

315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

BC66F2430

Revision: V1.10 Date: November 26, 2019

www.holtek.com

Table of Contents

Features	6
CPU Features	6
Peripheral Features	
RF Receiver Features	6
General Description	
Block Diagram	8
Pin Assignment	8
Pin Description	9
Absolute Maximum Ratings	11
D.C. Characteristics	11
Operating Voltage Characteristics	11
Standby Current Characteristics	11
Operating Current Characteristics	12
A.C. Characteristics	12
High Speed Internal Oscillator – HIRC – Frequency Accuracy	
Low Speed Internal Oscillator Characteristics – LIRC	
System Start Up Time Characteristics	13
Input/Output Characteristics	13
Memory Characteristics	15
LVR/LVD Electrical Characteristics	15
A/D Converter Electrical Characteristics	16
PGA Electrical characteristics	16
Reference Voltage Characteristics	17
RF Receiver Electrical Characteristics	17
Power-on Reset Characteristics	17
System Architecture	18
Clocking and Pipelining	18
Program Counter	19
Stack	
Arithmetic and Logic Unit – ALU	20
Flash Program Memory	
Structure	
Special Vectors	
Look-up Table	
Table Program Example	
In Circuit Programming – ICP On-Chip Debug Support – OCDS	
On-Only Debug Support - OODS	

Data Memory	24
Structure	25
General Purpose Data Memory	25
Special Purpose Data Memory	25
Special Function Register Description	27
Indirect Addressing Registers – IAR0, IAR1	
Memory Pointers – MP0, MP1	
Bank Pointer – BP	28
Accumulator – ACC	28
Program Counter Low Register – PCL	28
Look-up Table Registers – TBLP, TBHP, TBLH	28
Status Register – STATUS	29
EEPROM Data Memory	31
EEPROM Data Memory Structure	
EEPROM Registers	31
Reading Data from the EEPROM	33
Writing Data to the EEPROM	33
Write Protection	33
EEPROM Interrupt	33
Programming Considerations	34
Oscillators	35
Oscillator Overview	35
System Clock Configurations	35
Internal High Speed RC Oscillator – HIRC	
Internal 32kHz Oscillator – LIRC	36
Operating Modes and System Clocks	36
System Clocks	
System Operation Modes	37
Control Registers	38
Operating Mode Switching	40
Standby Current Considerations	44
Wake-up	44
Watchdog Timer	45
Watchdog Timer Clock Source	45
Watchdog Timer Control Register	45
Watchdog Timer Operation	46
Reset and Initialisation	47
Reset Functions	
Reset Initial Conditions	49
Input/Output Ports	52
Pull-high Resistors	
I/O Port Wake-up	
I/O Port Control Registers	
I/O Port Source and Sink Current Selection	

I/O Port Output Slew Rate Control Registers	
Pin-shared Functions	55
I/O Pin Structures	58
Programming Considerations	59
Timer Modules - TM	59
Introduction	
TM Operation	60
TM Clock Source	60
TM Interrupts	60
TM External Pins	60
TM Input/Output Pin Selection	61
Programming Considerations	61
Standard Type TM – STM	
Standard TM Operation	
Standard Type TM Register Description	
Standard Type TM Operation Modes	
Periodic Type TM – PTM	
Periodic TM Operation	
Periodic Type TM Register Description	
Periodic Type TM Operating Modes	83
Analog to Digital Converter	92
A/D Converter Overview	92
A/D Converter Register Description	93
A/D Converter Reference Voltage	96
A/D Converter Input Signals	96
A/D Converter Operation	
Conversion Rate and Timing Diagram	
Summary of A/D Conversion Steps	
Programming Considerations	
A/D Conversion Function	
A/D Conversion Programming Examples	101
RF Receiver	
RF Receiver Control Registers	103
SCOM Function for LCD	106
LCD Operation	106
LCD Bias Control	106
Interrupts	107
Interrupt Registers	
Interrupt Operation	
External Interrupts	
A/D Converter Interrupt	113
Time Base Interrupts	113
RF Data Edge Interrupt	114
Multi-function Interrupts	115

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

EEPROM Interrupt	115
LVD Interrupt	115
TM Interrupts	115
Interrupt Wake-up Function	116
Programming Considerations	116
Low Voltage Detector – LVD	117
LVD Register	117
LVD Operation	118
Application Circuits	119
Instruction Set	120
Introduction	120
Instruction Timing	120
Moving and Transferring Data	120
Arithmetic Operations	120
Logical and Rotate Operation	121
Branches and Control Transfer	121
Bit Operations	121
Table Read Operations	121
Other Operations	121
Instruction Set Summary	122
Table Conventions	
Instruction Definition	124
Package Information	133
16-pin NSOP (150mil) Outline Dimensions (Exposed Pad)	134
24 pin SSOR (450mil) Outling Dimonsions (Exposed Red)	125

Features

CPU Features

- Holtek TinyPowerTM Technology
- · Operating voltage
 - V_{DD} (MCU)
 - $-f_{SYS}$ = 32kHz: 2.2V~5.5V
 - $-f_{SYS}=16MHz: 3.3V\sim5.5V$
 - V_{DDRF} (RF)
 - $-f_{SYS}=16MHz: 4.5V\sim5.5V$
- Up to $0.25\mu s$ instruction cycle with 16MHz system clock at $V_{DD}=5V$
- · Power down and wake-up functions to reduce power consumption
- · Oscillator types:
 - Internal High Speed RC HIRC
 - Internal Low Speed 32kHz RC LIRC
- Multi-mode operation: FAST, SLOW, IDLE and SLEEP
- Fully integrated internal oscillators require no external components©
- All instructions executed in one or two instruction cycles
- · Table read instructions
- 63 powerful instructions
- 6-level subroutine nesting
- · Bit manipulation instruction

Peripheral Features

- Flash Program Memory: 2K×16
- RAM Data Memory: 128×8
- True EEPROM Memory: 64×8
- · Watchdog Timer function
- 17 bidirectional I/O lines
- Programmable I/O port source and sink current as well as slew rate
- Two pin-shared external interrupts
- Multiple Timer Modules for time measurement, input capture, compare match output or PWM output or single pulse output function
- Dual Time-Base functions for generation of fixed time interrupt signals
- 4 external channels 12-bit resolution A/D Converter
- Software controlled 4-SCOM lines LCD driver with 1/2 bias
- · Low voltage reset function
- Low voltage detect function
- Package type: 16-pin NSOP-EP, 24-pin SSOP-EP

RF Receiver Features

- Supports ASK/OOK demodulation
- Frequency band: 300MHz~450MHz
- RF Symbol Rate up to 15Ksps
- High sensitivity: -97dBm@5V, 5Ksps, 0.1%BER, 315/433MHz
- RF RX operation current consumption: less than 4mA
- Integrated Low Noise Amplifier (LNA) with on-chip super-regenerative oscillator

Rev. 1.10 6 November 26, 2019

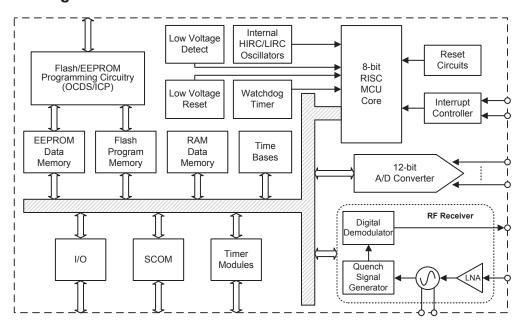
General Description

This Super-regenerative Receiver SoC MCU provides a combination of a fully featured MCU and an RF receiver function, providing them with superior flexibility for use in a wide range of wireless I/O control applications such as industrial control, consumer products, subsystem controllers, etc.

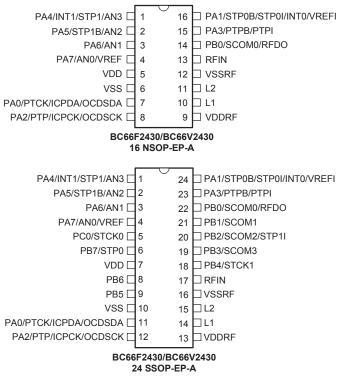
Offering users the convenience of Flash Memory multi-programming features, the device also includes a wide range of functions and features. Other memory includes an area of RAM Data Memory and an area of true EEPROM memory for storage of non-volatile data such as serial numbers, calibration data etc.

Analog features include a multi-channel 12-bit A/D converter. Multiple and extremely flexible Timer Modules provide timing, pulse generation and PWM generation functions. Protective features such as an internal Watchdog Timer, Low Voltage Reset and Low Voltage Detector coupled with excellent noise immunity and ESD protection ensure that reliable operation is maintained in hostile electrical environments.

A full choice of internal high and low oscillators is provided including two fully integrated system oscillators which require no external components for their implementation. The ability to operate and switch dynamically between a range of operating modes using different clock sources gives users the ability to optimise the conflicting demands of microcontroller performance and power consumption.


The integrated RF receiver can be used to receive On-Off keyed – OOK data in the 300MHz to 450MHz frequency band. The device will convert this RF input into a digital output signal, making it a genuine RF-in to Data-out integrated device and providing an easy to use solution for UHF receiver implementation. The RF symbol rate is up to 15Ksps. With few external components and low-current power consumption features, it provides an ideal solution for low cost and power-sensitive applications. The device contains a low-noise amplifier, a regenerative circuit, an integrated quench circuit and a baseband data-recovery circuitry.

The inclusion of flexible I/O programming features, Time-Base functions along with many other features ensure that the device will be highly capable of providing cost effective MCU Superregenerative Receiver solutions for remote wireless applications.


Rev. 1.10 7 November 26, 2019

Block Diagram

Pin Assignment

Note: 1. If the pin-shared pin functions have multiple outputs, the desired pin-shared function is determined by the corresponding software control bits.

2. The OCDSDA and OCDSCK pins are used as the OCDS dedicated pins and as such only available for the BC66V2430 device which is the OCDS EV chip for the BC66F2430 device.

Rev. 1.10 8 November 26, 2019

Pin Description

The function of each pin is listed in the following table, however the details behind how each pin is configured is contained in other sections of the datasheet. As the Pin Description table shows the situation for the package with the most pins, not all pins in the table will be available on smaller package sizes.

Pin Name	Function	ОРТ	I/T	O/T	Description
PA0/PTCK/ICPDA/	PA0	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
OCDSDA	PTCK	PAS0	ST	_	PTM clock/capture input
	ICPDA	_	ST	CMOS	ICP data/address
	OCDSDA	_	ST	CMOS	OCDS data/address pin, for EV chip only.
	PA1	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	STP0B	PAS0	_	CMOS	STM0 inverted output
PA1/STP0B/STP0I/ INT0/VREFI	STP0I	PAS0 IFS	ST	_	STM0 capture input
	INT0	PAS0 INTEG INTC0	ST	_	External interrupt 0 input
	VREFI	PAS0	AN	_	A/D Converter PGA input
PA2/PTP/ICPCK/	PA2	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
OCDSCK	PTP	PAS0	_	CMOS	PTM output
	ICPCK	_	ST	_	ICP clock
	OCDSCK	_	ST	_	OCDS clock pin, for EV chip only
PA3/PTPB/PTPI	PA3	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	PTPB	PAS0	_	CMOS	PTM inverted output
	PTPI	PAS0	ST	_	PTM capture input
	PA4	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
PA4/INT1/STP1/AN3	INT1	PAS1 INTEG INTC0	ST	_	External interrupt 1 input
	STP1	PAS1	_	CMOS	STM1 ouput
	AN3	PAS1	AN	_	A/D Converter external input 3
PA5/STP1B/AN2	PA5	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	STP1B	PAS1	_	CMOS	STM1 inverted output
	AN2	PAS1	AN	_	A/D Converter external input 2
PA6/AN1	PA6	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	AN1	PAS1	AN	_	A/D Converter external input 1

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

Pin Name	Function	ОРТ	I/T	O/T	Description
PA7/AN0/VREF	PA7	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
. , . , ,	AN0	PAS1	AN	_	A/D Converter external input 0
	VREF	PAS1	AN	_	A/D Converter external reference voltage input
PB0/SCOM0/RFDO	PB0	PBPU PBWU PBS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	SCOM0	PBS0	_	CMOS	Software LCD COM0 output
	RFDO	PBS0	_	CMOS	RF demodulator data output
PB1/SCOM1	PB1	PBPU PBWU PBS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	SCOM1	PBS0	_	CMOS	Software LCD COM1 output
PB2/SCOM2/STP1I	PB2	PBPU PBWU PBS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
B2/000M2/011 11	SCOM2	PBS0	_	CMOS	Software LCD COM2 output
	STP1I	PBS0	ST	_	STM1 capture input
PB3/SCOM3	PB3	PBPU PBWU PBS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	SCOM3	PBS0	_	CMOS	Software LCD COM3 output
PB4/STCK1	PB4	PBPU PBWU PBS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	STCK1	PBS1	ST	_	STM1 clock input
PB5	PB5	PBPU PBWU PBS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
PB6	PB6	PBPU PBWU PBS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
PB7/STP0	PB7	PBPU PBWU PBS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	STP0	PBS1	_	CMOS	STM0 output
PC0/STCK0	PC0	PCPU PCWU PCS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	STCK0	PCS0	ST	_	STM0 clock input
RFIN	RFIN	_	AN	_	RF signal input, OOK RF signal source
L1	L1		AN	AN	Connect an external LC tank
L2	L2	_	AN	AN	Connect an external LC tank
VDDRF	VDDRF		PWR	_	RF positive power supply
VSSRF	VSSRF		PWR	_	RF negative power supply
VDD	VDD		PWR	_	Positive power supply
VSS	VSS	_	PWR	_	Negative power supply, ground.

Legend: I/T: Input type;

OPT: Optional by register option;

ST: Schmitt Trigger input; AN: Analog signal; O/T: Output type; PWR: Power;

CMOS: CMOS output;

Rev. 1.10 November 26, 2019

Absolute Maximum Ratings

Supply Voltage	V_{SS} =0.3V to V_{SS} +6.0V
Input Voltage	
Storage Temperature	50°C to 125°C
Operating Temperature	40°C to 85°C
I _{OL} Total	
IoH Total	-80mA
Total Power Dissipation	500mW

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of the device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency, pin load conditions, temperature and program instruction type, etc., can all exert an influence on the measured values.

Operating Voltage Characteristics

Ta= -40°C~85°C

Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
	Parameter	V _{DD}	Conditions				Unit
V _{DD}	Operating Voltage – HIRC	_	f _{SYS} =f _{HIRC} =16MHz	3.3	_	5.5	V
V DD	Operating Voltage – LIRC	_	f _{SYS} =f _{LIRC} =32kHz	2.2	_	5.5	V

Standby Current Characteristics

Ta=25°C

Symbol	Standby Mode		Test Conditions	Min.	Тур.	Max.	Max.	Unit
Syllibol		V _{DD}	Conditions	IVIIII.			85°C	Ullit
		2.2V		_	0.2	0.6	0.7	
		3V	WDT off	_	0.2	0.8	1	μΑ
SLEEP Mode	5V		_	0.5	1	1.2		
	2.2V		_	1.2	2.4	2.9		
		3V	WDT on	_	1.5	3	3.6	μA
I _{STB}		5V		_	3	5	6	
		2.2V	f _{SUB} on	_	2.4	4	4.8	
	IDLE0 Mode – LIRC	3V		_	3	5	6	μA
IDI 54 Mada III		5V		_	5	10	12	
	IDLE1 Mode – HIRC	3.3V	f _{SUB} on, f _{SYS} =16MHz		0.6	0.8	0.96	m A
		5V		_	1.4	2	2.4	mA

Notes: When using the characteristic table data, the following notes should be taken into consideration:

- Any digital inputs are setup in a non-floating condition.
- · All measurements are taken under conditions of no load and with all peripherals in an off state.
- There are no DC current paths.
- All Standby Current values are taken after a HALT instruction execution thus stopping all instruction execution.

Rev. 1.10 11 November 26, 2019

Operating Current Characteristics

Ta=25°C

Symbol	Operating Mode		Test Conditions	Min.	Тур.	Max.	Unit
		V _{DD}	Conditions				Unit
SLOW Mode – LIRC FAST Mode – HIRC		2.2V		_	8	16	μА
	SLOW Mode – LIRC	3V	f _{SYS} =32kHz	_	10	20	
		5V		_	30	50	
	EACT Made AUDO	3.3V	f _{SYS} =16MHz	_	1.5	2.0	т Л
	FAST WOULE - FIRC	5V		_	3.2	4.8	mA

Notes: When using the characteristic table data, the following notes should be taken into consideration:

- Any digital inputs are setup in a non-floating condition.
- · All measurements are taken under conditions of no load and with all peripherals in an off state.
- There are no DC current paths.
- All Operating Current values are measured using a continuous NOP instruction program loop.

A.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency and temperature etc., can all exert an influence on the measured values.

High Speed Internal Oscillator - HIRC - Frequency Accuracy

During the program writing operation the writer will trim the HIRC oscillator at a user selected HIRC frequency and user selected voltage.

Symbol Paran	Parameter	1	Test Conditions		Тур.	Max.	Unit
	Parameter	V _{DD}	Temp.	Min.	тур.	IVIAX.	Ullit
f _{HIRC} 16MHz Writer Trimmed HIRC Frequency	5 1/	25°C	-1%	16	+1%		
	16MHz Writer Trimmed	5V	-40°C ~ 85°C	-2%	16	+2%	
	3.3V~5.5V	25°C	-2.5%	16	+2.5%	MHz	
		-40°C ~ 85°C	-3%	16	+3%		

Notes: 1. The 5V value for V_{DD} is provided as this is the fixed voltage at which the HIRC frequency is trimmed by the writer.

- 2. The row below the 5V trim voltage row is provided to show the values for the full V_{DD} range operating voltage.
- 3. The minimum and maximum tolerance values provided in the table are only for the frequency at which the writer trims the HIRC oscillator. After trimming at this chosen specific frequency any change in HIRC oscillator frequency using the oscillator register control bits by the application program will give a frequency tolerance to within $\pm 20\%$.

Low Speed Internal Oscillator Characteristics - LIRC

Ta=25°C, unless otherwise specified

Symbol Para	Doromotor	Parameter Test Conditions		Min.	Typ.	Max.	Unit
	Parameter	V _{DD}	Temp.	iviiri.	Typ.	IVIAX.	Oilit
f _{LIRC} Oscillator Frequency	2.2V~5.5V	25°C	-5%	32	+5%	141.1-	
		-40°C ~ 85°C	-10%	32	+10%	kHz	
tstart	Start Up Time	_	_	_	_	100	μs

Rev. 1.10 12 November 26, 2019

System Start Up Time Characteristics

Ta= -40°C~85°C

Comple ed	Parameter		Teset Conditions	Min	T	Mari	Unit	
Symbol	Parameter	V _{DD}	Condition	Min.	Тур.	Max.	Onit	
	System Start-up Time	_	$f_{SYS}=f_H \sim f_H/64$, $f_H=f_{HIRC}$	_	16	_	t _{sys}	
	(Wake-up from condition where f _{SYS} is off)	_	f _{SYS} =f _{SUB} =f _{LIRC}	_	2	_	t _{sys}	
	System Start-up Time	_	$f_{SYS}=f_H \sim f_H/64$, $f_H=f_{HIRC}$		2	_	t _{sys}	
t _{SST}	(Wake-up from condition where f _{sys} is on)	_	f _{SYS} =f _{SUB} =f _{LIRC}	_	2	_	t _{sys}	
	System Speed Switch Time (FAST to SLOW Mode or SLOW to FAST Mode)	_	$- \qquad \text{f}_{\text{HIRC}} \text{switches from off} \to \text{on}$		16	_	t _{HIRC}	
	System Reset Delay Time (Reset source from Power-on reset or LVR hardware reset)	_	- RR _{POR} =5V/ms		48	54	ms	
t _{RSTD}	System Reset Delay Time (LVRC/WDTC software reset)	_	_					
	System Reset Delay Time (Reset source from WDT overflow)	_	_	14	16	18	ms	
tsreset	Minimum software reset width to reset	_	_	45	90	120	μs	

- Notes: 1. For the System Start-up time values, whether f_{SYS} is on or off depends upon the mode type and the chosen f_{SYS} system oscillator. Details are provided in the System Operating Modes section.
 - 2. The time units, shown by the symbols t_{HIRC} etc. are the inverse of the corresponding frequency values as provided in the frequency tables. For example t_{HIRC} =1/ f_{HIRC} , t_{SYS} =1/ f_{SYS} etc.
 - 3. If the LIRC is used as the system clock and if it is off when in the SLEEP Mode, then an additional LIRC start up time, t_{START}, as provided in the LIRC frequency table, must be added to the t_{SST} time in the table above.
 - 4. The System Speed Switch Time is effectively the time taken for the newly activated oscillator to start up.

