$ Affected flag(s) Z AND A,x Logical AND immediate data to ACC Description Data in the Accumulator and the specified immediate data perform a bit wise logical AND operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC$ "AND" x Affected flag(s) Z ANDM A,[m] Logical AND ACC to Data Memory Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND operation. The result is stored in the Data Memory. Operation $[m] \leftarrow ACC "AND" [m]$ Affected flag(s) Z Rev. 1.20 198 November 19, 2019 CALL addr Subroutine call Description Unconditionally calls a subroutine at the specified address. The Program Counter then increments by 1 to obtain the address of the next instruction which is then pushed onto the stack. The specified address is then loaded and the program continues execution from this new address. As this instruction requires an additional operation, it is a two cycle instruction. Operation Stack \leftarrow Program Counter + 1 Program Counter ← addr Affected flag(s) None **CLR [m]** Clear Data Memory Description Each bit of the specified Data Memory is cleared to 0. Operation $[m] \leftarrow 00H$ Affected flag(s) None CLR [m].i Clear bit of Data Memory Description Bit i of the specified Data Memory is cleared to 0. Operation [m].i \leftarrow Affected flag(s) None **CLR WDT** Clear Watchdog Timer Description The TO, PDF flags and the WDT are all cleared. Operation WDT cleared $TO \leftarrow 0$ $PDF \leftarrow 0$ Affected flag(s) TO, PDF **CPL [m]** Complement Data Memory Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which previously contained a 1 are changed to 0 and vice versa. Operation $[m] \leftarrow \overline{[m]}$ Affected flag(s) Z **CPLA [m]** Complement Data Memory with result in ACC Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation $ACC \leftarrow [m]$ Affected flag(s) Z **DAA [m]** Decimal-Adjust ACC for addition with result in Data Memory Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag may be affected by this instruction which indicates that if the original BCD sum is greater than 100, it allows multiple precision decimal addition. Operation $[m] \leftarrow ACC + 00H \text{ or}$ $[m] \leftarrow ACC + 06H \text{ or}$ $[m] \leftarrow ACC + 60H \text{ or}$ $[m] \leftarrow ACC + 66H$ Affected flag(s) C **DEC [m]** Decrement Data Memory Description Data in the specified Data Memory is decremented by 1. Operation $[m] \leftarrow [m] - 1$ Affected flag(s) Z **DECA [m]** Decrement Data Memory with result in ACC Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged. Operation $ACC \leftarrow [m] - 1$ Affected flag(s) Z **HALT** Enter power down mode Description This instruction stops the program execution and turns off the system clock. The contents of the Data Memory and registers are retained. The WDT and prescaler are cleared. The power down flag PDF is set and the WDT time-out flag TO is cleared. Operation $TO \leftarrow 0$ $PDF \leftarrow 1$ Affected flag(s) TO, PDF **INC [m]** Increment Data Memory Description Data in the specified Data Memory is incremented by 1. Operation $[m] \leftarrow [m] + 1$ Affected flag(s) Z **INCA [m]** Increment Data Memory with result in ACC Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator. The contents of the Data Memory
remain unchanged. Operation $ACC \leftarrow [m] + 1$ Affected flag(s) Z JMP addr Jump unconditionally Description The contents of the Program Counter are replaced with the specified address. Program execution then continues from this new address. As this requires the insertion of a dummy instruction while the new address is loaded, it is a two cycle instruction. Operation Program Counter ← addr Affected flag(s) None MOV A,[m] Move Data Memory to ACC Description The contents of the specified Data Memory are copied to the Accumulator. Operation $ACC \leftarrow [m]$ Affected flag(s) None **MOV A,x** Move immediate data to ACC Description The immediate data specified is loaded into the Accumulator. Operation $ACC \leftarrow x$ Affected flag(s) None MOV [m],A Move ACC to Data Memory Description The contents of the Accumulator are copied to the specified Data Memory. Operation $[m] \leftarrow ACC$ Affected flag(s) None Rev. 1.20 200 November 19, 2019 **NOP** No operation Description No operation is performed. Execution