Input/Output Characteristics

Ta=25°C

Cumbal	Parameter		Test Conditions	Min.	Tim	Max.	Unit	
Symbol	Farameter	V_{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Ullit	
VIL	Input Low Voltage for I/O Ports	5V	_	0	_	1.5	V	
VIL	liliput Low Voltage for 1/O Ports	_	_	0	_	0.2V _{DD}	V	
V _{IH}	Input High Voltage for I/O Porte	5V	_	3.5	_	5.0	V	
VIH	V _{IH} Input High Voltage for I/O Ports	_	_	$0.8V_{DD}$	_	V_{DD}	v	
Vol	Output Low Voltage for I/O Ports	3V	I _{OL} =5mA	_	_	0.3	V	
VOL		5V	I _{OL} =10mA	_	_	0.5	V	
.,	Output High Voltage for I/O Ports	3V	I _{OH} =-2mA	2.7	_	_	V	
V он		5V	I _{OH} =-4mA	4.5	_	_	V	
		3V	\/ =0.4\/ DD\/CC[m]=0	1	2	_	m 1	
	Sink Current for I/O Pins	5V	V _{OL} =0.1V _{DD} , DRVCC[m]=0	2	4	_	mA	
loL	Sink Current for 1/O Pins	3V	V _{0I} = 0.1V _{DD} , DRVCC[m]=1	5	10	_	mA	
		5V	VOL-U. I VDD, DRVCC[III]-I	10	20	_		
		3V	\/ -0.0\/ DB\/CC[m]-0	-1	-2	_	mA	
	Source Current for I/O Dine	5V	$V_{OH}=0.9V_{DD}$, DRVCC[m]=0	-2	-4	_		
Іон	Source Current for I/O Pins	3V	\/=0.0\/ DB\/CC[m]=1	-1	-5	_		
		5V	V _{OH} =0.9V _{DD} , DRVCC[m]=1	-5	-10	_		

Rev. 1.10 13 November 26, 2019

Symbol	Parameter		Test Conditions	Min	Tim	May	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
R _{PH}	Pull-high Resistance for	3V	_	20	60	100	kΩ
T SFII	I/O Ports ^(Note)	5V	_	10	30	50	
I _{LEAK}	Input Leakage Current	3V	V _{IN} =V _{DD} or V _{IN} =V _{SS}	_	_	±1	μA
		5V	015)40 5 4 3 005		_	±1	
		3V	SLEWCn[m+1:m]=00B (n=0 or 1, m=0, 2, 4 or 6),	150	_	_	
		5V	$0.1V_{DD}$ to $0.9V_{DD}$, C_{LOAD} =20pF	380	_	_	
		3V	SLEWCn[m+1:m]=01B	_	87	_	
	Output Rising Slew Rate for I/O Pins	5V	(n=0 or 1, m=0, 2, 4 or 6), 0.1V _{DD} to 0.9V _{DD} , C _{LOAD} =20pF	_	240	_	.,,
SR _{RISE}		3V	SLEWCn[m+1:m]=10B	_	45	_	V/µs
		5V	(n=0 or 1, m=0, 2, 4 or 6), 0.1V _{DD} to 0.9V _{DD} , C _{LOAD} =20pF	_	120	_	
		3V	SLEWCn[m+1:m]=11B	_	20	_	
		5V	(n=0 or 1, m=0, 2, 4 or 6), 0.1V _{DD} to 0.9V _{DD} , C _{LOAD} =20pF	_	60	_	
		3V	SLEWCn[m+1:m]=00B	200	_	_	· V/μs
		5V	(n=0 or 1, m=0, 2, 4 or 6), 0.9V _{DD} to 0.1V _{DD} , C _{LOAD} =20pF	500	_	_	
		3V	SLEWCn[m+1:m]=01B	_	61	_	
0.0	Output Falling Slew Rate for I/O	5V	(n=0 or 1, m=0, 2, 4 or 6), 0.9V _{DD} to 0.1V _{DD} , C _{LOAD} =20pF	_	180	_	
SR _{FALL}	Pins	3V	SLEWCn[m+1:m]=10B	_	29	_	
		5V	(n=0 or 1, m=0, 2, 4 or 6), 0.9V _{DD} to 0.1V _{DD} , C _{LOAD} =20pF	_	90	_	
		3V	SLEWCn[m+1:m]=11B	_	15	_	
		5V	(n=0 or 1, m=0, 2, 4 or 6), 0.9V _{DD} to 0.1V _{DD} , C _{LOAD} =20pF	_	45	_	
		3V	ISEL[1:0]=00B	10.5	15	19.5	
		5V	1000	17.5	25	32.5	
		3V	ISEL[1:0]=01B	21	30	39	
I _{BIAS}	V _{DD} /2 Bias Current for LCD	5V	1022[1.0] 012	35	50	65	μA
IBIAS	VIDIZ BIAS CUITEIR IOI LCD	3V	 ISEL[1:0]=10B	42	60	78	μΑ
		5V	1322[1.0]=100	70	100	130	
		3V	ISEL [4:0]=44D	82.6	118	153.4	
		5V	ISEL[1:0]=11B	140	200	260	
V _{SCOM}	V _{DD} /2 Bias Voltage for LCD COM Port	2.2V~ 5.5V	No load	0.475 V _{DD}	0.500 V _{DD}	0.525 V _{DD}	V
t _{TCK}	xTCKn Input Pin Minimum Pulse Width	_	_	0.3	_	_	μs
t _{TPI}	xTPnI Input Pin Minimum Pulse Width	_	_	0.3	_	_	μs
t _{INT}	External Interrupt Input Pin Minimum Pulse Width		_	0.3	_	_	μs

Note: The R_{PH} internal pull high resistance value is calculated by connecting to ground and enabling the input pin with a pull-high resistor and then measuring the input sink current at the specified supply voltage level. Dividing the voltage by this measured current provides the R_{PH} value.

Rev. 1.10 November 26, 2019

Memory Characteristics

Ta= -40°C~85°C

Symbol	Parameter		Test Conditions	Min.	Typ	Max.	Unit	
Syllibol	Farameter	V_{DD}	Conditions	IVIIII.	Тур.	IVIAX.	UIIIL	
V _{RW}	V _{DD} for Read/Write	_	_	V_{DDmin}	_	V _{DDmax}	V	
Flash Pr	ogram/Data EEPROM Memory							
t _{DEW}	Erase/Write Cycle Time – Flash Program Memory	_			2	3	ms	
	Write Cycle Time – Data EEPROM Memory	_	_	_	4	6	ms	
I _{DDPGM}	Programming/Erase current on V _{DD}	_			_	5.0	mA	
_	Cell Endurance – Flash Program Memory	_	_	10K	_	_	E/W	
E _P	Cell Endurance – Data EEPROM Memory	_	_	100K	_	_	E/W	
t _{RETD}	ROM Data Retention Time	_	Ta=25°C	_	40	_	Year	
RAM Da	RAM Data Memory							
V _{DR} RAM Data Retention Voltage		_	Device in SLEEP Mode	1.0	_	_	V	

LVR/LVD Electrical Characteristics

Ta=25°C

Cumple of	Downwater		Test Conditions	Min	Tvn	Mari	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
		_	LVR enable, voltage select 2.1V		2.1		
	Low Voltage Deact Voltage	_	LVR enable, voltage select 2.55V	-5%	2.55	+5%	$\mid v \mid$
V _{LVR}	Low Voltage Reset Voltage	_	LVR enable, voltage select 3.15V	-5%	3.15	+5%	v
		_	LVR enable, voltage select 3.8V	1	3.8		
		_	LVD enable, voltage select 2.0V		2.0		
		_	LVD enable, voltage select 2.2V	1	2.2		
	Low Voltage Detection Voltage	_	LVD enable, voltage select 2.4V	1	2.4		
		_	LVD enable, voltage select 2.7V	-5%	2.7	+5%	$\mid \ \ \ \mid$
V _{LVD}		_	LVD enable, voltage select 3.0V	-5%	3.0	+5%	\ \
		_	LVD enable, voltage select 3.3V	1	3.3		.
		_	LVD enable, voltage select 3.6V		3.6		
		_	LVD enable, voltage select 4.0V	1	4.0		
	Operating Current	3V	LVD enable, LVR enable,		_	20	
		5V	VBGEN=0	_	20	25	μA
I _{LVRLVDBG}		3V	LVD enable, LVR enable,	_	_	25	
		5V	VBGEN=1	_	20	25	μA
I _{LVR}	Additional Current for LVR Enable	_	LVD disable, VBGEN=0	_	_	20	μA
I _{LVD}	Additional Current for LVD Enable	_	LVR disable, VBGEN=0	_	_	0.3	μA
t _{LVDS}	LVDO Stable Time	_	For LVR enable, VBGEN=0, LVD off → on	_	_	20	μs
t _{LVR}	Minimum Low Voltage Width to Reset	_	_	120	240	480	μs
t _{LVD}	Minimum Low Voltage Width to Interrupt	_	_	60	120	240	μs

Rev. 1.10 15 November 26, 2019

A/D Converter Electrical Characteristics

Ta= -40°C~85°C, unless otherwise specify

Course had	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Unit
V _{DD}	A/D Converter Operating Voltage	_	_	3.3	_	5.5	V
V _{ADI}	A/D Converter Input Voltage	_	_	0	_	V _{REF}	V
V_{REF}	A/D Converter Reference Voltage	_	_	3.3	_	V _{DD}	V
		3.3V	SAINS[3:0]=0000B, SAVRS[1:0]=01B,				
DNL	Differential Non-linearity	5V	V _{REF} =V _{DD} , t _{ADCK} =0.5µs	_		±3	LSB
DIVL	Differential Non-infeatity	3.3V	SAINS[3:0]=0000B, SAVRS[1:0]=01B,			IS	LOD
		5V	V _{REF} =V _{DD} , t _{ADCK} =10µs				
	Integral Non-linearity	3.3V	SAINS[3:0]=0000B, SAVRS[1:0]=01B,				
INL		5V	$V_{REF}=V_{DD}$, $t_{ADCK}=0.5\mu s$	_		+4	LSB
IINL		3.3V	SAINS[3:0]=0000B,		_		LOD
		5V	SAVRS[1:0]=01B, V _{REF} =V _{DD} , t _{ADCK} =10µs				
I _{ADC}	Additional Current Consumption	3V	No load (t _{ADCK} =0.5µs)	_	0.2	0.5	mA
IADC	for A/D Converter Enable	5V	140 load (tADCK-0.5µs)	_	0.3	0.6	mA
t _{ADCK}	Clock Period	_	_	0.5	_	10	μs
t _{ADS}	Sampling Time	_	_	_	4	_	tadck
t _{ADC}	Conversion Time (Including A/D Sample and Hold Time)	_	_	_	16	_	t _{ADCK}
t _{ON2ST}	A/D Converter on-to-start Time	_	_	4	_	_	μs
GERR	A/D Conversion Gain Error	3.3V	SAINS[3:0]=0000B,	-4	_	+4	LSB
GERR	A/D Conversion Gain End	5V	SAVRS[1:0]=01B, V _{REF} =V _{DD}				LSB
		SAINS[3:0]=0000B, SAVRS[1:0]=01B, V _{REF} =V _{DD}	-4	_	+4	LSB	

PGA Electrical characteristics

Ta= -40°C~85°C, unless otherwise specify

Symbol	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Syllibol	Farameter	V _{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Oilit
	Additional Current for PGA Enable	3.3V	No load		250	500	μA
I _{PGA}		5V	No load	_	250	500	
V	PGA Common Mode Voltage Range	3.3V		V _{SS} -0.3	_	V _{DD} -1.4	V
V _{СМ}		5V	_	V _{SS} -0.3	_	V _{DD} -1.4	V
V	PGA Maximum Output Voltage Range	3.3V		V _{SS} +0.1	_	V _{DD} -0.1	V
Vor		5V	_	V _{SS} +0.1	_	V _{DD} -0.1	\ \ \
Ga	PGA Gain Accuracy	_	V_{DD} =3.3V~5.5V for V_{RI} = V_{BG} , V_{DD} =3.3V~5.5V for V_{RI} = V_{REFI} ,	-5	_	+5	%

Rev. 1.10 16 November 26, 2019

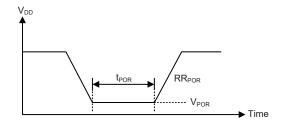
Reference Voltage Characteristics

Ta=25°C

Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
Syllibol		V _{DD}	Conditions	IVIIII.			Ullit
V_{BG}	Bandgap Reference Voltage	_	_	-5%	1.04	+5%	V

Note: The V_{BG} voltage is used as the A/D converter reference voltage input.

RF Receiver Electrical Characteristics


Ta=25°C, Freq. Band=315/433MHz, R_L =50 Ω

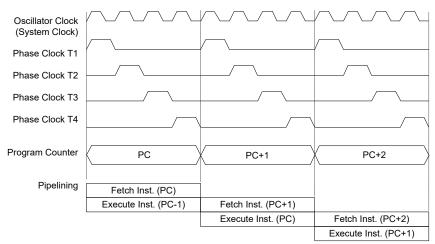
Cumbal	Parameter		Test Conditions	Min.	Tim	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	wax.	Oilit
V _{DDRF}	RF Operating Voltage	_	 Continuous operation 		_	5.0	V
I _{RF}	RF Operating Current	5V	5V Continuous operation		4	_	mA
P _{SENS}	Receiver Senstivity	5V	f _{RX} =315/433.92MHz, Symbol Rate=5Ksps, BER is 0.1% (PN9 data)	_	-97		dBm
f _{RX}	Receiver Input Frequency Range	5V	_		315/433	_	MHz
BW	RX Bandwidth	5V	5V —		1	_	MHz
SR	Symbol Rate	5V	5V —		5	_	Ksps

Power-on Reset Characteristics

Ta=25°C

Cumbal	Parameter		est Conditions	Min	Time	Max.	I Imia	
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	wax.	Unit	
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	_	_	_	_	100	mV	
RR _{POR}	V _{DD} Rising Rate to Ensure Power-on Reset	_	_	0.035	_	_	V/ms	
t _{POR}	Minimum Time for V _{DD} Stays at V _{POR} to Ensure Power-on Reset	_	_	1	_	_	ms	

Rev. 1.10 November 26, 2019


System Architecture

A key factor in the high-performance features of the Holtek range of microcontrollers is attributed to their internal system architecture. This device takes advantage of the usual features found within RISC microcontrollers providing increased speed of operation and enhanced performance. The pipelining scheme is implemented in such a way that instruction fetching and instruction execution are overlapped, hence instructions are effectively executed in one cycle, with the exception of branch or call instructions which need one more cycle. An 8-bit wide ALU is used in practically all instruction set operations, which carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions, etc. The internal data path is simplified by moving data through the Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and can be directly or indirectly addressed. The simple addressing methods of these registers along with additional architectural features ensure that a minimum of external components is required to provide a functional I/O and A/D control system with maximum reliability and flexibility. This makes the device suitable for low-cost, high-volume production for controller applications.

Clocking and Pipelining

The main system clock, derived from either a HIRC or LIRC oscillator is subdivided into four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction cycle. Although the fetching and execution of instructions takes place in consecutive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are effectively executed in one instruction cycle. The exception to this are instructions where the contents of the Program Counter are changed, such as subroutine calls or jumps, in which case the instruction will take one more instruction cycle to execute.

For instructions involving branches, such as jump or call instructions, two machine cycles are required to complete instruction execution. An extra cycle is required as the program takes one cycle to first obtain the actual jump or call address and then another cycle to actually execute the branch. The requirement for this extra cycle should be taken into account by programmers in timing sensitive applications.

System Clocking and Pipelining

Rev. 1.10 18 November 26, 2019

1	MOV A, [12H]
2	CALL DELAY
3	CPL [12H]
4	: ' '
5	:
6 DELAY:	NOP

Г	Fetch Inst. 1	Execute Inst. 1			
		Fetch Inst. 2	Execute Inst. 2		
			Fetch Inst. 3	Flush Pipeline	
				Fetch Inst. 6	Execute Inst. 6
					Fetch Inst. 7

Instruction Fetching

Program Counter

During program execution, the Program Counter is used to keep track of the address of the next instruction to be executed. It is automatically incremented by one each time an instruction is executed except for instructions, such as "JMP" or "CALL" that demand a jump to a non-consecutive Program Memory address. Only the lower 8 bits, known as the Program Counter Low Register, are directly addressable by the application program.

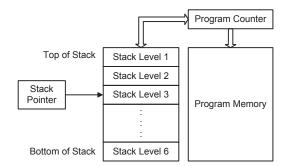
When executing instructions requiring jumps to non-consecutive addresses such as a jump instruction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control by loading the required address into the Program Counter. For conditional skip instructions, once the condition has been met, the next instruction, which has already been fetched during the present instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is obtained.

Program Counter					
Program Cou	PCL Register				
PC10)~PC8	PCL7~PCL0			

Program Counter

The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is available for program control and is a readable and writeable register. By transferring data directly into this register, a short program jump can be executed directly; however, as only this low byte is available for manipulation, the jumps are limited to the present page of memory that is 256 locations. When such program jumps are executed it should also be noted that a dummy cycle will be inserted. Manipulating the PCL register may cause program branching, so an extra cycle is needed to pre-fetch.

Stack


This is a special part of the memory which is used to save the contents of the Program Counter only. The stack has multiple levels and is neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI, the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily. However, when the stack is full, a CALL subroutine instruction can still be executed which will result in a stack overflow. Precautions should be taken to avoid such cases which might cause unpredictable program branching.

Rev. 1.10 19 November 26, 2019

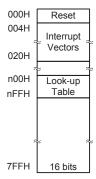
If the stack is overflow, the first Program Counter save in the stack will be lost.

Arithmetic and Logic Unit - ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU receives related instruction codes and performs the required arithmetic or logical operations after which the result will be placed in the specified register. As these ALU calculation or operations may result in carry, borrow or other status changes, the status register will be correspondingly updated to reflect these changes. The ALU supports the following functions:

- Arithmetic operations:
 ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA
- Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA
- Rotation:
 RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC
- Increment and Decrement: INCA, INC, DECA, DEC
- Branch decision: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

Rev. 1.10 20 November 26, 2019



Flash Program Memory

The Program Memory is the location where the user code or program is stored. For the device the Program Memory is Flash type, which means it can be programmed and re-programmed a large number of times, allowing the user the convenience of code modification on the same device. By using the appropriate programming tools, the Flash device offers users the flexibility to conveniently debug and develop their applications while also offering a means of field programming and updating.

Structure

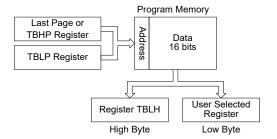
The Program Memory has a capacity of $2K \times 16$ bits. The Program Memory is addressed by the Program Counter and also contains data, table information and interrupt entries. Table data, which can be setup in any location within the Program Memory, is addressed by a separate table pointer register.

Program Memory Structure

Special Vectors

Within the Program Memory, certain locations are reserved for the reset and interrupts. The location 000H is reserved for use by the device reset for program initialisation. After a device reset is initiated, the program will jump to this location and begin execution.

Look-up Table


Any location within the Program Memory can be defined as a look-up table where programmers can store fixed data. To use the look-up table, the table pointer must first be setup by placing the address of the look up data to be retrieved in the table pointer registers, TBLP and TBHP. These registers define the total address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the Program Memory using the corresponding table read instruction such as "TABRD [m]" or "TABRDL [m]" respectively. When the instruction is executed, the lower order table byte from the Program Memory will be transferred to the user defined Data Memory register [m] as specified in the instruction. The higher order table data byte from the Program Memory will be transferred to the TBLH special register. Any unused bits in this transferred higher order byte will be read as "0".

Rev. 1.10 21 November 26, 2019

The accompanying diagram illustrates the addressing data flow of the look-up table.

Table Program Example

The following example shows how the table pointer and table data is defined and retrieved from the microcontroller. This example uses raw table data located in the Program Memory which is stored there using the ORG statement. The value at this ORG statement is "700H" which refers to the start address of the last page within the 2K words Program Memory of the device. The table pointer low byte register is setup here to have an initial value of "06H". This will ensure that the first data read from the data table will be at the Program Memory address "706H" or 6 locations after the start of the last page. Note that the value for the table pointer is referenced to the specific addrss pointed by the TBLP and TBHP registers if the "TABRD [m]" instruction is being used. The high byte of the table data which in this case is equal to zero will be transferred to the TBLH register automatically when the "TABRD [m]" instruction is executed.

Because the TBLH register is a read-only register and can not be restored, care should be taken to ensure its protection if both the main routine and Interrupt Service Routine use table read instructions. If using the table read instructions, the Interrupt Service Routines may change the value of the TBLH and subsequently cause errors if used again by the main routine. As a rule it is recommended that simultaneous use of the table read instructions should be avoided. However, in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any main routine table-read instructions. Note that all table related instructions require two instruction cycles to complete their operation.

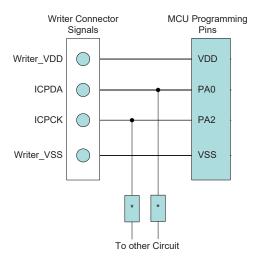
Rev. 1.10 22 November 26, 2019

Table Read Program Example

```
ds .section 'data'
tempreg1 db? ; temporary register #1
tempreg2 db? ; temporary register #2
code0 .section 'code'
                   ; initialise table pointer - note that this address is referenced
mov a,06h
mov tblp,a
                     ; to the last page or the page that thhp pointed
mov a,07h
                    ; initialise high table pointer
mov tbhp,a
                     ; it is not necessary to set thhp if executing tabrdl
tabrd tempreg1
                    ; transfers value in table referenced by table pointer
                      ; data at program memory address "706H" transferred to tempreg1 and
                      ; TBLH
dec tblp
                      ; reduce value of table pointer by one
tabrd tempreg2
                      ; transfers value in table referenced by table pointer
                      ; data at program memory address "705H" transferred to tempreg2 and
                      ; TBLH
                      ; in this example the data "1AH" is transferred to tempreg1 and
                      ; data "OFH" to tempreg2
                      ; the value "OOH" will be transferred to the high byte register TBLH
:
org 700h
                      ; sets initial address of last page
dc 00Ah,00Bh,00Ch,00Dh,00Eh,00Fh,01Ah,01Bh
```

In Circuit Programming - ICP

The provision of Flash type Program Memory provides the user with a means of convenient and easy upgrades and modifications to their programs on the same device.


As an additional convenience, Holtek has provided a means of programming the microcontroller incircuit using a 4-pin interface. This provides manufacturers with the possibility of manufacturing their circuit boards complete with a programmed or un-programmed microcontroller, and then programming or upgrading the program at a later stage. This enables product manufacturers to easily keep their manufactured products supplied with the latest program releases without removal and reinsertion of the device.

Holtek Writer Pins	MCU Programming Pins	Pin Description		
ICPDA	PA0	Programming Serial Data/Address		
ICPCK	PA2	Programming Clock		
VDD	VDD	Power Supply		
VSS	VSS	Ground		

The Program Memory and EEPROM Data Memory can be programmed serially in-circuit using this 4-wire interface. Data is downloaded and uploaded serially on a single pin with an additional line for the clock. Two additional lines are required for the power supply and one line for the reset. The technical details regarding the in-circuit programming of the device is beyond the scope of this document and will be supplied in supplementary literature.

During the programming process, the user must take care of the ICPDA and ICPCK pins for data and clock programming purposes to ensure that no other outputs are connected to these two pins.

Note: * may be resistor or capacitor. The resistance of * must be greater than $1k\Omega$ or the capacitance of * must be less than 1nF.

On-Chip Debug Support - OCDS

There is an EV chip named BC66V2430 which is used to emulate the real MCU device named BC66F2430. The EV chip device also provides an "On-Chip Debug" function to debug the real MCU device during the development process. The EV chip and the real MCU device are almost functionally compatible except for "On-Chip Debug" function. Users can use the EV chip device to emulate the real chip device behavior by connecting the OCDSDA and OCDSCK pins to the Holtek HT-IDE development tools. The OCDSDA pin is the OCDS Data/Address input/output pin while the OCDSCK pin is the OCDS clock input pin. When users use the EV chip for debugging, other functions which are shared with the OCDSDA and OCDSCK pins in the device will have no effect in the EV chip. However, the two OCDS pins which are pin-shared with the ICP programming pins are still used as the Flash Memory programming pins for ICP. For more detailed OCDS information, refer to the corresponding document named "Holtek e-Link for 8-bit MCU OCDS User's Guide".

Holtek e-Link Pins	EV Chip Pins	Pin Description
OCDSDA	OCDSDA	On-Chip Debug Support Data/Address input/output
OCDSCK	OCDSCK	On-Chip Debug Support Clock input
VDD	VDD	Power Supply
VSS	VSS	Ground

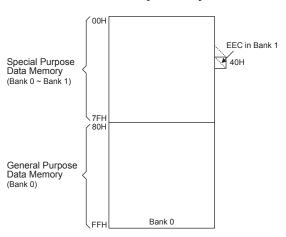
Data Memory

The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where temporary information is stored.

Categorised into two types, the first of these is an area of RAM, known as the Special Function Data Memory. These registers have fixed locations and are necessary for correct operation of the device. Many of these registers can be read from and written to directly under program control, however, some remain protected from user manipulation. The second area of Data Memory is known as the General Purpose Data Memory, which is reserved for general purpose use. All locations within this area are read and write accessible under program control.

Switching between the different Data Memory banks must be achieved by properly setting the Memory Pointers to correct value.

Rev. 1.10 24 November 26, 2019


Structure

The Data Memory is subdivided into several banks, all of which are implemented in 8-bit wide Memory. Each of the Data Memory Banks is categorized into two types, the special Purpose Data Memory and the General Purpose Data Memory.

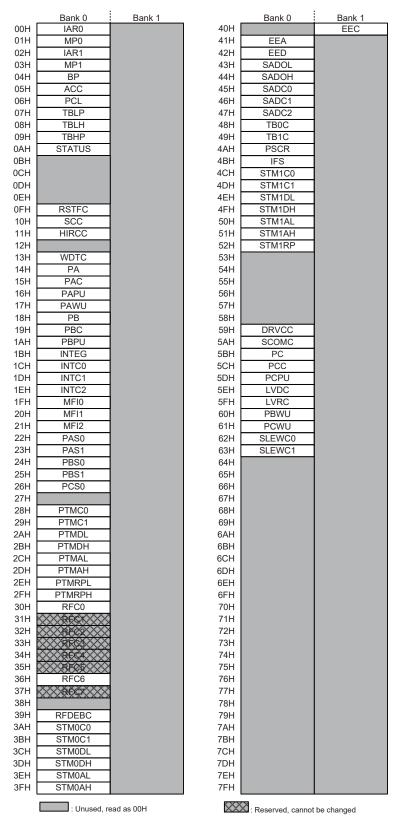
The address range of the Special Purpose Data Memory for the device is from 00H to 7FH while the General Purpose Data Memory address range is from 80H to FFH.

Special Purpose Data Memory	General Purpose Data Memory			
Located Banks	Capacity	Bank: Address		
0, 1	128×8	0: 80H~FFH		

Data Memory Summary

Data Memory Structure

General Purpose Data Memory


All microcontroller programs require an area of read/write memory where temporary data can be stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose Data Memory. This area of Data Memory is fully accessible by the user programing for both reading and writing operations. By using the bit operation instructions individual bits can be set or reset under program control giving the user a large range of flexibility for bit manipulation in the Data Memory.

Special Purpose Data Memory

This area of Data Memory is where registers, necessary for the correct operation of the microcontroller, are stored. Most of the registers are both readable and writeable but some are protected and are readable only, the details of which are located under the relevant Special Function Register section. Note that for locations that are unused, any read instruction to these addresses will return the value "00H".

Rev. 1.10 25 November 26, 2019

Special Purpose Data Memory

Rev. 1.10 26 November 26, 2019

Special Function Register Description

Most of the Special Function Register details will be described in the relevant functional section; however several registers require a separate description in this section.

Indirect Addressing Registers - IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM register space, do not actually physically exist as normal registers. The method of indirect addressing for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified. Actions on the IAR0 and IAR1 registers will result in no actual read or write operation to these registers but rather to the memory location specified by their corresponding Memory Pointers, MP0 or MP1. Acting as a pair, IAR0 and MP0 can together access data only from Bank 0 while the IAR1 register together with the MP1 register can access data from any Data Memory Bank. As the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing Registers will return a result of "00H" and writing to the registers will result in no operation.

Memory Pointers - MP0, MP1

Two Memory Pointers, known as MP0 and MP1 are provided. These Memory Pointers are physically implemented in the Data Memory and can be manipulated in the same way as normal registers providing a convenient way with which to address and track data. When any operation to the relevant Indirect Addressing Registers is carried out, the actual address that the microcontroller is directed to is the address specified by the related Memory Pointer. MP0, together with Indirect Addressing Register, IAR0, are used to access data from Bank 0, while MP1 together with IAR1 are used to access data from all banks according to the BP register.

The following example shows how to clear a section of four Data Memory locations already defined as locations adres1 to adres4.

Indirect Addressing Program Example

```
data .section 'data'
adres1 db?
       db?
adres2
adres3 db?
       db?
adres4
block
       db?
code .section at 0 'code'
org 00h
start:
     mov a, 04h
                             ; setup size of block
    mov block, a
    mov a, offset adres1
                             ; Accumulator loaded with first RAM address
    mov mp0, a
                             ; setup memory pointer with first RAM address
loop:
     clr IAR0
                             ; clear the data at address defined by MPO
     inc mp0
                             ; increment memory pointer
     sdz block
                             ; check if last memory location has been cleared
     jmp loop
continue:
```

The important point to note here is that in the examples shown above, no reference is made to specific Data Memory addresses.

Bank Pointer - BP

For this device selecting the required Data Memory area is achieved using the Bank Pointer, BP. Bit 0 of the Bank Pointer is used to select Data Memory Banks 0~1.

The Data Memory is initialised to Bank 0 after a reset, except for a WDT time-out reset in the Power Down Mode, in which case, the Data Memory bank remains unaffected. Directly addressing the Data Memory will always result in Bank 0 being accessed irrespective of the value of the Bank Pointer. Accessing data from Bank 1 must be implemented using indirect addressing.

BP Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	DMBP0
R/W	_	_	_	_	_	_	_	R/W
POR	_	_	_	_	_	_	_	0

Bit 7~1 Unimplemented, read as "0"

Bit 0 **DMBP0**: Select Data Memory Banks

0: Bank 0 1: Bank 1

Accumulator - ACC

The Accumulator is central to the operation of any microcontroller and is closely related with operations carried out by the ALU. The Accumulator is the place where all intermediate results from the ALU are stored. Without the Accumulator it would be necessary to write the result of each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory resulting in higher programming and timing overheads. Data transfer operations usually involve the temporary storage function of the Accumulator; for example, when transferring data between one user-defined register and another, it is necessary to do this by passing the data through the Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register - PCL

To provide additional program control functions, the low byte of the Program Counter is made accessible to programmers by locating it within the Special Purpose area of the Data Memory. By manipulating this register, direct jumps to other program locations are easily implemented. Loading a value directly into this PCL register will cause a jump to the specified Program Memory location, however, as the register is only 8-bit wide, only jumps within the current Program Memory page are permitted. When such operations are used, note that a dummy cycle will be inserted.

Look-up Table Registers - TBLP, TBHP, TBLH

These three special function registers are used to control operation of the look-up table which is stored in the Program Memory. TBLP and TBHP are the table pointers and indicate the location where the table data is located. Their value must be setup before any table read commands are executed. Their value can be changed, for example using the "INC" or "DEC" instructions, allowing for easy table data pointing and reading. TBLH is the location where the high order byte of the table data is stored after a table read data instruction has been executed. Note that the lower order table data byte is transferred to a user defined location.

Rev. 1.10 28 November 26, 2019

Status Register - STATUS

This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PDF flag. In addition, operations related to the status register may give different results due to the different instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or by executing the "CLR WDT" or "HALT" instruction. The PDF flag is affected only by executing the "HALT" or "CLR WDT" instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

- C is set if an operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
- AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from
 the high nibble into the low nibble in subtraction; otherwise AC is cleared.
- Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.
- OV is set if an operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa; otherwise OV is cleared.
- PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by executing the "HALT" instruction.
- TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will not be pushed onto the stack automatically. If the contents of the status registers are important and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

Rev. 1.10 29 November 26, 2019

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

STATUS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	TO	PDF	OV	Z	AC	С
R/W	_	_	R	R	R/W	R/W	R/W	R/W
POR	_	_	0	0	х	Х	Х	Х

"x": unknown

Bit 7~6 Unimplemented, read as "0"

Bit 5 TO: Watchdog Time-out flag

0: After power up or executing the "CLR WDT" or "HALT" instruction

1: A watchdog time-out occurred.

Bit 4 **PDF**: Power down flag

0: After power up or executing the "CLR WDT" instruction

1: By executing the "HALT" instruction

Bit 3 **OV**: Overflow flag

0: No overflow

1: An operation results in a carry into the highest-order bit but not a carry out of the highest-order bit or vice versa.

Bit 2 **Z**: Zero flag

0: The result of an arithmetic or logical operation is not zero

1: The result of an arithmetic or logical operation is zero

Bit 1 AC: Auxiliary flag

0: No auxiliary carry

1: An operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction

Bit 0 C: Carry flag

0: No carry-out

1: An operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation

The "C" flag is also affected by a rotate through carry instruction.

Rev. 1.10 30 November 26, 2019

EEPROM Data Memory

The device contains an area of internal EEPROM Data Memory. EEPROM, is by its nature a non-volatile form of re-programmable memory, with data retention even when its power supply is removed. By incorporating this kind of data memory, a whole new host of application possibilities are made available to the designer. The availability of EEPROM storage allows information such as product identification numbers, calibration values, specific user data, system setup data or other product information to be stored directly within the product microcontroller. The process of reading and writing data to the EEPROM memory has been reduced to a very trivial affair.

EEPROM Data Memory Structure

The EEPROM Data Memory capacity is 64×8 bits for the device. Unlike the Program Memory and RAM Data Memory, the EEPROM Data Memory is not directly mapped into memory space and is therefore not directly addressable in the same way as the other types of memory. Read and Write operations to the EEPROM are carried out in single byte operations using an address and a data register in Bank 0 and a single control register in Bank 1.

EEPROM Registers

Three registers control the overall operation of the internal EEPROM Data Memory. These are the address register, EEA, the data register, EED and a single control register, EEC. As both the EEA and EED registers are located in Bank 0, they can be directly accessed in the same way as many other Special Function Registers. The EEC register however, being located in Bank 1, can not be directly addressed and can only be read from or written to indirectly using the MP1 Memory Pointer and Indirect Addressing Register, IAR1. Because the EEC control register is located at address 40H in Bank 1, the MP1 Memory Pointer must first be set to the value 40H and the Bank Pointer, BP, must be set to the value 01H, before any operations on the EEC register are executed.

Register				В	it			
Name	7	6	5	4	3	2	1	0
EEA	_	_	EEA5	EEA4	EEA3	EEA2	EEA1	EEA0
EED	D7	D6	D5	D4	D3	D2	D1	D0
EEC	_	_	_	_	WREN	WR	RDEN	RD

EEPROM Registers List

EEA Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	EEA5	EEA4	EEA3	EEA2	EEA1	EEA0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit $5\sim0$ **EEA5~EEA0**: Data EEPROM address bit $5\sim$ bit 0

EED Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D7\simD0**: Data EEPROM data bit $7 \sim$ bit 0

Rev. 1.10 31 November 26, 2019

EEC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	WREN	WR	RDEN	RD
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 WREN: Data EEPROM Write Enable

0: Disable 1: Enable

This is the Data EEPROM Write Enable Bit which must be set high before Data EEPROM write operations are carried out. Clearing this bit to zero will inhibit Data EEPROM write operations.

Bit 2 WR: EEPROM Write Control

0: Write cycle has finished 1: Activate a write cycle

This is the Data EEPROM Write Control Bit and when set high by the application program will activate a write cycle. This bit will be automatically reset to zero by the hardware after the write cycle has finished. Setting this bit high will have no effect if the WREN has not first been set high.

Bit 1 RDEN: Data EEPROM Read Enable

0: Disable 1: Enable

This is the Data EEPROM Read Enable Bit which must be set high before Data EEPROM read operations are carried out. Clearing this bit to zero will inhibit Data EEPROM read operations.

Bit 0 **RD**: EEPROM Read Control

0: Read cycle has finished1: Activate a read cycle

This is the Data EEPROM Read Control Bit and when set high by the application program will activate a read cycle. This bit will be automatically reset to zero by the hardware after the read cycle has finished. Setting this bit high will have no effect if the RDEN has not first been set high.

Note: The WREN, WR, RDEN and RD cannot be set high at the same time in one instruction. The WR and RD cannot be set high at the same time.

Rev. 1.10 32 November 26, 2019

Reading Data from the EEPROM

To read data from the EEPROM, the read enable bit, RDEN, in the EEC register must first be set high to enable the read function. The EEPROM address of the data to be read must then be placed in the EEA register. If the RD bit in the EEC register is now set high, a read cycle will be initiated. Setting the RD bit high will not initiate a read operation if the RDEN bit has not been set. When the read cycle terminates, the RD bit will be automatically cleared to zero, after which the data can be read from the EED register. The data will remain in the EED register until another read or write operation is executed. The application program can poll the RD bit to determine when the data is valid for reading.

Writing Data to the EEPROM

The EEPROM address of the data to be written must first be placed in the EEA register and the data placed in the EED register. To write data to the EEPROM, the write enable bit, WREN, in the EEC register must first be set high to enable the write function. After this, the WR bit in the EEC register must be immediately set high to initiate a write cycle. These two instructions must be executed consecutively. The global interrupt bit EMI should also first be cleared before implementing any write operations, and then set again after the write cycle has started. Note that setting the WR bit high will not initiate a write cycle if the WREN bit has not been set. As the EEPROM write cycle is controlled using an internal timer whose operation is asynchronous to microcontroller system clock, a certain time will elapse before the data will have been written into the EEPROM. Detecting when the write cycle has finished can be implemented either by polling the WR bit in the EEC register or by using the EEPROM interrupt. When the write cycle terminates, the WR bit will be automatically cleared to zero by the microcontroller, informing the user that the data has been written to the EEPROM. The application program can therefore poll the WR bit to determine when the write cycle has ended.

Write Protection

Protection against inadvertent write operation is provided in several ways. After the device is powered-on the Write Enable bit in the control register will be cleared preventing any write operations. Also at power-on the Bank Pointer, BP, will be reset to zero, which means that Data Memory Bank 0 will be selected. As the EEPROM control register is located in Bank 1, this adds a further measure of protection against spurious write operations. During normal program operation, ensuring that the Write Enable bit in the control register is cleared will safeguard against incorrect write operations.

EEPROM Interrupt

The EEPROM write interrupt is generated when an EEPROM write cycle has ended. The EEPROM interrupt must first be enabled by setting the DEE bit in the relevant interrupt register. However as the EEPROM is contained within a Multi-function Interrupt, the associated multi-function interrupt enable bit must also be set. When an EEPROM write cycle ends, the DEF request flag and its associated multi-function interrupt request flag will both be set. If the global, EEPROM and Multi-function interrupts are enabled and the stack is not full, a jump to the associated Multi-function Interrupt vector will take place. When the interrupt is serviced only the Multi-function interrupt flag will be automatically reset, the EEPROM interrupt flag must be manually reset by the application program. More details can be obtained in the Interrupt section.

Rev. 1.10 33 November 26, 2019

Programming Considerations

Care must be taken that data is not inadvertently written to the EEPROM. Protection can be enhanced by ensuring that the Write Enable bit is normally cleared to zero when not writing. Also the Bank Pointer could be normally cleared to zero as this would inhibit access to Bank 1 where the EEPROM control register exists. Although certainly not necessary, consideration might be given in the application program to the checking of the validity of new write data by a simple read back process.

When writing data the WR bit must be set high immediately after the WREN bit has been set high, to ensure the write cycle executes correctly. The global interrupt bit EMI should also be cleared before a write cycle is executed and then re-enabled after the write cycle starts. Note that the device should not enter the IDLE or SLEEP mode until the EEPROM read or write operation is totally complete. Otherwise, the EEPROM read or write operation will fail.

Programming Examples

· Reading data from the EEPROM - polling method

```
MOV A, EEPROM ADRES
                       ; user defined address
MOV EEA, A
MOV A, 40H
                       ; setup memory pointer MP1
MOV MP1, A
                        ; MP1 points to EEC register
MOV A, 01H
                        ; setup bank pointer
MOV BP, A
                        ; set RDEN bit, enable read operations
SET IAR1.1
SET IAR1.0
                        ; start Read Cycle - set RD bit
BACK:
SZ IAR1.0
                        ; check for read cycle end
JMP BACK
                        ; disable EEPROM read/write
CLR IAR1
CLR BP
MOV A, EED
                        ; move read data to register
MOV READ DATA, A
```

· Writing Data to the EEPROM - polling method

```
MOV A, EEPROM ADRES
                        ; user defined address
MOV EEA, A
MOV A, EEPROM DATA
                        ; user defined data
MOV EED, A
MOV A, 40H
                        ; setup memory pointer MP1
MOV MP1, A
                        ; MP1 points to EEC register
MOV A, 01H
                        ; setup bank pointer
MOV BP, A
CLR EMI
SET IAR1.3
                       ; set WREN bit, enable write operations
SET IAR1.2
                        ; start Write Cycle - set WR bit - executed immediately
                        ; after set WREN bit
SET EMI
BACK:
SZ IAR1.2
                        ; check for write cycle end
JMP BACK
CLR IAR1
                        ; disable EEPROM read/write
CLR BP
```

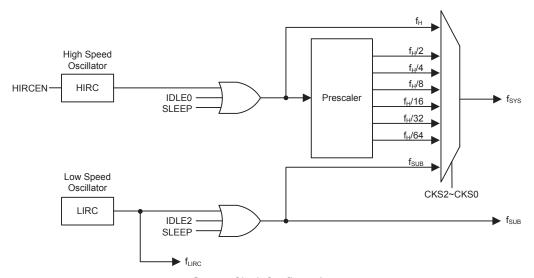
Rev. 1.10 34 November 26, 2019

Oscillators

Various oscillator options offer the user a wide range of functions according to their various application requirements. The flexible features of the oscillator functions ensure that the best optimisation can be achieved in terms of speed and power saving. Oscillator selection and operation are selected through the application program and relevant control registers.

Oscillator Overview

In addition to being the source of the main system clock the oscillators also provide clock sources for the Watchdog Timer and Time Base Interrupts. Fully integrated internal oscillators requiring no external components, are provided to form a wide range of both fast and slow system oscillators. The higher frequency oscillators provide higher performance but carry with it the disadvantage of higher power requirements, while the opposite is of course true for the lower frequency oscillators. With the capability of dynamically switching between fast and slow system clock, the device have the flexibility to optimize the performance/power ratio, a feature especially important in power sensitive portable applications.


Туре	Name	Frequency
Internal High Speed RC	HIRC	16MHz
Internal Low Speed RC	LIRC	32kHz

Oscillator Types

System Clock Configurations

There are several oscillator sources, one high speed oscillator and one low speed oscillator. The high speed system clock is sourced from the internal 16MHz RC oscillator, HIRC. The low speed oscillator is the internal 32kHz RC oscillator, LIRC. Selecting whether the low or high speed oscillator is used as the system oscillator is implemented using the CKS2~CKS0 bits in the SCC register and as the system clock can be dynamically selected.

The frequency of the slow speed or high speed system clock is also determined using the CKS2~CKS0 bits in the SCC register. Note that two oscillator selections must be made namely one high speed and one low speed system oscillators. It is not possible to choose a no-oscillator selection for either the high or low speed oscillator.

System Clock Configurations

Internal High Speed RC Oscillator - HIRC

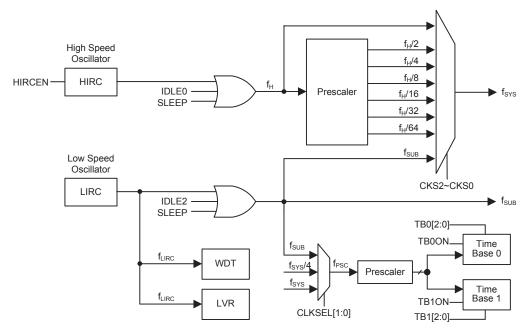
The internal RC oscillator is a fully integrated system oscillator requiring no external components. The internal RC oscillator has a fixed frequency of 16MHz. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised. Note that if this internal system clock option is selected, it requires no external pins for its operation.

Internal 32kHz Oscillator - LIRC

The Internal 32kHz System Oscillator is the low frequency oscillator. It is a fully integrated RC oscillator with a typical frequency of 32kHz, requiring no external components for its implementation. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised.

Operating Modes and System Clocks

Present day applications require that their microcontrollers have high performance but often still demand that they consume as little power as possible, conflicting requirements that are especially true in battery powered portable applications. The fast clocks required for high performance will by their nature increase current consumption and of course vice versa, lower speed clocks reduce current consumption. As Holtek has provided the device with both high and low speed clock sources and the means to switch between them dynamically, the user can optimise the operation of their microcontroller to achieve the best performance/power ratio.


System Clocks

This device has many different clock sources for both the CPU and peripheral function operation. By providing the user with a wide range of clock options using register programming, a clock system can be configured to obtain maximum application performance.