continues with the next instruction. Operation No operation Affected flag(s) None OR A,[m] Logical OR Data Memory to ACC Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "OR" [m]$ Affected flag(s) Z **OR A,x** Logical OR immediate data to ACC Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "OR" x$ Affected flag(s) Z ORM A,[m] Logical OR ACC to Data Memory Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR operation. The result is stored in the Data Memory. Operation $[m] \leftarrow ACC "OR" [m]$ Affected flag(s) Z **RET** Return from subroutine Description The Program Counter is restored from the stack. Program execution continues at the restored address. Operation Program Counter ← Stack Affected flag(s) None **RET A,x** Return from subroutine and load immediate data to ACC Description The Program Counter is restored from the stack and the Accumulator loaded with the specified immediate data. Program execution continues at the restored address. Operation Program Counter ← Stack $ACC \leftarrow x$ Affected flag(s) None **RETI** Return from interrupt Description The Program Counter is restored from the stack and the interrupts are re-enabled by setting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the RETI instruction is executed, the pending Interrupt routine will be processed before returning to the main program. Operation Program Counter ← Stack $EMI \leftarrow 1$ Affected flag(s) None RL [m] Rotate Data Memory left Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0. Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$ $[m].0 \leftarrow [m].7$ Affected flag(s) None RLA [m] Rotate Data Memory left with result in ACC The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0. Description The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation $ACC.(i+1) \leftarrow [m].i; (i=0\sim6)$ $ACC.0 \leftarrow [m].7$ Affected flag(s) None Rotate Data Memory left through Carry RLC [m] The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 Description replaces the Carry bit and the original carry flag is rotated into bit 0. Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$ $[m].0 \leftarrow C$ $C \leftarrow [m].7$ C Affected flag(s) RLCA [m] Rotate Data Memory left through Carry with result in ACC Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation $ACC.(i+1) \leftarrow [m].i; (i=0\sim6)$ $ACC.0 \leftarrow C$ $C \leftarrow [m].7$ Affected flag(s) C RR [m] Rotate Data Memory right The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7. Description Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$ $[m].7 \leftarrow [m].0$ Affected flag(s) None RRA [m] Rotate Data Memory right with result in ACC Description Data in the specified Data Memory is rotated right by 1 bit with bit 0 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation $ACC.i \leftarrow [m].(i+1); (i=0\sim6)$ $ACC.7 \leftarrow [m].0$ Affected flag(s) None RRC [m] Rotate Data Memory right through Carry The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 Description replaces the Carry bit and the original carry flag is rotated into bit 7. Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$ [m].7 ← C $C \leftarrow [m].0$ Affected flag(s) C Rev. 1.20 202 November 19, 2019 RRCA [m] Rotate Data Memory right through Carry with result in ACC Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6) $ACC.7 \leftarrow C$ $C \leftarrow [m].0$ Affected flag(s) C SBC A,[m] Subtract Data Memory from ACC with Carry Description The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $ACC \leftarrow ACC - [m] - \overline{C}$ Affected flag(s) OV, Z, AC, C, SC, CZ **SBC A, x** Subtract immediate data from ACC with Carry Description The immediate data and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $ACC \leftarrow ACC - [m] - \overline{C}$ Affected flag(s) OV, Z, AC, C, SC, CZ SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory Description The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $[m] \leftarrow ACC - [m] - C$ Affected flag(s) OV, Z, AC, C, SC, CZ **SDZ [m]** Skip if decrement Data Memory is 0 Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $[m] \leftarrow [m] - 1$ Skip if [m]=0 Affected flag(s) None **SDZA [m]** Skip if decrement Data Memory is zero with result in