The main system clock, can come from a high frequency, f_{H} , or low frequency, f_{SUB} , source, and is selected using the CKS2~CKS0 bits in the SCC register. The high speed system clock is sourced from the HIRC oscillator. The low speed system clock source can be sourced from the internal clock f_{SUB} . If f_{SUB} is selected then it is sourced by LIRC oscillator. The other choice, which is a divided version of the high speed system oscillator has a range of $f_{H}/2\sim f_{H}/64$.

Rev. 1.10 36 November 26, 2019

Device Clock Configurations

Note: When the system clock source f_{SYS} is switched to f_{SUB} from f_H , the high speed oscillator will stop to conserve the power or continue to oscillate to provide the clock source, $f_H \sim f_H/64$, for peripheral circuit to use, which is determined by configuring the corresponding high speed oscillator enable control bit.

System Operation Modes

There are six different modes of operation for the microcontroller, each one with its own special characteristics and which can be chosen according to the specific performance and power requirements of the application. There are two modes allowing normal operation of the microcontroller, the FAST Mode and SLOW Mode. The remaining four modes, the SLEEP, IDLE0, IDLE1 and IDLE2 Mode are used when the microcontroller CPU is switched off to conserve power.

Operation	CPU	ı	Register S	etting	f sys	fн	fsuв	furc
Mode	CPU	FHIDEN	FSIDEN	CKS2~CKS0	ISYS	IH	ISUB	ILIRC
FAST	On	х	х	000~110	f _H ~f _H /64	On	On	On
SLOW	On	х	х	111	f _{SUB}	On/Off ⁽¹⁾	On	On
IDLE0	IDLE0 Off	0	1	000~110	Off	Off	On On On Off	On
IDLEO	Oii	0	ı	111	On	Oii		
IDLE1	Off	1	1	xxx	On	On	On	On
IDLE2	Off	1	0	000~110	On	On	0"	
IDLE2 OII	Oii	ļ !	0	111	Off	On	Oii	On
SLEEP	Off	0	0	XXX	Off	Off	Off	On/Off (2)

"x": Don't care

Note: 1. The f_H clock will be switched on or off by configuring the corresponding oscillator enable bit in the SLOW mode.

2. The f_{LIRC} clock can be switched on or off which is controlled by the WDT function being enabled or disabled in the SLEEP mode.

Rev. 1.10 37 November 26, 2019

FAST Mode

As the name suggests this is one of the main operating modes where the microcontroller has all of its functions operational and where the system clock is provided by one of the high speed oscillator. This mode operates allowing the microcontroller to operate normally with a clock source will come from the high speed oscillator, HIRC. The high speed oscillator will however first be divided by a ratio ranging from 1 to 64, the actual ratio being selected by the CKS2~CKS0 bits in the SCC register. Although a high speed oscillator is used, running the microcontroller at a divided clock ratio reduces the operating current.

SLOW Mode

This is also a mode where the microcontroller operates normally although now with a slower speed clock source. The clock source used will be from f_{SUB} . The f_{SUB} clock is derived from the LIRC oscillator.

SLEEP Mode

The SLEEP Mode is entered when an HALT instruction is executed and when the FHIDEN and FSIDEN bit are low. In the SLEEP mode the CPU will be stopped. The f_{SUB} clock provided to the peripheral function will also be stopped, too. However the f_{LIRC} clock can still continue to operate if the WDT function is enabled.

IDLE0 Mode

The IDLE0 Mode is entered when an HALT instruction is executed and when the FHIDEN bit in the SCC register is low and the FSIDEN bit in the SCC register is high. In the IDLE0 Mode the CPU will be switched off but the low speed oscillator will be turned on to drive some peripheral functions.

IDLE1 Mode

The IDLE1 Mode is entered when an HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is high. In the IDLE1 Mode the CPU will be switched off but both the high and low speed oscillators will be turned on to provide a clock source to keep some peripheral functions operational.

IDLE2 Mode

The IDLE2 Mode is entered when an HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is low. In the IDLE2 Mode the CPU will be switched off but the high speed oscillator will be turned on to provide a clock source to keep some peripheral functions operational.

Control Registers

The registers, SCC and HIRCC, are used to control the system clock and the corresponding oscillator configurations.

Register	Bit							
Name	7	6	5	4	3	2	1	0
SCC	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
HIRCC	_	_	_	_	_	_	HIRCF	HIRCEN

System Operating Mode Control Registers List

Rev. 1.10 38 November 26, 2019

SCC Register

Bit	7	6	5	4	3	2	1	0
Name	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
R/W	R/W	R/W	R/W	_	_	_	R/W	R/W
POR	0	0	1	_	_	_	0	0

Bit 7~5 CKS2~CKS0: System clock selection

000: f_H 001: f_H/2 010: f_H/4 011: f_H/8 100: f_H/16 101: f_H/32 110: f_H/64 111: f_{SUB}

These three bits are used to select which clock is used as the system clock source. In addition to the system clock source directly derived from f_H or f_{SUB}, a divided version of the high speed system oscillator can also be chosen as the system clock source.

Bit 4~2 Unimplemented, read as "0"

Bit 1 FHIDEN: High Frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the high speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction.

Bit 0 FSIDEN: Low Frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the low speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction.

HIRCC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	HIRCF	HIRCEN
R/W	_	_	_	_	_	_	R	R/W
POR	_	_	_	_	_	_	0	1

Bit 7~2 Unimplemented, read as "0"

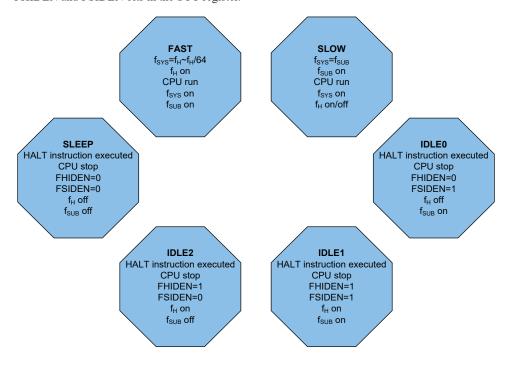
Bit 1 HIRCF: HIRC oscillator stable flag

0: HIRC unstable 1: HIRC stable

This bit is used to indicate whether the HIRC oscillator is stable or not. When the HIRCEN bit is set to 1 to enable the HIRC oscillator, the HIRCF bit will first be cleared to 0 and then set to 1 after the HIRC oscillator is stable.

Bit 0 HIRCEN: HIRC oscillator enable control

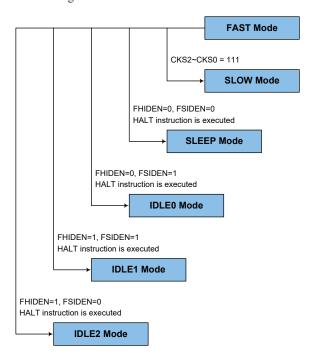
0: Disable 1: Enable


Rev. 1.10 39 November 26, 2019

Operating Mode Switching

The device can switch between operating modes dynamically allowing the user to select the best performance/power ratio for the present task in hand. In this way microcontroller operations that do not require high performance can be executed using slower clocks thus requiring less operating current and prolonging battery life in portable applications.

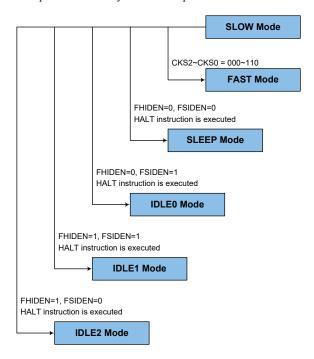
In simple terms, mode switching between the FAST Mode and SLOW Mode is executed using the CKS2~CKS0 bits in the SCC register while mode switching from the FAST/SLOW Modes to the SLEEP/IDLE Modes is executed via the HALT instruction. When an HALT instruction is executed, whether the device enters the IDLE Mode or the SLEEP Mode is determined by the condition of the FHIDEN and FSIDEN bits in the SCC register.


Rev. 1.10 40 November 26, 2019

FAST Mode to SLOW Mode Switching

When running in the FAST Mode, which uses the high speed system oscillator, and therefore consumes more power, the system clock can switch to run in the SLOW Mode by set the CKS2~CKS0 bits to "111" in the SCC register. This will then use the low speed system oscillator which will consume less power. Users may decide to do this for certain operations which do not require high performance and can subsequently reduce power consumption.

The SLOW Mode is sourced from the LIRC oscillator and therefore requires this oscillator to be stable before full mode switching occurs.


Rev. 1.10 41 November 26, 2019

SLOW Mode to FAST Mode Switching

In SLOW mode the system clock is derived from f_{SUB} . When system clock is switched back to the FAST mode from f_{SUB} , the CKS2~CKS0 bits should be set to "000"~"110" and then the system clock will respectively be switched to f_{H} ~ f_{H} /64.

However, if f_H is not used in SLOW mode and thus switched off, it will take some time to reoscillate and stabilise when switching to the FAST mode from the SLOW mode. This is monitored using the HIRCF bit in the HIRCC register. The time duration required for the high speed system oscillator stabilization is specified in the System Start Up Time Characteristics.

Entering the SLEEP Mode

There is only one way for the device to enter the SLEEP Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "0". In this mode all the clocks and functions will be switched off except the WDT function. When this instruction is executed under the conditions described above, the following will occur:

- The system clock will be stopped and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Rev. 1.10 42 November 26, 2019

Entering the IDLE0 Mode

There is only one way for the device to enter the IDLE0 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "0" and the FSIDEN bit in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

- The f_H clock will be stopped and the application program will stop at the "HALT" instruction, but the f_{SUB} clock will be on.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Entering the IDLE1 Mode

There is only one way for the device to enter the IDLE1 Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

- The f_H and f_{SUB} clocks will be on but the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Entering the IDLE2 Mode

There is only one way for the device to enter the IDLE2 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "1" and the FSIDEN bit in the SCC register equal to "0". When this instruction is executed under the conditions described above, the following will occur:

- The f_H clock will be on but the f_{SUB} clock will be off and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Rev. 1.10 43 November 26, 2019

Standby Current Considerations

As the main reason for entering the SLEEP or IDLE Mode is to keep the current consumption of the device to as low a value as possible, perhaps only in the order of several micro-amps except in the IDLE1 and IDLE2 Mode, there are other considerations which must also be taken into account by the circuit designer if the power consumption is to be minimised. Special attention must be made to the I/O pins on the device. All high-impedance input pins must be connected to either a fixed high or low level as any floating input pins could create internal oscillations and result in increased current consumption. This also applies to the device which has different package types, as there may be unbonded pins. These must either be setup as outputs or if setup as inputs must have pull-high resistors connected.

Care must also be taken with the loads, which are connected to I/O pins, which are setup as outputs. These should be placed in a condition in which minimum current is drawn or connected only to external circuits that do not draw current, such as other CMOS inputs. Also note that additional standby current will also be required if the LIRC oscillator has enabled.

In the IDLE1 and IDLE2 Mode the high speed oscillator is on, if the peripheral function clock source is derived from the high speed oscillator, the additional standby current will also be perhaps in the order of several hundred micro-amps.

Wake-up

To minimise power consumption the device can enter the SLEEP or any IDLE Mode, where the CPU will be switched off. However, when the device is woken up again, it will take a considerable time for the original system oscillator to restart, stabilise and allow normal operation to resume.

After the system enters the SLEEP or IDLE Mode, it can be woken up from one of various sources listed as follows:

- An external falling edge on Port A, B and C
- · A system interrupt
- · A WDT overflow

When the device executes the "HALT" instruction, the PDF flag will be set to 1. The PDF flag will be cleared to 0 if the device experiences a system power-up or executes the clear Watchdog Timer instruction. If the system is woken up by a WDT overflow, a Watchdog Timer reset will be initiated and the TO flag will be set to 1. The TO flag is set if a WDT time-out occurs and causes a wake-up that only resets the Program Counter and Stack Pointer, other flags remain in their original status.

Each pin on Port A, B and C can be setup using the PAWU~PCWU register to permit a negative transition on the pin to wake-up the system. When an I/O pin wake-up occurs, the program will resume execution at the instruction following the "HALT" instruction. If the system is woken up by an interrupt, then two possible situations may occur. The first is where the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the program will resume execution at the instruction following the "HALT" instruction. In this situation, the interrupt which woke-up the device will not be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled or when a stack level becomes free. The other situation is where the related interrupt is enabled and the stack is not full, in which case the regular interrupt response takes place. If an interrupt request flag is set high before entering the SLEEP or IDLE Mode, the wake-up function of the related interrupt will be disabled.

Rev. 1.10 44 November 26, 2019

Watchdog Timer

The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to unknown locations, due to certain uncontrollable external events such as electrical noise.

Watchdog Timer Clock Source

The Watchdog Timer clock source is provided by the internal clock, f_{LIRC} , which is sourced from the LIRC oscillator. The LIRC internal oscillator has an approximate frequency of 32kHz and this specified internal clock period can vary with V_{DD} , temperature and process variations. The Watchdog Timer source clock is then subdivided by a ratio of 2^8 to 2^{18} to give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the WDTC register.

Watchdog Timer Control Register

A single register, WDTC, controls the required time-out period as well as the enable/disable operation.

WDTC Register

Bit	7	6	5	4	3	2	1	0
Name	WE4	WE3	WE2	WE1	WE0	WS2	WS1	WS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	0	1	1

Bit 7~3 **WE4~WE0**: WDT function software control

10101: Disable 01010: Enable

Other values: Reset MCU

When these bits are changed to any other values due to environmental noise the microcontroller will be reset; this reset operation will be activated after a delay time, t_{SRESET} , and the WRF bit in the RSTFC register will be set high.

Bit 2~0 WS2~WS0: WDT time-out period selection

 $\begin{array}{l} 000:\ 2^8/f_{LIRC} \\ 001:\ 2^{10}/f_{LIRC} \\ 010:\ 2^{12}/f_{LIRC} \\ 011:\ 2^{14}/f_{LIRC} \\ 100:\ 2^{15}/f_{LIRC} \end{array}$

101: 2¹⁶/f_{LIRC} 110: 2¹⁷/f_{LIRC} 111: 2¹⁸/f_{LIRC}

These three bits determine the division ratio of the Watchdog Timer source clock, which in turn determines the timeout period.

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	LVRF	LRF	WRF
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	Х	0	0

"x": unknown

Bit 7~3 Unimplemented, read as "0"

Bit 2 LVRF: LVR function reset flag

Refer to the Low Voltage Reset section.

Bit 1 LRF: LVR control register software reset flag

Refer to the Low Voltage Reset section.

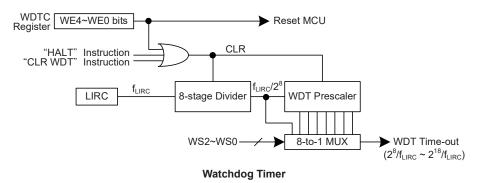
Bit 0 WRF: WDT control register software reset flag

0: Not occurred 1: Occurred

This bit is set to 1 by the WDT Control register software reset and cleared by the application program. Note that this bit can only be cleared to 0 by the application program.

Watchdog Timer Operation

The Watchdog Timer operates by providing a device reset when its timer overflows. This means that in the application program and during normal operation the user has to strategically clear the Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is done using the clear watchdog instructions. If the program malfunctions for whatever reason, jumps to an unknown location, or enters an endless loop, these clear instructions will not be executed in the correct manner, in which case the Watchdog Timer will overflow and reset the device. There are five bits, WE4~WE0, in the WDTC register to offer the enable/disable control and reset control of the Watchdog Timer. The WDT function will be disabled when the WE4~WE0 bits are set to a value of 10101B while the WDT function will be enabled if the WE4~WE0 bits are equal to 01010B. If the WE4~WE0 bits are set to any other values, other than 01010B and 10101B, it will reset the device after a delay time, t_{SRESET}. After power on these bits will have a value of 01010B.


WE4~WE0 Bits	WDT Function		
10101B	Disable		
01010B	Enable		
Any other value	Reset MCU		

Watchdog Timer Enable/Disable Control

Under normal program operation, a Watchdog Timer time-out will initialise a device reset and set the status bit TO. However, if the system is in the SLEEP or IDLE Mode, when a Watchdog Timer time-out occurs, the TO bit in the status register will be set and only the Program Counter and Stack Pointer will be reset. Three methods can be adopted to clear the contents of the Watchdog Timer. The first is a WDT reset, which means a certain value except 01010B and 10101B written into the WE4~WE0 bits, the second is using the Watchdog Timer software clear instruction and the third is via a HALT instruction.

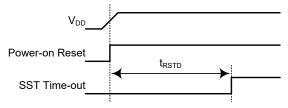
There is only one method of using software instruction to clear the Watchdog Timer. That is to use the single "CLR WDT" instruction to clear the WDT.

The maximum time-out period is when the 2^{18} division ratio is selected. As an example, with a 32kHz LIRC oscillator as its source clock, this will give a maximum watchdog period of around 8 second for the 2^{18} division ratio, and a minimum timeout of 8ms for the 2^{8} division ration.

Rev. 1.10 46 November 26, 2019

Reset and Initialisation

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to some predetermined condition irrespective of outside parameters. The most important reset condition is after power is first applied to the microcontroller. In this case, internal circuitry will ensure that the microcontroller, after a short delay, will be in a well-defined state and ready to execute the first program instruction. After this power-on reset, certain important internal registers will be set to defined states before the program commences. One of these registers is the Program Counter, which will be reset to zero forcing the microcontroller to begin program execution from the lowest Program Memory address.


In addition to the power-on reset, another reset exists in the form of a Low Voltage Reset, LVR, where a full reset is implemented in situations where the power supply voltage falls below a certain threshold. Another type of reset is when the Watchdog Timer overflows and resets the microcontroller. All types of reset operations result in different register conditions being setup.

Reset Functions

There are several ways in which a microcontroller reset can occur, through events occurring internally.

Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to the microcontroller. As well as ensuring that the Program Memory begins execution from the first memory address, a power-on reset also ensures that certain other registers are preset to known conditions. All the I/O port and port control registers will power up in a high condition ensuring that all pins will be first set to inputs.

Power-on Reset Timing Chart

Low Voltage Reset - LVR

The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the device and provides an MCU reset should the value fall below a certain predefined level.

The LVR function is always enabled with a specific LVR voltage V_{LVR} . If the supply voltage of the device drops to within a range of $0.9V \sim V_{LVR}$ such as might occur when changing the battery in battery powered applications, the LVR will automatically reset the device internally and the LVRF bit in the RSTFC register will also be set to 1. For a valid LVR signal, a low supply voltage, i.e., a voltage in the range between $0.9V \sim V_{LVR}$ must exist for a time greater than that specified by t_{LVR} in the LVR/LVD characteristics. If the low supply voltage state does not exceed this value, the LVR will ignore the low supply voltage and will not perform a reset function. The actual V_{LVR} value can be selected by the LVS bits in the LVRC register. If the LVS7~LVS0 bits are changed to some different values by environmental noise, the LVR will reset the device after a delay time, t_{SRESET} . When this happens, the LRF bit in the RSTFC register will be set to 1. After power on the register will have the value of 01010101B. Note that the LVR function will be automatically disabled when the device enters the IDLE/SLEEP mode.

Rev. 1.10 47 November 26, 2019

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

Low Voltage Reset Timing Chart

· LVRC Register

Bit	7	6	5	4	3	2	1	0
Name	LVS7	LVS6	LVS5	LVS4	LVS3	LVS2	LVS1	LVS0
R/W								
POR	0	1	0	1	0	1	0	1

Bit 7~0 LVS7~LVS0: LVR Voltage Select control

01010101: 2.1V 00110011: 2.55V 10011001: 3.15V 10101010: 3.8V

Any other value: Generates MCU reset - register is reset to POR value

When an actual low voltage condition occurs, as specified by one of the four defined LVR voltage values above, an MCU reset will be generated. The reset operation will be activated after the low voltage condition keeps more than a $t_{\rm LVR}$ time. In this situation the register contents will remain the same after such a reset occurs.

Any register value, other than the four defined LVR values above, will also result in the generation of an MCU reset. The reset operation will be activated after a delay time, t_{SRESET}. However in this situation the register contents will be reset to the POR value.

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	LVRF	LRF	WRF
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	х	0	0

"x": unknown

Bit 7~3 Unimplemented, read as "0"

Bit 2 LVRF: LVR function reset flag

0: Not occur
1: Occurred

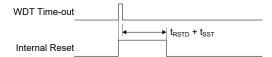
This bit is set to 1 when a specific Low Voltage Reset situation condition occurs. This bit can only be cleared to 0 by the application program.

Bit 1 LRF: LVR control register software reset flag

0: Not occur 1: Occurred

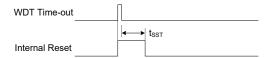
This bit is set to 1 if the LVRC register contains any non-defined LVR voltage register values. This in effect acts like a software-reset function. This bit can only be cleared to 0 by the application program.

Bit 0 WRF: WDT control register software reset flag


Refer to the Watchdog Timer Control Register section.

Rev. 1.10 48 November 26, 2019

Watchdog Time-out Reset during Normal Operation


The Watchdog time-out Reset during normal operations in the FAST or SLOW mode is the same as a LVR reset except that the Watchdog time-out flag TO will be set to "1".

WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during SLEEP or IDLE Mode

The Watchdog time-out Reset during SLEEP or IDLE Mode is a little different from other kinds of reset. Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer will be cleared to "0" and the TO flag will be set to "1". Refer to the System Start Up Time Characteristics for t_{SST} details.

WDT Time-out Reset during SLEEP or IDLE Timing Chart

Reset Initial Conditions

The different types of reset described affect the reset flags in different ways. These flags, known as PDF and TO are located in the status register and are controlled by various microcontroller operations, such as the SLEEP or IDLE Mode function or Watchdog Timer. The reset flags are shown in the table:

ТО	PDF	RESET Conditions
0	0	Power-on reset
u	u	LVR reset during FAST or SLOW Mode operation
1	u	WDT time-out reset during FAST or SLOW Mode operation
1	1	WDT time-out reset during IDLE or SLEEP Mode operation

"u" stands for unchanged

The following table indicates the way in which the various components of the microcontroller are affected after a power-on reset occurs.

Item	Condition After RESET			
Program Counter	Reset to zero			
Interrupts	All interrupts will be disabled			
WDT, Time Base	Clear after reset, WDT begins counting			
Timer Modules	Timer Modules will be turned off			
Input/Output Ports	I/O ports will be setup as inputs			
Stack Pointer	Stack Pointer will point to the top of the stack			

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller is in after a particular reset occurs. The following table describes how each type of reset affects each of the microcontroller internal registers. Note that where more than one package type exists the table will refelect the situation for the larger package type.

Rev. 1.10 49 November 26, 2019

Register	Power On Reset	WDT Time-out (Normal Operation)	WDT Time-out (IDLE/SLEEP)
MP0	XXXX XXXX	XXXX XXXX	uuuu uuuu
MP1	xxxx xxxx	XXXX XXXX	uuuu uuuu
BP	0	0	u
ACC	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	0000 0000
TBLP	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLH	xxxx xxxx	uuuu uuuu	uuuu uuuu
ТВНР	x x x	u u u	u u u
STATUS	00 xxxx	1u uuuu	11 uuuu
RSTFC	x00	u u u	u u u
SCC	00100	00100	uuuuu
HIRCC	0 1	0 1	u u
WDTC	0101 0011	0101 0011	uuuu uuuu
PA	1111 1111	1111 1111	uuuu uuuu
PAC	1111 1111	1111 1111	uuuu uuuu
PAPU	0000 0000	0000 0000	uuuu uuuu
PAWU	0000 0000	0000 0000	uuuu uuuu
PB	1111 1111	1111 1111	uuuu uuuu
PBC	1111 1111	1111 1111	uuuu uuuu
PBPU	0000 0000	0000 0000	uuuu uuuu
INTEG	0000	0000	uuuu
INTC0	-000 0000	-000 0000	-uuu uuuu
INTC1	0000 0000	0000 0000	uuuu uuuu
INTC2	00	00	uu
MFI0	0000 0000	0000 0000	uuuu uuuu
MFI1	0000	0000	uuuu
MFI2	-000 -000	-000 -000	-uuu -uuu
PAS0	0000 0000	0000 0000	uuuu uuuu
PAS1	0000 0000	0000 0000	uuuu uuuu
PBS0	0000 0000	0000 0000	uuuu uuuu
PBS1	0000 0000	0000 0000	uuuu uuuu
PCS0	0 0	0 0	u u
PTMC0	0000 0	0000 0	uuuu u
PTMC1	0000 0000	0000 0000	uuuu uuuu
PTMDL	0000 0000	0000 0000	uuuu uuuu
PTMDH	0 0	0 0	u u
PTMAL	0000 0000	0000 0000	uuuu uuuu
PTMAH	0 0	0 0	u u
PTMRPL	0000 0000	0000 0000	uuuu uuuu
PTMRPH	0 0	0 0	u u
RFC0	-010 1011	-010 1011	-uuu uuuu
RFC1	1111 1	1111 1	uuuu u
RFC2	11	11	uu
RFC3	0000 0000	0000 0000	uuuu uuuu
RFC4	0000 0000	0000 0000	uuuu uuuu
RFC5	0000 0000	0000 0000	uuuu uuuu
RFC6	1000 1000	1000 1000	uuuu uuuu

Rev. 1.10 50 November 26, 2019

Register	Power On Reset	WDT Time-out (Normal Operation)	WDT Time-out (IDLE/SLEEP)
RFC7	0000 0000	0000 0000	uuuu uuuu
RFDEBC	0001	0001	uuuu
STM0C0	0000 0000	0000 0000	uuuu uuuu
STM0C1	0000 0000	0000 0000	uuuu uuuu
STM0DL	0000 0000	0000 0000	uuuu uuuu
STM0DH	0 0	0 0	u u
STM0AL	0000 0000	0000 0000	uuuu uuuu
STM0AH	0 0	0 0	u u
EEA	00 0000	00 0000	uu uuuu
EED	0000 0000	0000 0000	uuuu uuuu
SADOL	x x x x	x x x x	uuuu (ADRFS=0) uuuu uuuu
			(ADRFS=1)
SADOH	xxxx xxxx	xxxx xxxx	(ADRFS=0)
			u u u u (ADRFS=1)
SADC0	000000	000000	uuuuuu
SADC1	0000 -000	0000 -000	uuuu -uuu
SADC2	00 0000	00 0000	uu uuuu
TB0C	0000	0000	uuuu
TB1C	0000	0000	uuuu
PSCR	0 0	0 0	u u
IFS	0	0	u
STM1C0	0000 0	0000 0	uuuu u
STM1C1	0000 0000	0000 0000	uuuu uuuu
STM1DL	0000 0000	0000 0000	uuuu uuuu
STM1DH	0000 0000	0000 0000	uuuu uuuu
STM1AL	0000 0000	0000 0000	uuuu uuuu
STM1AH	0000 0000	0000 0000	uuuu uuuu
STM1RP	0000 0000	0000 0000	uuuu uuuu
DRVCC	0 0000	0 0000	u uuuu
SCOMC	-000	-000	- u u u
PC	1	1	u
PCC	1	1	u
PCPU	0	0	u
LVDC	00 0000	00 0000	uu uuuu
LVRC	0101 0101	0101 0101	uuuu uuuu
PBWU	0000 0000	0000 0000	uuuu uuuu
PCWU	0	0	u
SLEWC0	0000 0000	0000 0000	uuuu uuuu
SLEWC1	0 0	0 0	u u
EEC	0000	0000	uuuu

Note: "u" stands for unchanged

"x" stands for unknown

"-" stands for unimplemented

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output designation of every pin fully under user program control, pull-high selections for all ports and wake-up selections on certain pins, the user is provided with an I/O structure to meet the needs of a wide range of application possibilities.

The device provides bidirectional input/output lines labeled with port names PA~PC. These I/O ports are mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of instruction "MOV A, [m]", where m denotes the port address. For output operation, all the data is latched and remains unchanged until the output latch is rewritten.

Register				В	it			
Name	7	6	5	4	3	2	1	0
PA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
PAC	PAC7	PAC6	PAC5	PAC4	PAC3	PAC2	PAC1	PAC0
PAPU	PAPU7	PAPU6	PAPU5	PAPU4	PAPU3	PAPU2	PAPU1	PAPU0
PAWU	PAWU7	PAWU6	PAWU5	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0
РВ	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
PBC	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0
PBPU	PBPU7	PBPU6	PBPU2	PBPU4	PBPU3	PBPU2	PBPU1	PBPU0
PBWU	PBWU7	PBWU6	PBWU5	PBWU4	PBWU3	PBWU2	PBWU1	PBWU0
PC	_	_	_	_	_	_	_	PC0
PCC	_	_	_	_	_	_	_	PCC0
PCPU	_	_	_	_	_	_	_	PCPU0
PCWU	_	_	_	_	_	_	_	PCWU0

"—": Unimplemented, read as "0"

I/O Logic Function Registers List

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when configured as an input have the capability of being connected to an internal pull-high resistor. These pull-high resistors are selected using registers, namely PAPU~PCPU, and are implemented using weak PMOS transistors.

Note that the pull-high resistor can be controlled by the relevant pull-high control register only when the pin-shared functional pin is selected as an input or NMOS output. Otherwise, the pull-high resistors cannot be enabled.

PxPU Register

Bit	7	6	5	4	3	2	1	0
Name	PxPU7	PxPU6	PxPU5	PxPU4	PxPU3	PxPU2	PxPU1	PxPU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PxPUn: I/O Port x Pin pull-high function control

0: Disable 1: Enable

The PxPUn bit is used to control the pin pull-high function. Here the "x" can be A, B and C. However, the actual available bits for each I/O Port may be different.

Rev. 1.10 52 November 26, 2019

I/O Port Wake-up

The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves power, a feature that is important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of which is to change the logic condition on one of the Port A, B and C pins from high to low. This function is especially suitable for applications that can be woken up via external switches. Each pin on Port A, B and C can be selected individually to have this wake-up feature using the PAWU~PCWU registers.

Note that the wake-up function can be controlled by the wake-up control registers only when the pin-shared functional pin is selected as general purpose input/output and the MCU enters the Power down mode.

PxWU Register

Bit	7	6	5	4	3	2	1	0
Name	PxWU7	PxWU6	PxWU5	PxWU4	PxWU3	PxWU2	PxWU1	PxWU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PxWUn: I/O Port x Pin wake-up function control

0: Disable 1: Enable

The PxWUn bit is used to control the pin wake-up function. Here the "x" can be A, B and C. However, the actual available bits for each I/O Port may be different.

I/O Port Control Registers

Each I/O port has its own control register known as PAC~PCC, to control the input/output configuration. With this control register, each CMOS output or input can be reconfigured dynamically under software control. Each pin of the I/O ports is directly mapped to a bit in its associated port control register. For the I/O pin to function as an input, the corresponding bit of the control register must be written as a "1". This will then allow the logic state of the input pin to be directly read by instructions. When the corresponding bit of the control register is written as a "0", the I/O pin will be setup as a CMOS output. If the pin is currently setup as an output, instructions can still be used to read the output register. However, it should be noted that the program will in fact only read the status of the output data latch and not the actual logic status of the output pin.

PxC Register

Bit	7	6	5	4	3	2	1	0
Name	PxC7	PxC6	PxC5	PxC4	PxC3	PxC2	PxC1	PxC0
R/W								
POR	1	1	1	1	1	1	1	1

PxCn: I/O Port x Pin type selection

0: Output1: Input

The PxCn bit is used to control the pin type selection. Here the "x"can be A, B and C. However, the actual available bits for each I/O Port may be different.

Rev. 1.10 53 November 26, 2019

I/O Port Source and Sink Current Selection

Each pin in this device can be configured with different source and sink current which is selected by the corresponding pin source and sink current select bits. These source and sink current select bits are available when the corresponding pin is configured as a CMOS output. Otherwise, these select bits have no effect. Users should refer to the Input/Output Characteristics section to obtain the exact value for different applications.

DRVCC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	DRVCC4	DRVCC3	DRVCC2	DRVCC1	DRVCC0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_	_	_	0	0	0	0	0

Bit 7~5 Unimplemented, read as "0"

Bit 4 **DRVCC4**: PC0 source and sink current selection

0: Source & Sink current=Level 0 (Min.)

1: Source & Sink current=Level 1 (Max.)

Bit 3 **DRVCC3**: PB7~PB4 source and sink current selection

0: Source & Sink current=Level 0 (Min.)
1: Source & Sink current=Level 1 (Max.)

Bit 2 DRVCC2: PB3~PB0 source and sink current selection

0: Source & Sink current=Level 0 (Min.)
1: Source & Sink current=Level 1 (Max.)

Bit 1 DRVCC1: PA7~PA4 source and sink current selection

0: Source & Sink current=Level 0 (Min.)
1: Source & Sink current=Level 1 (Max.)

Bit 0 **DRVCC0**: PA3~PA0 source and sink current selection

0: Source & Sink current=Level 0 (Min.)
1: Source & Sink current=Level 1 (Max.)

I/O Port Output Slew Rate Control Registers

The I/O ports, PA~PC, can be setup to have a choice of various slew rate using specific registers. The PA~PC must be selected by nibble pins to have various slew rate using the SLEWCn register. Users should refer to the Input/Output Characteristics section to obtain the exact value for different applications.

Register	er Bit							
Name	7	6	5	4	3	2	1	0
SLEWC0	SLEWC07	SLEWC06	SLEWC05	SLEWC04	SLEWC03	SLEWC02	SLEWC01	SLEWC00
SLEWC1	_	_	_	_	_	_	SLEWC11	SLEWC10

I/O Port Output Slew Rate Control Registers List

Rev. 1.10 54 November 26, 2019

SLEWC0 Register

Bit	7	6	5	4	3	2	1	0
Name	SLEWC07	SLEWC06	SLEWC05	SLEWC04	SLEWC03	SLEWC02	SLEWC01	SLEWC00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **SLEWC07~SLEWC06**: PB4 output slew rate selection

00: Slew rate=Level 0

01: Slew rate=Level 1

10: Slew rate=Level 2

11: Slew rate=Level 3

Bit 5~4 **SLEWC05~SLEWC04**: PB3~PB0 output slew rate selection

00: Slew rate=Level 0

01: Slew rate=Level 1

10: Slew rate=Level 2

11: Slew rate=Level 3

Bit 3~2 **SLEWC03~SLEWC02**: PA7~PA4 output slew rate selection

00: Slew rate=Level 0

01: Slew rate=Level 1

10: Slew rate=Level 2

11: Slew rate=Level 3

Bit 1~0 **SLEWC01~SLEWC00**: PA3~PA0 output slew rate selection

00: Slew rate=Level 0

01: Slew rate=Level 1

10: Slew rate=Level 2

11: Slew rate=Level 3

SLEWC1 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	SLEWC11	SLEWC10
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 SLEWC11~SLEWC10: PC0 output slew rate selection

00: Slew rate=Level 0 01: Slew rate=Level 1 10: Slew rate=Level 2 11: Slew rate=Level 3

Pin-shared Functions

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function. Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions, many of these difficulties can be overcome. For these pins, the desired function of the multi-function I/O pins is selected by a series of registers via the application program control.

Pin-shared Function Selection Registers

The limited number of supplied pins in a package can impose restrictions on the amount of functions a certain device can contain. However by allowing the same pins to share several different functions and providing a means of function selection, a wide range of different functions can be incorporated into even relatively small package sizes. The device includes Port "x" Output Function Selection register "n", labeled as PxSn, and Input Function Selection register, labeled as IFS, which can select the desired functions of the multi-function pin-shared pins.

Rev. 1.10 55 November 26, 2019

The most important point to note is to make sure that the desired pin-shared function is properly selected and also deselected. For most pin-shared functions, to select the desired pin-shared function, the pin-shared function should first be correctly selected using the corresponding pin-shared control register. After that the corresponding peripheral functional setting should be configured and then the peripheral function can be enabled. However, a special point must be noted for some digital input pins, such as INTn, xTCKn, xTPnI, etc, which share the same pin-shared control configuration with their corresponding general purpose I/O functions when setting the relevant pin-shared control bit fields. To select these pin functions, in addition to the necessary pin-shared control and peripheral functional setup aforementioned, they must also be setup as an input by setting the corresponding bit in the I/O port control register. To correctly deselect the pin-shared function, the peripheral function should first be disabled and then the corresponding pin-shared function control register can be modified to select other pin-shared functions.

Note that where more than one package type exists the table will refelect the situation for the larger package type.

Register	Bit										
Name	7	6	5	4	3	2	1	0			
PAS0	PAS07	PAS06	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00			
PAS1	PAS17	PAS16	PAS15	PAS14	PAS13	PAS12	PAS11	PAS10			
PBS0	PBS07	PBS06	PBS05	PBS04	PBS03	PBS02	PBS01	PBS00			
PBS1	PBS17	PBS16	PBS15	PBS14	PBS13	PBS12	PBS11	PBS10			
PCS0	_	_	_	_	_	_	PCS01	PCS00			
IFS	_	_	_	_	_	_	_	STP0IPS			

Pin-shared Function Selection Registers List

· PAS0 Register

Bit	7	6	5	4	3	2	1	0
Name	PAS07	PAS06	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 PAS07~PAS06: PA3 Pin-Shared function selection

00/10/11: PA3/PTPI

01: PTPB

Bit 5~4 PAS05~PAS04: PA2 Pin-Shared function selection

00/10/11: PA2

01: PTP

Bit 3~2 PAS03~PAS02: PA1 Pin-Shared function selection

00/10: PA1/STP0I/INT0

01: STB0B 11: VREFI

Bit 1~0 PAS01~PAS00: PA0 Pin-Shared function selection

00/01/10/11: PA0/PTCK

Rev. 1.10 56 November 26, 2019

• PAS1 Register

Bit	7	6	5	4	3	2	1	0
Name	PAS17	PAS16	PAS15	PAS14	PAS13	PAS12	PAS11	PAS10
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 PAS17~PAS16: PA7 Pin-Shared function selection

00/01: PA7 10: VREF 11: AN0

Bit 5~4 PAS15~PAS14: PA6 Pin-Shared function selection

00/01/10: PA6

11: AN1

Bit 3~2 PAS13~PAS12: PA5 Pin-Shared function selection

00/10: PA5 01: STP1B 11: AN2

Bit 1~0 PAS11~PAS10: PA4 Pin-Shared function selection

00/10: PA4/INT1

01: STP1 11: AN3

• PBS0 Register

Bit	7	6	5	4	3	2	1	0
Name	PBS07	PBS06	PBS05	PBS04	PBS03	PBS02	PBS01	PBS00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **PBS07~PBS06**: PB3 Pin-Shared function selection

00/01/11: PB3 10: SCOM3

Bit 5~4 **PBS05~PBS04**: PB2 Pin-Shared function selection

00/01/11: PB2/STP1I

10: SCOM2

Bit 3~2 **PBS03~PBS02**: PB1 Pin-Shared function selection

00/01/11: PB1 10: SCOM1

Bit 1~0 **PBS01~PBS00**: PB0 Pin-Shared function selection

00/01: PB0 10: SCOM0 11: RFDO

PBS1 Register

Bit	7	6	5	4	3	2	1	0
Name	PBS17	PBS16	PBS15	PBS14	PBS13	PBS12	PBS11	PBS10
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **PBS17~PBS16**: PB7 Pin-Shared function selection

00/10/11: PB7 01: STP0

Bit 5~4 **PBS15~PBS14**: PB6 Pin-Shared function selection

00/01/10/11: PB6

Bit 3~2 **PBS13~PBS12**: PB5 Pin-Shared function selection

00/01/10/11: PB5

Bit 1~0 **PBS11~PBS10**: PB4 Pin-Shared function selection

00/01/10/11: PB4/STCK1

PCS0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	PCS01	PCS00
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

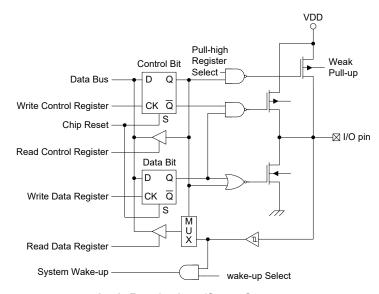
Bit 1~0 PCS01~PCS00: PC0 Pin-Shared function selection

00/01/10/11: PC0/STCK0

· IFS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	STP0IPS
R/W	_	_	_	_	_	_	_	R/W
POR	_	_	_	_	_	_	_	0

Bit 7~1 Unimplemented, read as "0"


Bit 0 **STP0IPS**: STP0I input source pin selection

0: Form external PA1 pin1: From internal RF data output

When this bit is set high the STP0I capture input is sourced from the internal RF output signal, which is the content of the RFDATA bit in the RFDEBC register.

I/O Pin Structures

The accompanying diagram illustrates the internal structure of the I/O logic function. As the exact logical construction of the I/O pin will differ from this drawing, it is supplied as a guide only to assist with the functional understanding of the I/O logic function. The wide range of pin-shared structures does not permit all types to be shown.

Logic Function Input/Output Structure

Rev. 1.10 58 November 26, 2019

Programming Considerations

Within the user program, one of the first things to consider is port initialisation. After a reset, all of the I/O data and port control registers will be set high. This means that all I/O pins will default to an input state, the level of which depends on the other connected circuitry and whether pull-high selections have been chosen. If the port control registers are then programmed to setup some pins as outputs, these output pins will have an initial high output value unless the associated port data registers are first programmed. Selecting which pins are inputs and which are outputs can be achieved byte-wide by loading the correct values into the appropriate port control register or by programming individual bits in the port control register using the "SET [m].i" and "CLR [m].i" instructions. Note that when using these bit control instructions, a read-modify-write operation takes place. The microcontroller must first read in the data on the entire port, modify it to the required new bit values and then rewrite this data back to the output ports.

All I/O Ports have the additional capability of providing wake-up function. When the device is in the SLEEP or IDLE Mode, various methods are available to wake the device up. One of these is a high to low transition of any of the I/O Port pins. Single or multiple pins on I/O Port can be setup to have this function.

Timer Modules - TM

One of the most fundamental functions in any microcontroller device is the ability to control and measure time. To implement time related functions this device includes several Timer Modules, abbreviated to the name TM. The TMs are multi-purpose timing units and serve to provide operations such as Timer/Counter, Input Capture, Compare Match Output and Single Pulse Output as well as being the functional unit for the generation of PWM signals. Each of the TMs has two individual interrupts. The addition of input and output pins for each TM ensures that users are provided with timing units with a wide and flexible range of features.

The common features of the different TM types are described here with more detailed information provided in the individual Standard and Periodic TM sections.

Introduction

The device contains three TMs and each individual TM can be categorised as a certain type, namely Standard Type TM or Periodic Type TM. Although similar in nature, the different TM types vary in their feature complexity. The common features to all of the Standard and Periodic TMs will be described in this section. The detailed operation regarding each of the TM types will be described in separate sections. The main features and differences between the two types of TMs are summarised in the accompanying table.

Function	STM	PTM
Timer/Counter	V	$\sqrt{}$
Input Capture	$\sqrt{}$	√
Compare Match Output	V	\checkmark
PWM Channels	1	1
Single Pulse Output	1	1
PWM Alignment	Edge	Edge
PWM Adjustment Period & Duty	Duty or Period	Duty or Period

TM Function Summary

PTM	STM0	STM1
10-bit PTM	10-bit STM	16-bit STM

TM Name/Type Reference

Rev. 1.10 59 November 26, 2019

TM Operation

The different types of TM offer a diverse range of functions, from simple timing operations to PWM signal generation. The key to understanding how the TM operates is to see it in terms of a free running counter whose value is then compared with the value of pre-programmed internal comparators. When the free running counter has the same value as the pre-programmed comparator, known as a compare match situation, a TM interrupt signal will be generated which can clear the counter and perhaps also change the condition of the TM output pin. The internal TM counter is driven by a user selectable clock source, which can be an internal clock or an external pin.