ACC Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0, the program proceeds with the following instruction. Operation $ACC \leftarrow [m] - 1$ Skip if ACC=0 Affected flag(s) None **SET [m]** Set Data Memory Description Each bit of the specified Data Memory is set to 1. $\begin{array}{ll} \text{Operation} & [m] \leftarrow \text{FFH} \\ \text{Affected flag(s)} & \text{None} \end{array}$ SET [m].i Set bit of Data Memory Description Bit i of the specified Data Memory is set to 1. $\begin{array}{ll} \text{Operation} & \quad [m].i \leftarrow 1 \\ \text{Affected flag(s)} & \quad \text{None} \end{array}$ **SIZ [m]** Skip if increment Data Memory is 0 Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $[m] \leftarrow [m] + 1$ Skip if [m]=0 Affected flag(s) None **SIZA [m]** Skip if increment Data Memory is zero with result in ACC Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $ACC \leftarrow [m] + 1$ Skip if ACC=0 Affected flag(s) None **SNZ [m].i** Skip if Data Memory is not 0 Description If the specified Data Memory is not 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is 0 the program proceeds with the following instruction. $Operation \qquad \qquad Skip \ if \ [m].i \neq 0$ Affected flag(s) None **SNZ [m]** Skip if Data Memory is not 0 Description If the specified Data Memory is not 0,
the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is 0 the program proceeds with the following instruction. Operation Skip if $[m] \neq 0$ Affected flag(s) None **SUB A,[m]** Subtract Data Memory from ACC Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $ACC \leftarrow ACC - [m]$ Affected flag(s) OV, Z, AC, C, SC, CZ Rev. 1.20 204 November 19, 2019 **SUBM A,[m]** Subtract Data Memory from ACC with result in Data Memory Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. $\begin{aligned} & \text{Operation} & & [m] \leftarrow ACC - [m] \\ & \text{Affected flag(s)} & & \text{OV, Z, AC, C, SC, CZ} \end{aligned}$ **SUB A,x** Subtract immediate data from ACC Description The immediate data specified by the code is subtracted from the contents of the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $ACC \leftarrow ACC - x$ Affected flag(s) OV, Z, AC, C, SC, CZ **SWAP [m]** Swap nibbles of Data Memory Description The low-order and high-order nibbles of the specified Data Memory are interchanged. Operation [m].3 \sim [m].0 \leftrightarrow [m].7 \sim [m].4 Affected flag(s) None **SWAPA [m]** Swap nibbles of Data Memory with result in ACC Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged. Operation $ACC.3 \sim ACC.0 \leftarrow [m].7 \sim [m].4$ $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$ Affected flag(s) None **SZ [m]** Skip if Data Memory is 0 Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation Skip if [m]=0 Affected flag(s) None **SZA [m]** Skip if Data Memory is 0 with data movement to ACC Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $ACC \leftarrow [m]$ Skip if [m]=0 Affected flag(s) None **SZ [m].i** Skip if bit i of Data Memory is 0 Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0, the program proceeds with the following instruction. Operation Skip if [m].i=0 Affected flag(s) None Rev. 1.20 205 November 19, 2019 **TABRD [m]** Read table (specific page) to TBLH and Data Memory Description The low byte of the program code (specific page) addressed by the table pointer pair (TBLP and TBHP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow program code (low byte)$ TBLH ← program code (high byte) Affected flag(s) None **TABRDL [m]** Read table (last page) to TBLH and Data Memory Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow \text{program code (low byte)}$ TBLH ← program code (high byte) Affected flag(s) None **ITABRD [m]** Increment table pointer low byte first and read table to TBLH and Data Memory Description Increment table pointer low byte, TBLP, first and then the program code addressed by the table pointer (TBHP and TBLP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow program code (low byte)$ TBLH ← program code (high byte) Affected flag(s) None **ITABRDL [m]** Increment table pointer low byte first and read table (last page) to TBLH and Data Memory Description Increment table pointer low byte, TBLP, first and then the low byte of the program code (last page) addressed