TM Clock Source

The clock source which drives the main counter in each TM can originate from various sources. The selection of the required clock source is implemented using the $xTnCK2\sim xTnCK0$ bits in the xTM control registers, where "x" stands for S or P type TM and "n" stands for the specific TM serial number. For the PTM there is no serial number "n" in the relevant pins, registers and control bits since there is only one PTM in the device. The clock source can be a ratio of the system clock f_{SYS} or the internal high clock f_{H} , the f_{SUB} clock source or the external xTCKn pin. The xTCKn pin clock source is used to allow an external signal to drive the TM as an external clock source or for event counting.

TM Interrupts

The Standard and Periodic type TMs each have two internal interrupts, one for each of the internal comparator A or comparator P, which generate a TM interrupt when a compare match condition occurs. When a TM interrupt is generated it can be used to clear the counter and also to change the state of the TM output pin.

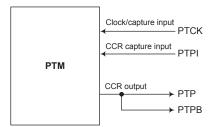
TM External Pins

Each of the TMs, irrespective of what type, has two TM input pins, with the label xTCKn and xTPnI respectively. The xTMn input pin, xTCKn, is essentially a clock source for the xTMn and is selected using the xTnCK2~xTnCK0 bits in the xTMnC0 register. This external TM input pin allows an external clock source to drive the internal TM. The xTCKn input pin can be chosen to have either a rising or falling active edge. The xTCKn pin is also used as the external trigger input pin in single pulse output mode.

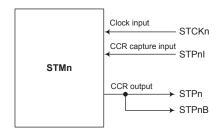
The other xTMn input pin, xTPnI, is the capture input whose active edge can be a rising edge, a falling edge or both rising and falling edges and the active edge transition type is selected using the xTnIO1~xTnIO0 bits in the xTMnC1 register. There is another capture input, PTCK, for PTM capture input mode, which can be used as the external trigger input source except the PTPI pin.

Each TM has two output pins with the label xTPn and xTPnB respectively. When the TM is in the Compare Match Output Mode, these pins can be controlled by the TM to switch to a high or low level or to toggle when a compare match situation occurs. The external xTPn and xTPnB output pins are also the pins where the TM generates the PWM output waveform. As the TM input and output pins are pin-shared with other functions, the TM input and output functions must first be setup using the relevant pin-shared function selection bits described in the Pin-shared Function section.

PT	M	ST	М0	STM1		
Input	Output	Input	Output	Input	Output	
PTCK,	PTP,	STCK0,	STP0,	STCK1,	STP1,	
PTPI	PTPB	STP0I	STP0B	STP1I	STP1B	


TM External Pins

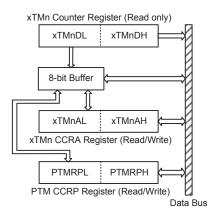
Rev. 1.10 60 November 26, 2019



TM Input/Output Pin Selection

Selecting to have a TM input/output or whether to retain its other shared function is implemented using the relevant pin-shared function selection registers, with the corresponding selection bits in each pin-shared function register corresponding to a TM input/output pin. Configuring the selection bits correctly will setup the corresponding pin as a TM input/output. The details of the pin-shared function selection are described in the pin-shared function section.

PTM Function Pin Control Block Diagram



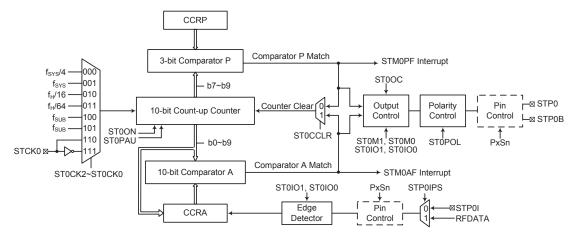
STM Function Pin Control Block Diagram (n=0~1)

Programming Considerations

The TM Counter Registers and the Capture/Compare CCRA and CCRP registers, all have a low and high byte structure. The high bytes can be directly accessed, but as the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to note is that data transfer to and from the 8-bit buffer and its related low byte only takes place when a write or read operation to its corresponding high byte is executed.

As the CCRA and CCRP registers are implemented in the way shown in the following diagram and accessing these register pairs is carried out in a specific way as described above, it is recommended to use the "MOV" instruction to access the CCRA and CCRP low byte registers, named xTMnAL and PTMRPL, using the following access procedures. Accessing the CCRA or CCRP low byte registers without following these access procedures will result in unpredictable values.

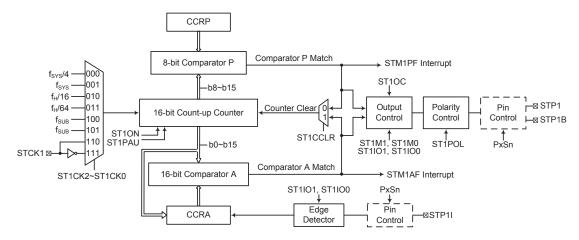
Rev. 1.10 61 November 26, 2019


The following steps show the read and write procedures:

- · Writing Data to CCRA
 - Step 1. Write data to Low Byte xTMnAL or PTMRPL
 - Note that here data is only written to the 8-bit buffer.
 - Step 2. Write data to High Byte xTMnAH or PTMRPH
 - Here data is written directly to the high byte registers and simultaneously data is latched from the 8-bit buffer to the Low Byte registers.
- · Reading Data from the Counter Registers and or CCRA
 - Step 1. Read data from the High Byte xTMnDH, xTMnAH or PTMRPH
 - Here data is read directly from the High Byte registers and simultaneously data is latched from the Low Byte register into the 8-bit buffer.
 - Step 2. Read data from the Low Byte xTMnDL, xTMnAL or PTMRPL
 - This step reads data from the 8-bit buffer.

Standard Type TM - STM

The Standard Type TM contains five operating modes, which are Compare Match Output, Timer/ Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Standard TM can also be controlled with two external input pins and can drive two external output pins. Note that STPnB is the inverted output of STPn.


STM Core	STM Input Pin	STM Output Pin		
10-bit STM0,	STCK0, STP0I	STP0, STP0B		
16-bit STM1	STCK1, STP1I	STP1, STP1B		

10-bit Standard Type TM Block Diagram (STM0)

Rev. 1.10 62 November 26, 2019

16-bit Standard Type TM Block Diagram (STM1)

Standard TM Operation

The size of Standard TM is 10-bit or 16-bit wide and its core is a 10-bit or 16-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP comparator is 3-bit or 8-bit wide whose value is compared with the highest 3 bits or 8 bits in the counter while the CCRA is the ten bits or sixteen bits and therefore compares all counter bits.

The only way of changing the value of the 10-bit or 16-bit counter using the application program, is to clear the counter by changing the STnON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, a STMn interrupt signal will also usually be generated. The Standard Type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control two output pins. All operating setup conditions are selected using relevant internal registers.

Standard Type TM Register Description

Overall operation of the Standard TMs is controlled using a series of registers. A read only register pair exists to store the internal counter 10-bit or 16-bit value, while a read/write register pair exists to store the internal 10-bit or 16-bit CCRA value. One read/write register is used to store the 8-bit CCRP value for the 16-bit STM. The remaining two registers are control registers which setup the different operating and control modes. Three CCRP bits are in the lowest three bits of the STMnC0 register for the 10-bit STM.

Register								
Name	7	6	5	4	3	2	1	0
STMnC0	STnPAU	STnCK2	STnCK1	STnCK0	STnON	STnRP2	STnRP1	STnRP0
STMnC1	STnM1	STnM0	STnIO1	STnIO0	STnOC	STnPOL	STnDPX	STnCCLR
STMnDL	D7	D6	D5	D4	D3	D2	D1	D0
STMnDH	_	_	_	_	_	_	D9	D8
STMnAL	D7	D6	D5	D4	D3	D2	D1	D0
STMnAH	_	_	_	_	_	_	D9	D8

10-bit Standard TM Registers List (n=0)

Rev. 1.10 63 November 26, 2019

Register		Bit										
Name	7	6	5	4	3	2	1	0				
STMnC0	STnPAU	STnCK2	STnCK1	STnCK0	STnON	_	_	_				
STMnC1	STnM1	STnM0	STnIO1	STnIO0	STnOC	STnPOL	STnDPX	STnCCLR				
STMnDL	D7	D6	D5	D4	D3	D2	D1	D0				
STMnDH	D15	D14	D13	D12	D11	D10	D9	D8				
STMnAL	D7	D6	D5	D4	D3	D2	D1	D0				
STMnAH	D15	D14	D13	D12	D11	D10	D9	D8				
STMnRP	STnRP7	STnRP6	STnRP5	STnRP4	STnRP3	STnRP2	STnRP1	STnRP0				

16-bit Standard TM Registers List (n=1)

STMnC0 Register (n=0)

Bit	7	6	5	4	3	2	1	0
Name	STnPAU	STnCK2	STnCK1	STnCK0	STnON	STnRP2	STnRP1	STnRP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 STnPAU: STMn Counter Pause control

0: Run 1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the STMn will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again.

Bit 6~4 STnCK2~STnCK0: Select STMn Counter clock

000: f_{SYS}/4 001: f_{SYS} 010: f_H/16 011: f_H/64 100: f_{SUB} 101: f_{SUB}

110: STCKn rising edge clock111: STCKn falling edge clock

These three bits are used to select the clock source for the STMn. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_H and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section.

Bit 3 STnON: STMn Counter On/Off control

0: Off 1: On

This bit controls the overall on/off function of the STMn. Setting the bit high enables the counter to run while clearing the bit disables the STMn. Clearing this bit to zero will stop the counter from counting and turn off the STMn which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again. If the STMn is in the Compare Match Output Mode, PWM Output Mode or Single Pulse Output Mode then the STMn output pin will be reset to its initial condition, as specified by the STnOC bit, when the STnON bit changes from low to high.

Rev. 1.10 64 November 26, 2019

Bit2 ~ 0 STnRP2~STnRP0: STMn CCRP 3-bit register, compared with the STMn Counter bit 9~bit 7

Comparator P Match Period 000: 1024 STMn clocks

001: 128 STMn clocks 010: 256 STMn clocks 011: 384 STMn clocks

100: 512 STMn clocks 101: 640 STMn clocks 110: 768 STMn clocks 111: 896 STMn clocks

These three bits are used to setup the value on the internal CCRP 3-bit register, which are then compared with the internal counter's highest three bits. The result of this comparison can be selected to clear the internal counter if the STnCCLR bit is set to zero. Setting the STnCCLR bit to zero ensures that a compare match with the CCRP values will reset the internal counter. As the CCRP bits are only compared with the highest three counter bits, the compare values exist in 128 clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at its maximum value.

STMnC0 Register (n=1)

Bit	7	6	5	4	3	2	1	0
Name	STnPAU	STnCK2	STnCK1	STnCK0	STnON	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	_	_	_
POR	0	0	0	0	0	_	_	_

Bit 7 STnPAU: STMn Counter Pause control

0: Run

1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the STMn will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again.

Bit 6~4 STnCK2~STnCK0: Select STMn Counter clock

000: f_{SYS}/4

001: f_{SYS}

010: f_H/16 011: f_H/64

U11: IH/04

100: f_{SUB}

101: f_{SUB}

110: STCKn rising edge clock

111: STCKn falling edge clock

These three bits are used to select the clock source for the STMn. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_{H} and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section.

Bit 3 STnON: STMn Counter On/Off control

0: Off

1: On

This bit controls the overall on/off function of the STMn. Setting the bit high enables the counter to run while clearing the bit disables the STMn. Clearing this bit to zero will stop the counter from counting and turn off the STMn which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again. If the STMn is in the Compare Match Output Mode, PWM Output Mode or Single Pulse Output Mode then the STMn output pin will be reset to its initial condition, as specified by the STnOC bit, when the STnON bit changes from low to high.

Bit 2~0 Unimplemented, read as "0"

STMnC1 Register (n=0~1)

Bit	7	6	5	4	3	2	1	0
Name	STnM1	STnM0	STnIO1	STnIO0	STnOC	STnPOL	STnDPX	STnCCLR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 STnM1~STnM0: Select STMn Operating Mode

00: Compare Match Output Mode

01: Capture Input Mode

10: PWM Output Mode or Single Pulse Output Mode

11: Timer/Counter Mode

These bits setup the required operating mode for the STMn. To ensure reliable operation the STMn should be switched off before any changes are made to the STnM1 and STnM0 bits. In the Timer/Counter Mode, the STMn output pin control will be disabled.

Bit 5~4 STnIO1~STnIO0: Select STMn external pin STPn or STPnI function

Compare Match Output Mode

00: No change

01: Output low

10: Output high

11: Toggle output

PWM Output Mode/Single Pulse Output Mode

00: PWM output inactive state

01: PWM output active state

10: PWM output

11: Single Pulse Output

Capture Input Mode

00: Input capture at rising edge of STPnI

01: Input capture at falling edge of STPnI

10: Input capture at rising/falling edge of STPnI

11: Input capture disabled

Timer/Counter Mode

These two bits are used to determine how the STMn external pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the STMn is running.

In the Compare Match Output Mode, the STnIO1 and STnIO0 bits determine how the STMn output pin changes state when a compare match occurs from the Comparator A. The STMn output pin can be setup to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the STMn output pin should be setup using the STnOC bit in the STMnC1 register. Note that the output level requested by the STnIO1 and STnIO0 bits must be different from the initial value setup using the STnOC bit otherwise no change will occur on the STMn output pin when a compare match occurs. After the STMn output pin changes state, it can be reset to its initial level by changing the level of the STnON bit from low to high.

In the PWM Output Mode, the STnIO1 and STnIO0 bits determine how the STMn output pin changes state when a certain compare match condition occurs. The PWM output function is modified by changing these two bits. It is necessary to only change the values of the STnIO1 and STnIO0 bits only after the STMn has been switched off. Unpredictable PWM outputs will occur if the STnIO1 and STnIO0 bits are changed when the STMn is running.

In the Capture Input Mode, the capture input trigger source comes from external signal on the STPnI pin for STM1. However, the actual capture input trigger source, either the external STP0I capture input or the internal RF data output, RFDATA in the RFDEBC register, is determined by the STP0IPS bit in the IFS register for STM0.

66 Rev 110 November 26, 2019

Bit 3 STnOC: STMn STPn Output control

Compare Match Output Mode

0: Initial low 1: Initial high

PWM Output Mode/Single Pulse Output Mode

0: Active low 1: Active high

This is the output control bit for the STMn output pin. Its operation depends upon whether STMn is being used in the Compare Match Output Mode or in the PWM Output Mode/Single Pulse Output Mode. It has no effect if the STMn is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the STMn output pin before a compare match occurs. In the PWM Output Mode it determines if the PWM signal is active high or active low. In the Single Pulse Output Mode it determines the logic level of the STMn output pin when the STnON bit changes from low to high.

Bit 2 STnPOL: STMn STPn Output polarity control

0: Non-inverted

1: Inverted

This bit controls the polarity of the STPn output pin. When the bit is set high the STMn output pin will be inverted and not inverted when the bit is zero. It has no effect if the STMn is in the Timer/Counter Mode.

Bit 1 STnDPX: STMn PWM duty/period control

0: CCRP – period; CCRA – duty 1: CCRP – duty; CCRA – period

This bit determines which of the CCRA and CCRP registers are used for period and duty control of the PWM waveform.

Bit 0 STnCCLR: STMn Counter Clear condition selection

0: Comparator P match

1: Comparator A match

This bit is used to select the method which clears the counter. Remember that the Standard TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the STnCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The STnCCLR bit is not used in the PWM Output Mode, Single Pulse Output Mode or Capture Input Mode.

STMnDL Register (n=0~1)

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit $7\sim 0$ **D7\simD0**: STMn Counter Low Byte Register bit $7\sim$ bit 0 STMn 10-bit/16-bit Counter bit $7\sim$ bit 0

STMnDH Register (n=0)

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_	_	R	R
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 **D9~D8**: STMn Counter High Byte Register bit 1 ~ bit 0

STMn 10-bit Counter bit 9 ~ bit 8

STMnDH Register (n=1)

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit $7\sim0$ **D15\simD8**: STMn Counter High Byte Register bit $7\sim$ bit 0 STMn 16-bit Counter bit $15\sim$ bit 8

STMnAL Register (n=0~1)

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D7~D0**: STMn CCRA Low Byte Register bit $7 \sim$ bit 0 STMn 10-bit/16-bit CCRA bit $7 \sim$ bit 0

STMnAH Register (n=0)

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit $1\sim 0$ **D9~D8**: STMn CCRA High Byte Register bit $1\sim$ bit 0

STMn 10-bit CCRA bit 9 ~ bit 8

STMnAH Register (n=1)

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D15~D8**: STMn CCRA High Byte Register bit $7 \sim$ bit 0 STMn 16-bit CCRA bit $15 \sim$ bit 8

STMnRP Register (n=1)

Bit	7	6	5	4	3	2	1	0
Name	STnRP7	STnRP6	STnRP5	STnRP4	STnRP3	STnRP2	STnRP1	STnRP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 STnRP7~STnRP0: STMn CCRP 8-bit register, compared with the STMn counter bit 15~bit 8 Comparator P Match Period =

0: 65536 STMn clocks

1~255: (1~255) × 256 STMn clocks

These eight bits are used to setup the value on the internal CCRP 8-bit register, which are then compared with the internal counter's highest eight bits. The result of this comparison can be selected to clear the internal counter if the STnCCLR bit is set to zero. Setting the STnCCLR bit to zero ensures that a compare match with the CCRP values will reset the internal counter. As the CCRP bits are only compared with the highest eight counter bits, the compare values exist in 256 clock cycle multiples. Clearing all eight bits to zero is in effect allowing the counter to overflow at its maximum value.

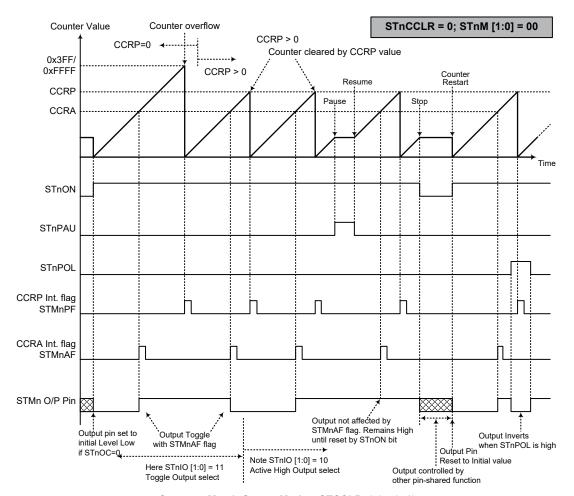
Rev. 1.10 68 November 26, 2019

Standard Type TM Operation Modes

The Standard Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using the STnM1 and STnM0 bits in the STMnC1 register.

Compare Match Output Mode

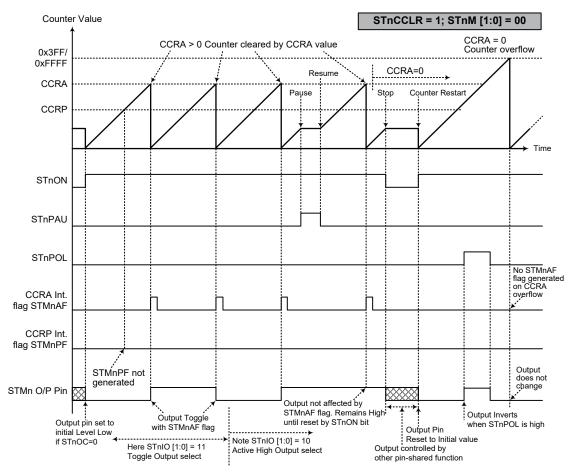
To select this mode, bits STnM1 and STnM0 in the STMnC1 register, should be set to 00 respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the STnCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both STMnAF and STMnPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.


If the STnCCLR bit in the STMnC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the STMnAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when STnCCLR is high no STMnPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA can not be set to "0".

If the CCRA bits are all zero, the counter will overflow when it reaches its maximum 10-bit, 3FF Hex, value, or 16-bit, FFFF Hex, value, however here the STMnAF interrupt request flag will not be generated.

As the name of the mode suggests, after a comparison is made, the STMn output pin, will change state. The STMn output pin condition however only changes state when a STMnAF interrupt request flag is generated after a compare match occurs from Comparator A. The STMnPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the STMn output pin. The way in which the STMn output pin changes state are determined by the condition of the STnIO1 and STnIO0 bits in the STMnC1 register. The STMn output pin can be selected using the STnIO1 and STnIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the STMn output pin, which is setup after the STnON bit changes from low to high, is setup using the STnOC bit. Note that if the STnIO1 and STnIO0 bits are zero then no pin change will take place.

Rev. 1.10 69 November 26, 2019


Compare Match Output Mode - STCCLR=0 (n=0~1)

Note: 1. With STnCCLR=0 a Comparator P match will clear the counter

- 2. The STMn output pin is controlled only by the STMnAF flag
- 3. The output pin is reset to itsinitial state by a STnON bit rising edge

Rev. 1.10 70 November 26, 2019

Compare Match Output Mode - STCCLR=1 (n=0~1)

Note: 1. With STnCCLR=1 a Comparator A match will clear the counter

- 2. The STMn output pin is controlled only by the STMnAF flag
- 3. The output pin is reset to its initial state by a STnON bit rising edge
- 4. A STMnPF flag is not generated when STnCCLR=1

Timer/Counter Mode

To select this mode, bits STnM1 and STnM0 in the STMnC1 register should be set to 11 respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the STMn output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the STMn output pins are not used in this mode, the pins can be used as normal I/O pins or other pin-shared functions.

PWM Output Mode

To select this mode, bits STnM1 and STnM0 in the STMnC1 register should be set to 10 respectively and also the STnIO1 and STnIO0 bits should be set to 10 respectively. The PWM function within the STMn is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the STMn output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM output mode, the STnCCLR bit has no effect as the PWM period. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. Which register is used to control either frequency or duty cycle is determined using the STnDPX bit in the STMnC1 register. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The STnOC bit in the STMnC1 register is used to select the required polarity of the PWM waveform while the two STnIO1 and STnIO0 bits are used to enable the PWM output or to force the STMn output pin to a fixed high or low level. The STnPOL bit is used to reverse the polarity of the PWM output waveform.

10-bit STMn, PWM Output Mode, Edge-aligned Mode, STnDPX=0 (n=0)

CCRP	001b	010b	011b	100b	101b	110b	111b	000b		
Period	128	256	384	512	640	768	896	1024		
Duty		CCRA								

• 16-bit STMn, PWM Output Mode, Edge-aligned Mode, STnDPX=0 (n=1)

CCRP	1~255	0				
Period	CCRP×256	65536				
Duty	CCRA					

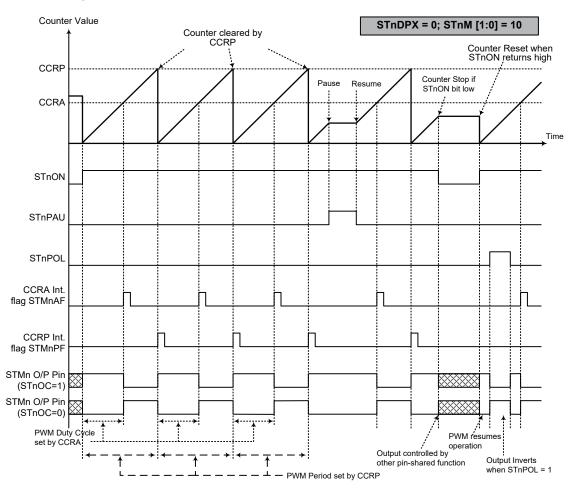
If f_{SYS}=16MHz, STMn clock source is f_{SYS}/4, CCRP=2 and CCRA=128,

The STMn PWM output frequency= $(f_{SYS}/4)/(2\times256)=f_{SYS}/2048=7.8125$ kHz, duty=128/ $(2\times256)=25\%$.

If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%.

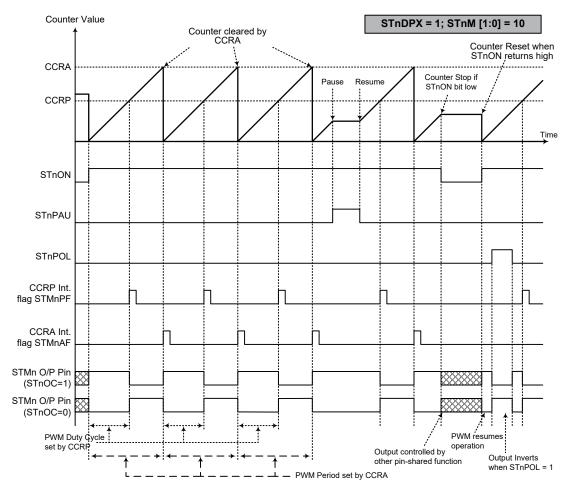
• 10-bit STMn, PWM Output Mode, Edge-aligned Mode, STnDPX=1 (n=0)

CCRP	001b	010b	011b	100b	101b	110b	111b	000b		
Period		CCRA								
Duty	128	256	384	512	640	768	896	1024		


Rev. 1.10 72 November 26, 2019

• 16-bit STMn, PWM Output Mode, Edge-aligned Mode, STnDPX=1 (n=1)

CCRP	1~255	0		
Period	CCRA			
Duty	CCRP×256	65536		


The PWM output period is determined by the CCRA register value together with the STMn clock while the PWM duty cycle is defined by the CCRP register value except when the CCRP value is equal to 0.

PWM Output Mode - STnDPX=0 (n=0~1)

- Note: 1. Here STnDPX=0 Counter cleared by CCRP
 - 2. A counter clear sets the PWM Period
 - 3. The internal PWM function continues running even when STnIO [1:0]=00 or 01
 - 4. The STnCCLR bit has no influence on PWM operation

PWM Output Mode - STDPX=1 (n=0~1)

Note: 1. Here STnDPX=1 - Counter cleared by CCRA

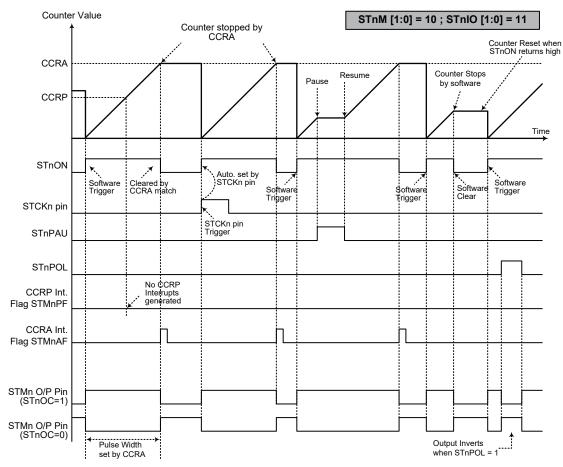
- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues even when STnIO [1:0]=00 or 01 $\,$
- 4. The STnCCLR bit has no influence on PWM operation

Rev. 1.10 74 November 26, 2019

Single Pulse Output Mode

To select this mode, bits STnM1 and STnM0 in the STMnC1 register should be set to 10 respectively and also the STnIO1 and STnIO0 bits should be set to 11 respectively. The Single Pulse Output Mode, as the name suggests, will generate a single shot pulse on the STMn output pin.

The trigger for the pulse output leading edge is a low to high transition of the STnON bit, which can be implemented using the application program. However in the Single Pulse Output Mode, the STnON bit can also be made to automatically change from low to high using the external STCKn pin, which will in turn initiate the Single Pulse output. When the STnON bit transitions to a high level, the counter will start running and the pulse leading edge will be generated. The STnON bit should remain high when the pulse is in its active state. The generated pulse trailing edge will be generated when the STnON bit is cleared to zero, which can be implemented using the application program or when a compare match occurs from Comparator A.


However a compare match from Comparator A will also automatically clear the STnON bit and thus generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control the pulse width. A compare match from Comparator A will also generate a STMn interrupt. The counter can only be reset back to zero when the STnON bit changes from low to high when the counter restarts. In the Single Pulse Output Mode CCRP is not used. The STnCCLR and STnDPX bits are not used in this Mode.

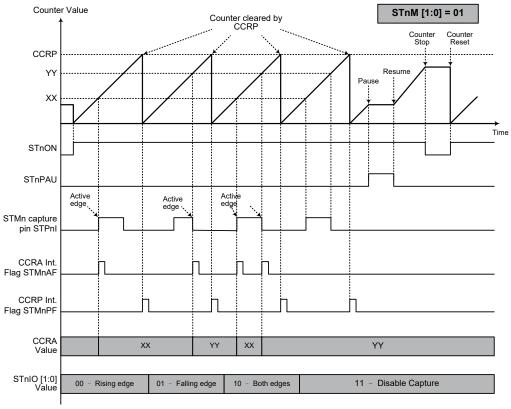
Single Pulse Generation (n=0~1)

Rev. 1.10 75 November 26, 2019

Single Pulse Output Mode (n=0~1)

Note: 1. Counter stopped by CCRA

- 2. CCRP is not used
- 3. The pulse triggered by the STCKn pin or by setting the STnON bit high
- 4. A STCKn pin active edge will automatically set the STnON bit high.
- 5. In the Single Pulse Output Mode, STnIO [1:0] must be set to "11" and can not be changed.

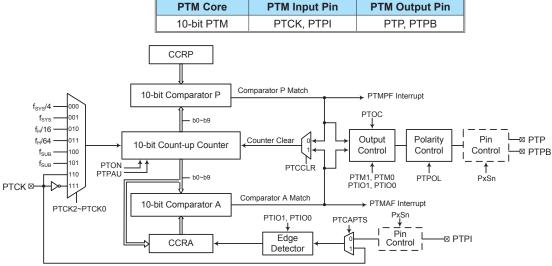

Rev. 1.10 76 November 26, 2019

Capture Input Mode

To select this mode bits STnM1 and STnM0 in the STMnC1 register should be set to 01 respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications such as pulse width measurements. The external signal is supplied on the STPnI pin, whose active edge can be a rising edge, a falling edge or both rising and falling edges; the active edge transition type is selected using the STnIO1 and STnIO0 bits in the STMnC1 register. The counter is started when the STnON bit changes from low to high which is initiated using the application program.

When the required edge transition appears on the STPnI pin the present value in the counter will be latched into the CCRA registers and a STMn interrupt generated. Irrespective of what events occur on the STPnI pin the counter will continue to free run until the STnON bit changes from high to low. When a CCRP compare match occurs the counter will reset back to zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP compare match occurs from Comparator P, a STMn interrupt will also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The STnIO1 and STnIO0 bits can select the active trigger edge on the STPnI pin to be a rising edge, falling edge or both edge types. If the STnIO1 and STnIO0 bits are both set high, then no capture operation will take place irrespective of what happens on the STPnI pin, however it must be noted that the counter will continue to run. The STnCCLR and STnDPX bits are not used in this Mode.

Capture Input Mode (n=0~1)


- Note: 1. STnM [1:0]=01 and active edge set by the STnIO [1:0] bits
 - 2. A STMn Capture input pin active edge transfers the counter value to CCRA
 - 3. STnCCLR bit not used
 - 4. No output function STnOC and STnPOL bits are not used
 - CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to zero.

Rev. 1.10 77 November 26, 2019

Periodic Type TM - PTM

The Periodic Type TM contains five operating modes, which are Compare Match Output, Timer/ Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Periodic TM can be controlled with two external input pins and can drive two external output pins.

Note: PTPB is the inverted output of PTP.

Periodic Type TM Block Diagram

Periodic TM Operation

The Periodic Type TM core is a 10-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP and CCRA comparators are 10-bit wide whose value is respectively compared with all counter bits.

The only way of changing the value of the 10-bit counter using the application program, is to clear the counter by changing the PTON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, a PTM interrupt signal will also usually be generated. The Periodic Type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control more than one output pin. All operating setup conditions are selected using relevant internal registers.

Rev. 1.10 78 November 26, 2019

Periodic Type TM Register Description

Overall operation of the Periodic Type TM is controlled using a series of registers. A read only register pair exists to store the internal counter 10-bit value, while two read/write register pairs exist to store the internal 10-bit CCRA value and CCRP value. The remaining two registers are control registers which setup the different operating and control modes.

Register	Bit							
Name	7	6	5	4	3	2	1	0
PTMC0	PTPAU	PTCK2	PTCK1	PTCK0	PTON	_	_	_
PTMC1	PTM1	PTM0	PTIO1	PTIO0	PTOC	PTPOL	PTCAPTS	PTCCLR
PTMDL	D7	D6	D5	D4	D3	D2	D1	D0
PTMDH	_	_	_	_	_	_	D9	D8
PTMAL	D7	D6	D5	D4	D3	D2	D1	D0
PTMAH	_	_	_	_	_	_	D9	D8
PTMRPL	PTRP7	PTRP6	PTRP5	PTRP4	PTRP3	PTRP2	PTRP1	PTRP0
PTMRPH	_	_	_	_	_	_	PTRP9	PTRP8

10-bit Periodic TM Registers List

PTMC0 Register

Bit	7	6	5	4	3	2	1	0
Name	PTPAU	PTCK2	PTCK1	PTCK0	PTON	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	_	_	_
POR	0	0	0	0	0	_	_	_

Bit 7 **PTPAU**: PTM Counter Pause Control

0: Run 1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the PTM will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again.

Bit 6~4 **PTCK2~PTCK0**: Select PTM Counter clock

 $\begin{array}{c} 000: \, f_{SYS}/4 \\ 001: \, f_{SYS} \\ 010: \, f_H/16 \\ 011: \, f_H/64 \\ 100: \, f_{SUB} \\ 101: \, f_{SUB} \end{array}$

110: PTCK rising edge clock111: PTCK falling edge clock

These three bits are used to select the clock source for the PTM. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_H and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section.

Rev. 1.10 79 November 26, 2019

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

Bit 3 **PTON**: PTM Counter On/Off Control

0: Off 1: On

This bit controls the overall on/off function of the PTM. Setting the bit high enables the counter to run, clearing the bit disables the PTM. Clearing this bit to zero will stop the counter from counting and turn off the PTM which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again.

If the PTM is in the Compare Match Output Mode, PWM output Mode or Single Pulse Output Mode then the PTM output pin will be reset to its initial condition, as specified by the PTOC bit, when the PTON bit changes from low to high.

Bit 2~0 Unimplemented, read as "0"

PTMC1 Register

Bit	7	6	5	4	3	2	1	0
Name	PTM1	PTM0	PTIO1	PTIO0	PTOC	PTPOL	PTCAPTS	PTCCLR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **PTM1~PTM0**: Select PTM Operating Mode

00: Compare Match Output Mode

01: Capture Input Mode

10: PWM Output Mode or Single Pulse Output Mode

11: Timer/Counter Mode

These bits setup the required operating mode for the PTM. To ensure reliable operation the PTM should be switched off before any changes are made to the PTM1 and PTM0 bits. In the Timer/Counter Mode, the PTM output pin control must be disabled.

Bit 5~4 PTIO1~PTIO0: Select PTM external pin PTP, PTPI or PTCK function

Compare Match Output Mode

00: No change

01: Output low

10: Output high

11: Toggle output

PWM Output Mode/Single Pulse Output Mode

00: PWM Output inactive state

01: PWM Output active state

10: PWM output

11: Single pulse output

Capture Input Mode

00: Input capture at rising edge of PTPI or PTCK

01: Input capture at falling edge of PTPI or PTCK

10: Input capture at falling/rising edge of PTPI or PTCK

11: Input capture disabled

Timer/Counter Mode

Unused

These two bits are used to determine how the PTM output pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the PTM is running.

Rev. 1.10 80 November 26, 2019

In the Compare Match Output Mode, the PTIO1 and PTIO0 bits determine how the PTM output pin changes state when a compare match occurs from the Comparator A. The PTM output pin can be setup to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the PTM output pin should be setup using the PTOC bit in the PTMC1 register. Note that the output level requested by the PTIO1 and PTIO0 bits must be different from the initial value setup using the PTOC bit otherwise no change will occur on the PTM output pin when a compare match occurs. After the PTM output pin changes state, it can be reset to its initial level by changing the level of the PTON bit from low to high.

In the PWM Output Mode, the PTIO1 and PTIO0 bits determine how the PTM output pin changes state when a certain compare match condition occurs. The PWM output function is modified by changing these two bits. It is necessary to only change the values of the PTIO1 and PTIO0 bits only after the TM has been switched off. Unpredictable PWM outputs will occur if the PTIO1 and PTIO0 bits are changed when the PTM is running.

Bit 3 **PTOC**: PTM PTP Output control bit

Compare Match Output Mode

0: Initial low 1: Initial high

PWM Output Mode/Single Pulse Output Mode

0: Active low

1: Active high

This is the output control bit for the PTM output pin. Its operation depends upon whether PTM is being used in the Compare Match Output Mode or in the PWM Output Mode/Single Pulse Output Mode. It has no effect if the PTM is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the PTM output pin before a compare match occurs. In the PWM Output Mode it determines if the PWM signal is active high or active low. In the Single Pulse Output Mode it determines the logic level of the PTM output pin when the PTON bit changes from low to high.

Bit 2 **PTPOL**: PTM PTP Output polarity Control

0: Non-invert

1: Invert

This bit controls the polarity of the PTP output pin. When the bit is set high the PTM output pin will be inverted and not inverted when the bit is zero. It has no effect if the PTM is in the Timer/Counter Mode.

Bit 1 PTCAPTS: PTM Capture Trigger Source Selection

0: From PTPI pin

1: From PTCK pin

Bit 0 **PTCCLR**: Select PTM Counter clear condition

0: PTM Comparator P match

1: PTM Comparator A match

This bit is used to select the method which clears the counter. Remember that the Periodic TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the PTCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The PTCCLR bit is not used in the PWM Output Mode, Single Pulse Output Mode or Capture Input Mode.

Rev. 1.10 81 November 26, 2019

PTMDL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0**: PTM Counter Low Byte Register bit $7 \sim$ bit 0 PTM 10-bit Counter bit $7 \sim$ bit 0

PTMDH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_		R	R
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 **D9~D8**: PTM Counter High Byte Register bit $1 \sim$ bit 0 PTM 10-bit Counter bit $9 \sim$ bit 8

PTMAL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7\sim0$ **D7\simD0**: PTM CCRA Low Byte Register bit $7\sim$ bit 0 PTM 10-bit CCRA bit $7\sim$ bit 0

PTMAH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_		R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 **D9~D8**: PTM CCRA High Byte Register bit 1 ~ bit 0 PTM 10-bit CCRA bit 9 ~ bit 8

PTMRPL Register

Bit	7	6	5	4	3	2	1	0
Name	PTRP7	PTRP6	PTRP5	PTRP4	PTRP3	PTRP2	PTRP1	PTRP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7\sim0$ **PTRP7~PTRP0**: PTM CCRP Low Byte Register bit $7\sim$ bit 0 PTM 10-bit CCRP bit $7\sim$ bit 0

Rev. 1.10 82 November 26, 2019

PTMRPH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	PTRP9	PTRP8
R/W	_	_	_	_	_		R/W	R/W
POR	_	_	_	_	_		0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 **PTRP9~PTRP8**: PTM CCRP High Byte Register bit 1 ~ bit 0

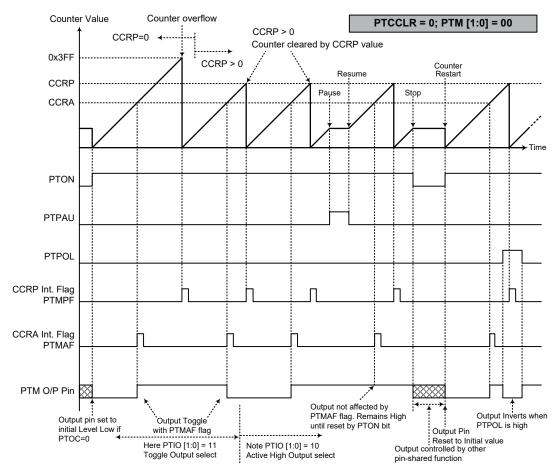
PTM 10-bit CCRP bit 9 ~ bit 8

Periodic Type TM Operating Modes

The Periodic Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using the PTM1 and PTM0 bits in the PTMC1 register.

Compare Match Output Mode

To select this mode, bits PTM1 and PTM0 in the PTMC1 register, should be set to 00 respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the PTCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both PTMAF and PTMPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.


If the PTCCLR bit in the PTMC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the PTMAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when PTCCLR is high no PTMPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA can not be cleared to zero.

If the CCRA bits are all zero, the counter will overflow when its reaches its maximum 10-bit, 3FF Hex, value, however here the PTMAF interrupt request flag will not be generated.

As the name of the mode suggests, after a comparison is made, the PTM output pin, will change state. The PTM output pin condition however only changes state when a PTMAF interrupt request flag is generated after a compare match occurs from Comparator A. The PTMPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the PTM output pin. The way in which the PTM output pin changes state are determined by the condition of the PTIO1 and PTIO0 bits in the PTMC1 register. The PTM output pin can be selected using the PTIO1 and PTIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the PTM output pin, which is setup after the PTON bit changes from low to high, is setup using the PTOC bit. Note that if the PTIO1 and PTIO0 bits are zero then no pin change will take place.

Rev. 1.10 83 November 26, 2019

Compare Match Output Mode - PTCCLR=0

Note: 1. With PTCCLR=0 a Comparator P match will clear the counter

- 2. The PTM output pin is controlled only by the PTMAF flag
- 3. The output pin is reset to its initial state by a PTON bit rising edge

Rev. 1.10 84 November 26, 2019

Compare Match Output Mode - PTCCLR=1

Note: 1. With PTCCLR=1 a Comparator A match will clear the counter

- 2. The PTM output pin is controlled only by the PTMAF flag
- 3. The output pin is reset to its initial state by a PTON bit rising edge
- 4. A PTMPF flag is not generated when PTCCLR=1

Rev. 1.10 85 November 26, 2019

Timer/Counter Mode

To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to 11 respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the PTM output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the PTM output pins are not used in this mode, the pins can be used as normal I/O pins or other pin-shared functions.

PWM Output Mode

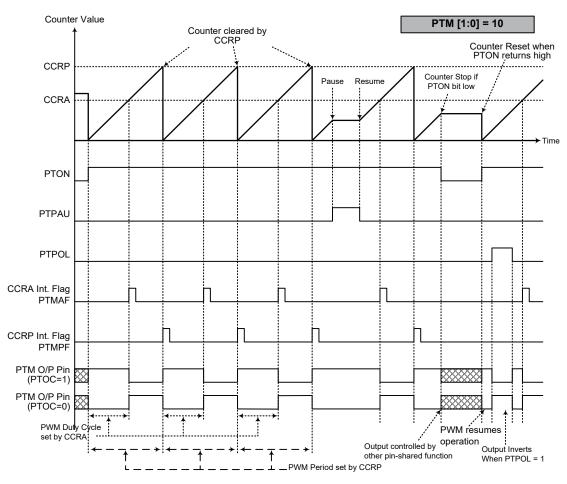
To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to 10 respectively. The PWM function within the PTM is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the PTM output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM Output Mode, the PTCCLR bit has no effect on the PWM operation. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The PTOC bit in the PTMC1 register is used to select the required polarity of the PWM waveform while the two PTIO1 and PTIO0 bits are used to enable the PWM output or to force the PTM output pin to a fixed high or low level. The PTPOL bit is used to reverse the polarity of the PWM output waveform.

• 10-bit PTM, PWM Output Mode, Edge-aligned Mode

CCRP	1~1023	0			
Period	1~1023	1024			
Duty	CCRA				


If f_{SYS}=16MHz, PTM clock source select f_{SYS}/4, CCRP=512 and CCRA=128,

The PTM PWM output frequency= $(f_{SYS}/4)/512=f_{SYS}/2048=7.8125$ kHz, duty=128/512=25%.

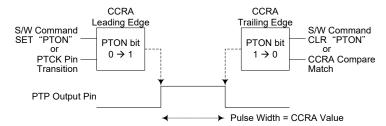
If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%.