by the table pointer (TBLP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow \text{program code (low byte)}$ TBLH ← program code (high byte) Affected flag(s) None XOR A,[m] Logical XOR Data Memory to ACC Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "XOR" [m]$ Affected flag(s) Z **XORM A,[m]** Logical XOR ACC to Data Memory Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR operation. The result is stored in the Data Memory. Operation $[m] \leftarrow ACC "XOR" [m]$ Affected flag(s) Z **XOR A,x** Logical XOR immediate data to ACC Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "XOR" x$ Affected flag(s) Z Rev. 1.20 206 November 19, 2019 #### **Extended Instruction Definition** The extended instructions are used to directly access the data stored in any data memory sections. **LADC A,[m]** Add Data Memory to ACC with Carry Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC + [m] + C$ Affected flag(s) OV, Z, AC, C, SC **LADCM A,[m]** Add ACC to Data Memory with Carry Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The result is stored in the specified Data Memory. $\begin{aligned} & \text{Operation} & & & [m] \leftarrow ACC + [m] + C \\ & \text{Affected flag(s)} & & \text{OV, Z, AC, C, SC} \end{aligned}$ LADD A,[m] Add Data Memory to ACC Description The contents of the specified Data Memory and the Accumulator are added. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C, SC **LADDM A,[m]** Add ACC to Data Memory Description The contents of the specified Data Memory and the Accumulator are added. The result is stored in the specified Data Memory. Operation $[m] \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C, SC LAND A,[m] Logical AND Data Memory to ACC Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "AND" [m]$ Affected flag(s) Z **LANDM A,[m]** Logical AND ACC to Data Memory Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND operation. The result is stored in the Data Memory. Operation $[m] \leftarrow ACC "AND" [m]$ Affected flag(s) Z LCLR [m] Clear Data Memory Description Each bit of the specified Data Memory is cleared to 0. Operation $[m] \leftarrow 00H$ Affected flag(s) None LCLR [m].i Clear bit of Data Memory Description Bit i of the specified Data Memory is cleared to 0. Operation [m].i \leftarrow 0 Affected flag(s) None LCPL [m] Complement Data Memory Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which previously contained a 1 are changed to 0 and vice versa. Operation $[m] \leftarrow [m]$ Affected flag(s) Z **LCPLA [m]** Complement Data Memory with result in ACC Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation $ACC \leftarrow [m]$ Affected flag(s) Z **LDAA [m]** Decimal-Adjust ACC for addition with result in Data Memory Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag may be affected by this instruction which indicates that if the original BCD sum is greater than 100, it allows multiple precision decimal addition. Operation $[m] \leftarrow ACC + 00H$ or $[m] \leftarrow ACC + 06H \text{ or}$ $[m] \leftarrow ACC + 60H \text{ or}$ $[m] \leftarrow ACC + 66H$ Affected flag(s) **LDEC [m]** Decrement Data Memory Description Data in the specified Data Memory is decremented by 1. Operation $[m] \leftarrow [m] - 1$ Affected flag(s) Z **LDECA [m]** Decrement Data Memory with result in ACC Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged. Operation $ACC \leftarrow [m] - 1$ Affected flag(s) Z **LINC [m]** Increment Data Memory Description Data in the specified Data Memory is incremented by 1. Operation $[m]
\leftarrow [m] + 1$ Affected flag(s) Z **LINCA [m]** Increment Data Memory with result in ACC Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged. Operation $ACC \leftarrow [m] + 1$ Affected flag(s) Z Rev. 1.20 208 November 19, 2019 **LMOV A,[m]** Move Data Memory to ACC Description The contents of the specified Data Memory are copied to the Accumulator. Operation $ACC \leftarrow [m]$ Affected flag(s) None **LMOV [m],A** Move ACC to Data Memory Description The contents of the Accumulator are copied to the specified Data Memory. $\begin{array}{ll} \text{Operation} & & [m] \leftarrow ACC \\ \text{Affected flag(s)} & & \text{None} \end{array}$ LOR A,[m] Logical OR Data Memory to ACC Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "OR" [m]$ Affected flag(s) Z **LORM A,[m]** Logical OR ACC to Data Memory Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR operation. The result is stored in the Data Memory. Operation $[m] \leftarrow ACC "OR" [m]$ Affected flag(s) Z LRL [m] Rotate Data Memory left Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0. Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$ $[m].0 \leftarrow [m].7$ Affected flag(s) None **LRLA [m]** Rotate Data Memory left with result in ACC Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6) $ACC.0 \leftarrow [m].7$ Affected flag(s) None LRLC [m] Rotate Data Memory left through Carry Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the Carry bit and the original carry flag is rotated into bit 0. Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$ $[m].0 \leftarrow C$ $C \leftarrow [m].7$ Affected flag(s) **LRLCA [m]** Rotate Data Memory left through Carry with result in ACC Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6) $ACC.0 \leftarrow C$ $C \leftarrow [m].7$ Affected flag(s) C LRR [m] Rotate Data Memory right Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7. Operation [m].i \leftarrow [m].(i+1); (i=0 \sim 6) $[m].7 \leftarrow [m].0$ Affected flag(s) None **LRRA [m]** Rotate Data Memory right with result in ACC Description Data in the specified Data Memory is rotated right by 1 bit with bit 0 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6) $ACC.7 \leftarrow [m].0$ Affected flag(s) None LRRC [m] Rotate Data Memory right through Carry Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7. Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$ $[m].7 \leftarrow C$ $C \leftarrow [m].0$ Affected flag(s) C **LRRCA [m]** Rotate Data Memory right through Carry with result in ACC Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged. Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6) $ACC.7 \leftarrow C$ $C \leftarrow [m].0$ Affected flag(s) C **LSBC A,[m]** Subtract Data Memory from ACC with Carry Description The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $ACC \leftarrow ACC - [m] - \overline{C}$ Affected flag(s) OV, Z, AC, C, SC, CZ **LSBCM A,[m]** Subtract Data Memory from ACC with Carry and result in Data Memory Description The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $[m] \leftarrow ACC - [m] - \overline{C}$ Affected flag(s) OV, Z, AC, C, SC, CZ Rev. 1.20 210 November 19, 2019 **LSDZ [m]** Skip if decrement Data Memory is 0 Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $[m] \leftarrow [m] - 1$ Skip if [m]=0 Affected flag(s) None **LSDZA [m]** Skip if decrement Data Memory is zero with result in ACC Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0, the program proceeds with the following instruction. Operation $ACC \leftarrow [m] - 1$ Skip if ACC=0 Affected flag(s) None **LSET [m]** Set Data Memory Description Each bit of the specified Data Memory is set to 1. Operation $[m] \leftarrow FFH$ Affected flag(s) None **LSET [m].i** Set bit of Data Memory Description Bit i of the specified Data Memory is set to 1. Operation $[m].i \leftarrow 1$ Affected flag(s) None **LSIZ** [m] Skip if increment Data Memory is 0 Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $[m] \leftarrow [m] + 1$ Skip if [m]=0 Affected flag(s) None **LSIZA [m]** Skip if increment Data Memory is zero with result in ACC Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $ACC \leftarrow [m] + 1$ Skip if ACC=0 Affected flag(s) None **LSNZ [m].i** Skip if Data Memory is not 0 Description If the specified Data Memory is not 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is 0 the program proceeds with the following instruction. Operation Skip if [m]. $i \neq 0$ Affected flag(s) None Rev. 1.20 211 November 19, 2019 **LSNZ [m]** Skip if Data Memory is not 0 Description If the content of the specified Data Memory is not 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is 0 the program proceeds with the following instruction. Operation Skip if $[m] \neq 0$ Affected flag(s) None **LSUB A,[m]** Subtract Data Memory from ACC Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. Operation $ACC \leftarrow ACC - [m]$ Affected flag(s) OV, Z, AC, C, SC, CZ **LSUBM A,[m]** Subtract Data Memory from ACC with result in Data Memory Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1. $\begin{aligned} & \text{Operation} & & [m] \leftarrow ACC - [m] \\ & \text{Affected flag(s)} & & \text{OV, Z, AC, C, SC, CZ} \end{aligned}$ **LSWAP [m]** Swap nibbles of Data Memory Description The low-order and high-order nibbles of the specified Data Memory are interchanged. Operation [m].3 \sim [m].0 \leftrightarrow [m].7 \sim [m].4 Affected flag(s) None **LSWAPA [m]** Swap nibbles of Data Memory with result in ACC Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged. Operation $ACC.3\sim ACC.0 \leftarrow [m].7\sim [m].4$ $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$ Affected flag(s) None **LSZ [m]** Skip if Data Memory is 0 Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next
instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation Skip if [m]=0 Affected flag(s) None **LSZA [m]** Skip if Data Memory is 0 with data movement to ACC Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction. Operation $ACC \leftarrow [m]$ Skip if [m]=0 Affected flag(s) None Rev. 1.20 212 November 19, 2019 **LSZ [m].i** Skip if bit i of Data Memory is 0 Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0, the program proceeds with the following instruction. Operation Skip if [m].i=0 Affected flag(s) None **LTABRD [m]** Read table (current page) to TBLH and Data Memory Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow \text{program code (low byte)}$ TBLH ← program code (high byte) Affected flag(s) None **LTABRDL [m]** Read table (last page) to TBLH and Data Memory Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow program code (low byte)$ TBLH ← program code (high byte) Affected flag(s) None **LITABRD [m]** Increment table pointer low byte first and read table to TBLH and Data Memory Description Increment table pointer low byte, TBLP, first and then the program code addressed by the table pointer (TBHP and TBLP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow program code (low byte)$ TBLH ← program code (high byte) Affected flag(s) None LITABRDL [m] Increment table pointer low byte first and read table (last page) to TBLH and Data Memory Description Increment table pointer low byte, TBLP, first and then the low byte of the program code (last page) addressed by the table pointer (TBLP) is moved to the specified Data Memory and the high byte moved to TBLH. Operation $[m] \leftarrow program code (low byte)$ TBLH ← program code (high byte) Affected flag(s) None **LXOR A,[m]** Logical XOR Data Memory to ACC Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR operation. The result is stored in the Accumulator. Operation $ACC \leftarrow ACC "XOR" [m]$ Affected flag(s) Z **LXORM A,[m]** Logical XOR ACC to Data Memory Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR operation. The result is stored in the Data Memory. Operation $[m] \leftarrow ACC "XOR" [m]$ Affected flag(s) Z Rev. 1.20 213 November 19, 2019 ## **Package Information** Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>. Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. - Package Information (include Outline Dimensions, Product Tape and Reel Specifications) - The Operation Instruction of Packing Materials - Carton information Rev. 1.20 214 November 19, 2019 ## 100-pin LQFP (14mm×14mm) Outline Dimensions | Symbol | | Dimensions in inch | | |----------|-------|--------------------|-------| | Syllibol | Min. | Nom. | Max. | | А | _ | 0.630 BSC | _ | | В | _ | 0.551 BSC | _ | | С | _ | 0.630 BSC | _ | | D | _ | 0.551 BSC | _ | | E | _ | 0.020 BSC | _ | | F | 0.007 | 0.009 | 0.011 | | G | 0.053 | 0.055 | 0.057 | | Н | _ | _ | 0.063 | | I | 0.002 | _ | 0.006 | | J | 0.018 | 0.024 | 0.030 | | K | 0.004 | _ | 0.008 | | α | 0° | _ | 7° | | Symbol | Dimensions in mm | | | |--------|------------------|-----------|------| | | Min. | Nom. | Max. | | A | _ | 16.00 BSC | _ | | В | _ | 14.00 BSC | _ | | С | _ | 16.00 BSC | _ | | D | _ | 14.00 BSC | _ | | E | _ | 0.50 BSC | _ | | F | 0.17 | 0.22 | 0.27 | | G | 1.35 | 1.40 | 1.45 | | Н | _ | _ | 1.60 | | I | 0.05 | _ | 0.15 | | J | 0.45 | 0.60 | 0.75 | | K | 0.09 | _ | 0.20 | | α | 0° | _ | 7° | Rev. 1.20 215 November 19, 2019 Copyright[©] 2019 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com. Rev. 1.20 216 November 19, 2019