Rev. 1.10 86 November 26, 2019

PWM Output Mode

Note: 1. Counter cleared by CCRP

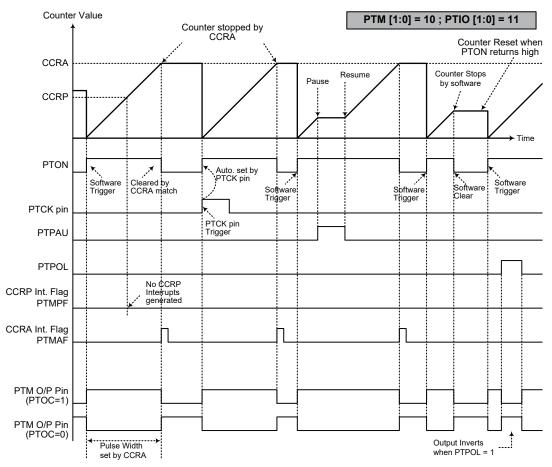
- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues running even when PTIO[1:0]=00 or 01
- 4. The PTCCLR bit has no influence on PWM operation



Single Pulse Output Mode

To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to 10 respectively and also the PTIO1 and PTIO0 bits should be set to 11 respectively. The Single Pulse Output Mode, as the name suggests, will generate a single shot pulse on the PTM output pin.

The trigger for the pulse output leading edge is a low to high transition of the PTON bit, which can be implemented using the application program. However in the Single Pulse Output Mode, the PTON bit can also be made to automatically change from low to high using the external PTCK pin, which will in turn initiate the Single Pulse output. When the PTON bit transitions to a high level, the counter will start running and the pulse leading edge will be generated. The PTON bit should remain high when the pulse is in its active state. The generated pulse trailing edge will be generated when the PTON bit is cleared to zero, which can be implemented using the application program or when a compare match occurs from Comparator A.


However a compare match from Comparator A will also automatically clear the PTON bit and thus generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control the pulse width. A compare match from Comparator A will also generate a PTM interrupt. The counter can only be reset back to zero when the PTON bit changes from low to high when the counter restarts. In the Single Pulse Output Mode CCRP is not used. The PTCCLR bit is not used in this Mode.

Single Pulse Generation

Rev. 1.10 88 November 26, 2019

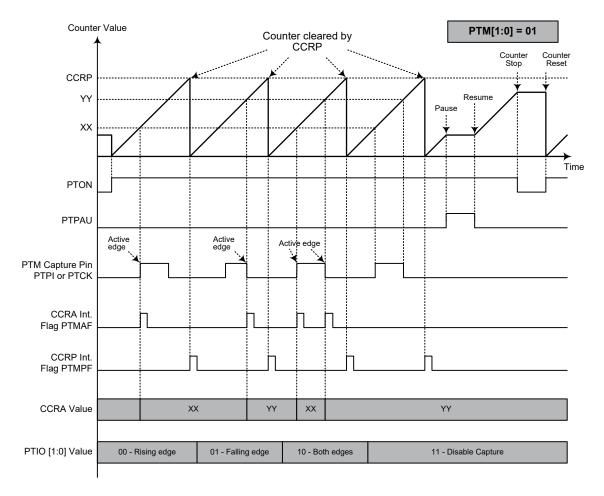
Single Pulse Output Mode

Note: 1. Counter stopped by CCRA

- 2. CCRP is not used
- 3. The pulse is triggered by the PTCK pin or by setting the PTON bit high
- 4. A PTCK pin active edge will automatically set the PTON bit high
- 5. In the Single Pulse Output Mode, PTIO[1:0] must be set to "11" and cannot be changed.

Rev. 1.10 89 November 26, 2019

Capture Input Mode


To select this mode bits PTM1 and PTM0 in the PTMC1 register should be set to 01 respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications such as pulse width measurements. The external signal is supplied on the PTPI or PTCK pin which is selected using the PTCAPTS bit in the PTMC1 register. The input pin active edge can be either a rising edge, a falling edge or both rising and falling edges; the active edge transition type is selected using the PTIO1 and PTIO0 bits in the PTMC1 register. The counter is started when the PTON bit changes from low to high which is initiated using the application program.

When the required edge transition appears on the PTPI or PTCK pin the present value in the counter will be latched into the CCRA registers and a PTM interrupt generated. Irrespective of what events occur on the PTPI or PTCK pin, the counter will continue to free run until the PTON bit changes from high to low. When a CCRP compare match occurs the counter will reset back to zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP compare match occurs from Comparator P, a PTM interrupt will also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The PTIO1 and PTIO0 bits can select the active trigger edge on the PTPI or PTCK pin to be a rising edge, falling edge or both edge types. If the PTIO1 and PTIO0 bits are both set high, then no capture operation will take place irrespective of what happens on the PTPI or PTCK pin, however it must be noted that the counter will continue to run.

As the PTPI or PTCK pin is pin shared with other functions, care must be taken if the PTM is in the Capture Input Mode. This is because if the pin is setup as an output, then any transitions on this pin may cause an input capture operation to be executed. The PTCCLR, PTOC and PTPOL bits are not used in this Mode.

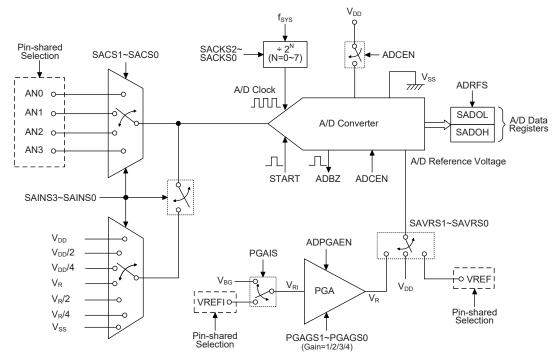
Rev. 1.10 90 November 26, 2019

Capture Input Mode

- Note: 1. PTM[1:0]=01 and active edge set by the PTIO[1:0] bits
 - 2. A PTM Capture input pin active edge transfers the counter value to CCRA
 - 3. PTCCLR bit not used
 - 4. No output function PTOC and PTPOL bits are not used
 - 5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to zero.

Rev. 1.10 91 November 26, 2019

Analog to Digital Converter


The need to interface to real world analog signals is a common requirement for many electronic systems. However, to properly process these signals by a microcontroller, they must first be converted into digital signals by A/D converters. By integrating the A/D conversion electronic circuitry into the microcontroller, the need for external components is reduced significantly with the corresponding follow-on benefits of lower costs and reduced component space requirements.

A/D Converter Overview

This device contains a multi-channel analog to digital converter which can directly interface to external analog signals, such as that from sensors or other control signals and convert these signals directly into a 12-bit digital value. It also can convert the internal signals, such as the internal reference voltage, into a 12-bit digital value. The external or internal analog signal to be converted is determined by the SAINS3~SAINS0 bits together with the SACS1~SACS0 bits. When the external analog signal is to be converted, the corresponding pin-shared control bits should first be properly configured and then desired external channel input should be selected using the SAINS3~SAINS0 and SACS1~SACS0 bits. Note that when the internal analog signal is selected to be converted using the SAINS field, the external channel analog input will be automatically be switched off. More detailed information about the A/D input signal is described in the "A/D Converter Control Registers" and "A/D Converter Input Signals" sections respectively.

External Input Channels	Internal Signal	A/D Channel Select Bits	
4. ANO ANO	6: V _{DD} , V _{DD} /2, V _{DD} /4,	SAINS3~SAINS0,	
4: AN0~AN3	$V_{R}, V_{R}/2, V_{R}/4$	SACS1~SACS0	

The accompanying block diagrams show the overall internal structure of the A/D converter, together with its associated registers in the device.

A/D Converter Structure

Rev. 1.10 92 November 26, 2019

A/D Converter Register Description

Overall operation of the A/D converter is controlled using five registers. A read only register pair exists to store the A/D converter data 12-bit value. The remaining three registers are control registers which setup the operating and control function of the A/D converter.

Register Name		Bit									
Register Name	7	6	5	4	3	2	1	0			
SADOL(ADRFS=0)	D3	D2	D1	D0	_	_	_	_			
SADOL(ADRFS=1)	D7	D6	D5	D4	D3	D2	D1	D0			
SADOH(ADRFS=0)	D11	D10	D9	D8	D7	D6	D5	D4			
SADOH(ADRFS=1)	_	_	_	_	D11	D10	D9	D8			
SADC0	START	ADBZ	ADCEN	ADRFS	_	_	SACS1	SACS0			
SADC1	SAINS3	SAINS2	SAINS1	SAINS0	_	SACKS2	SACKS1	SACKS0			
SADC2	ADPGAEN	_	_	PGAIS	SAVRS1	SAVRS0	PGAGS1	PGAGS0			

A/D Converter Registers List

A/D Converter Data Registers - SADOL, SADOH

This device contains an internal 12-bit A/D converter, it requires two data registers to store the converted value. These are a high byte register, known as SADOH, and a low byte register, known as SADOL. After the conversion process takes place, these registers can be directly read by the microcontroller to obtain the digitised conversion value. As only 12 bits of the 16-bit register space is utilised, the format in which the data is stored is controlled by the ADRFS bit in the SADC0 register as shown in the accompanying table. D0~D11 are the A/D conversion result data bits. Any unused bits will be read as zero. Note that A/D data registers contents will be unchanged if the A/D converter is disabled.

ADDEC	ADRFS SADOH					SADOL										
ADKES	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	0	0	0	0
1	0	0	0	0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

A/D Converter Data Registers

A/D Converter Control Registers - SADC0, SADC1, SADC2

To control the function and operation of the A/D converter, three control registers known as SADC0~SADC2 are provided. These 8-bit registers define functions such as the selection of which analog channel is connected to the internal A/D converter, the digitised data format, the A/D clock source as well as controlling the start function and monitoring the A/D converter busy status. As this device contains only one actual analog to digital converter hardware circuit, each of the external or internal analog signal inputs must be routed to the converter. The SAIN bit field in the SADC1 register and SACS bit field are used to determine that the analog signal to be converted comes from the internal analog signal or external analog channel input. The A/D converter also contains programmable gain amplifier, PGA, to generate the A/D converter internal reference voltage. The overall operation of the PGA is controlled using the SADC2 register.

The relevant pin-shared function selection bits determine which pins on I/O Ports are used as analog inputs for the A/D converter input and which pins are not to be used as the A/D converter input. When the pin is selected to be an A/D input, its original function whether it is an I/O or other pin-shared function will be removed. In addition, any internal pull-high resistor connected to the pin will be automatically removed if the pin is selected to be an A/D converter input.

Rev. 1.10 93 November 26, 2019

SADC0 Register

Bit	7	6	5	4	3	2	1	0
Name	START	ADBZ	ADCEN	ADRFS	_	_	SACS1	SACS0
R/W	R/W	R	R/W	R/W	_	_	R/W	R/W
POR	0	0	0	0	_	_	0	0

START: Start the A/D conversion Bit 7

 $0 \rightarrow 1 \rightarrow 0$: Start

This bit is used to initiate an A/D conversion process. The bit is normally low but if set high and then cleared low again, the A/D converter will initiate a conversion process.

When the bit is set high the A/D converter will be reset.

Bit 6 ADBZ: A/D converter busy flag

0: No A/D conversion is in progress

1: A/D conversion is in progress

This read only flag is used to indicate whether the A/D conversion is in progress or not. When the START bit is set from low to high and then to low again, the ADBZ flag will be set to 1 to indicate that the A/D conversion is initiated. The ADBZ flag will be cleared to 0 after the A/D conversion is complete.

Bit 5 ADCEN: A/D converter function enable control

> 0: Disable 1: Enable

This bit controls the A/D internal function. This bit should be set to one to enable the A/D converter. If the bit is set low, then the A/D converter will be switched off reducing the device power consumption. When the A/D converter function is disabled, the contents of the A/D data register pair known as SADOH and SADOL will be unchanged.

Bit 4 ADRFS: A/D converter data format select

0: A/D converter data format → SADOH=D[11:4]; SADOL=D[3:0]

1: A/D converter data format → SADOH=D[11:8]; SADOL=D[7:0]

This bit controls the format of the 12-bit converted A/D value in the two A/D data registers. Details are provided in the A/D data register section.

Bit 3~2 Unimplemented, read as "0"

Bit 1~0 SACS1~SACS0: A/D converter external analog channel input select

> 00: AN0 01: AN1

> 10: AN2

11: AN3

SADC1 Register

Bit	7	6	5	4	3	2	1	0
Name	SAINS3	SAINS2	SAINS1	SAINS0	_	SACKS2	SACKS1	SACKS0
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
POR	0	0	0	0	_	0	0	0

Bit 7~4 SAINS3~SAINS0: A/D converter input signal select

0000: External input – External analog channel input

0001: Internal input – Internal signal derived from V_{DD}

0010: Internal input – Internal signal derived from V_{DD}/2

0011: Internal input – Internal signal derived from V_{DD}/4

0100: External input – External analog channel input

0101: Internal input – Internal signal derived from PGA output V_R

0110: Internal input – Internal signal derived from PGA output V_R/2

0111: Internal input – Internal signal derived from PGA output V_R/4

1000~1011: Reserved, connected to ground

1100~1111: External input – External analog channel input

Rev. 1.10 94 November 26, 2019

When an internal analog signal is selected to be converted, the external channel input signal will automatically be switched off regardless of the SACS bit field value. It will prevent the external channel input from being connected together with the internal analog signal.

Bit 3 Unimplemented, read as "0"

Bit 2~0 SACKS2~SACKS0: A/D conversion clock source select

000: fsys 001: fsys/2 010: fsys/4 011: fsys/8 100: fsys/16 101: fsys/32 110: fsys/64 111: fsys/128

These three bits are used to select the clock source for the A/D converter.

SADC2 Register

Bit	7	6	5	4	3	2	1	0
Name	ADPGAEN	_	_	PGAIS	SAVRS1	SAVRS0	PGAGS1	PGAGS0
R/W	R/W	_	_	R/W	R/W	R/W	R/W	R/W
POR	0	_	_	0	0	0	0	0

Bit 7 ADPGAEN: PGA enable/disable control

0: Disable 1: Enable

When the PGA output V_R is selected as A/D converter input or A/D converter reference voltage, the PGA needs to be enabled by setting this bit high. Otherwise the PGA needs to be disabled by clearing this bit to zero to conserve the power.

Bit 6~5 Unimplemented, read as "0"

Bit 4 **PGAIS**: PGA input (V_{RI}) select

0: External VREFI pin

1: Internal reference voltage, V_{BG}

When the internal reference voltage V_{BG} is selected as the PGA input, the external reference voltage on the VREFI pin will be automatically switched off. When this bit is set high to select V_{BG} as PGA input, the internal bandgap reference V_{BG} should be enabled by setting the VBGEN bit in the LVDC register to "1".

Bit 3~2 SAVRS1~SAVRS0: A/D converter reference voltage select

00: Internal A/D converter power, V_{DD}

01: VREF pin

1x: Internal PGA output voltage, V_R

These bits are used to select the A/D converter reference voltage. When the internal A/D converter power or the internal PGA output voltage is selected as the reference voltage, the hardware will automatically disconnect the external VREF input.

Bit 1~0 PGAGS1~PGAGS0: PGA gain select

00: Gain=1 01: Gain=2 10: Gain=3 11: Gain=4

A/D Converter Reference Voltage

The reference voltage supply to the A/D converter can be supplied from the positive power supply pin, VDD, an external reference source supplied on pin VREF or the internal PGA output voltage, V_R . The desired selection is made using the SAVRS1 and SAVRS0 bits in the SADC2 register. The internal reference voltage is amplified through a programmable gain amplifier, PGA, which is controlled by the ADPGAEN bit in the SADC2 register. The PGA gain can be equal to 1, 2, 3 or 4 and selected using the PGAGS1~PGAGS0 bits in the SADC2 register. The PGA input can come from the external reference input pin, VREFI, or an internal Bandgap reference voltage, V_{BG} , selected by the PGAIS bit in the SADC2 register. As the VREFI and VREF pin both are pin-shared with other functions, when the VREFI or VREF pin is selected as the reference voltage pin, the VREFI or VREF pin-shared function selection bits should first be properly configured to disable other pin-shared functions. However, if the internal reference signal is selected as the reference source, the external reference input from the VREFI or VREF pin will automatically be switched off by hardware.

The analog input values must not be allowed to exceed the value of the selected reference voltage.

SAVRS[1:0]	Reference	Description
00	V_{DD}	Internal A/D converter power supply voltage
01	VREF pin	External A/D converter reference pin VREF
1x	V _R	Internal A/D converter PGA output voltage

A/D Converter Reference Voltage Selection

A/D Converter Input Signals

All the external A/D analog channel input pins are pin-shared with the I/O pins as well as other functions. The corresponding control bits for each A/D external input pin in the PxS0 and PxS1 registers determine whether the input pins are setup as A/D converter analog inputs or whether they have other functions. If the pin is setup to be as an A/D analog channel input, the original pin functions will be disabled. In this way, pins can be changed under program control to change their function between A/D inputs and other functions. All pull high resistors, which are setup through register programming, will be automatically disconnected if the pins are setup as A/D inputs. Note that it is not necessary to first setup the A/D pin as an input in the port control register to enable the A/D input as when the pin-shared function control bits enable an A/D input, the status of the port control register will be overridden.

As this device contains only one actual analog to digital converter hardware circuit, each of the external and internal analog signals must be routed to the converter. The SAINS3~SAINS0 bits in the SADC1 register are used to determine that the analog signal to be converted comes from the external channel input or internal analog signal. The SACS bit field in the SADC0 register are used to determine which external channel input is selected to be converted. If the SAINS3~SAINS0 bits are set to "0000", "0100" or "1100"~"1111", the external channel input will be selected to be converted and the SACS bit field can determine which external channel is selected.

When the SAINS field is set to the value of "0x01", "0x10" or "0x11", the internal analog signal will be selected. If the internal analog signal is selected to be converted, the external channel signal input will automatically be switched off regardless of the SACS field value. It will prevent the external channel input from being connected together with the internal analog signal.

Rev. 1.10 96 November 26, 2019

SAINS[3:0]	SACS[1:0]	Input Signals	Description
0000, 0100, 1100~1111	00~11	AN0~AN3	External channel analog input ANn
0001	XX	V_{DD}	Internal signal derived from V _{DD}
0010	XX	V _{DD} /2	Internal signal derived from V _{DD} /2
0011	XX	V _{DD} /4	Internal signal derived from V _{DD} /4
0101	XX	V_R	Internal signal derived from PGA output V _R
0110	XX	V _R /2	Internal signal derived from PGA output V _R /2
0111	XX	V _R /4	Internal signal derived from PGA output V _R /4
1000~1011	XX		Reserved, connected to ground

"x": Don't care

A/D Converter Input Signal Selection

A/D Converter Operation

The START bit in the SADC0 register is used to start the AD conversion. When the microcontroller sets this bit from low to high and then low again, an analog to digital conversion cycle will be initiated.

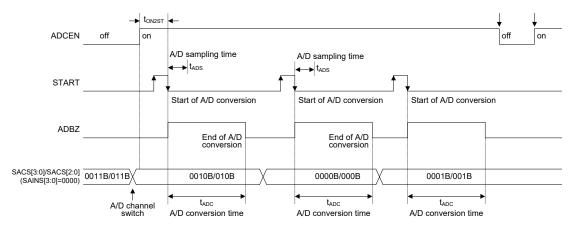
The ADBZ bit in the SADC0 register is used to indicate whether the analog to digital conversion process is in progress or not. This bit will be automatically set to 1 by the microcontroller after an A/D conversion is successfully initiated. When the A/D conversion is complete, the ADBZ will be cleared to 0. In addition, the corresponding A/D interrupt request flag will be set in the interrupt control register, and if the interrupts are enabled, an appropriate internal interrupt signal will be generated. This A/D internal interrupt signal will direct the program flow to the associated A/D internal interrupt address for processing. If the A/D internal interrupt is disabled, the microcontroller can poll the ADBZ bit in the SADC0 register to check whether it has been cleared as an alternative method of detecting the end of an A/D conversion cycle.

The clock source for the A/D converter, which originates from the system clock f_{SYS} , can be chosen to be either f_{SYS} or a subdivided version of f_{SYS} . The division ratio value is determined by the SACKS2~SACKS0 bits in the SADC1 register. Although the A/D clock source is determined by the system clock f_{SYS} and by bits SACKS2~SACKS0, there are some limitations on the maximum A/D clock source speed that can be selected. As the recommended range of permissible A/D clock period, t_{ADCK} , is from 0.5μ s to 10μ s, care must be taken for system clock frequencies. For example, as the system clock operates at a frequency of 8MHz, the SACKS2~SACKS0 bits should not be set to 000, 001 or 111. Doing so will give A/D clock periods that are beyond the A/D clock period range which may result in inaccurate A/D conversion values. Refer to the following table for examples, where values marked with an asterisk * show where, depending upon the device, special care must be taken.

			A	VD Clock P	eriod (tader	:)		
f _{sys}	SACKS [2:0]=000 (f _{SYS})	SACKS [2:0]=001 (f _{SYS} /2)	SACKS [2:0]=010 (f _{SYS} /4)	SACKS [2:0]=011 (f _{SYS} /8)	SACKS [2:0]=100 (f _{SYS} /16)	SACKS [2:0]=101 (f _{SYS} /32)	SACKS [2:0]=110 (f _{SYS} /64)	SACKS [2:0]=111 (f _{SYS} /128)
1MHz	1µs	2µs	4µs	8µs	16µs *	32µs *	64µs *	128µs *
2MHz	500ns	1µs	2µs	4µs	8µs	16µs *	32µs *	64µs *
4MHz	250ns *	500ns	1µs	2µs	4µs	8µs	16µs *	32µs *
8MHz	125ns *	250ns *	500ns	1µs	2µs	4µs	8µs	16µs *
12MHz	83ns *	167ns *	333ns *	667ns	1.33µs	2.67µs	5.33µs	10.67µs *
16MHz	62.5ns *	125ns *	250ns *	500ns	1µs	2µs	4µs	8µs

A/D Clock Period Examples

Rev. 1.10 97 November 26, 2019


Controlling the power on/off function of the A/D converter circuitry is implemented using the ADCEN bit in the SADC0 register. This bit must be set high to power on the A/D converter. When the ADCEN bit is set high to power on the A/D converter internal circuitry a certain delay, as indicated in the timing diagram, must be allowed before an A/D conversion is initiated. Even if no pins are selected for use as A/D inputs, if the ADCEN bit is high, then some power will still be consumed. In power conscious applications it is therefore recommended that the ADCEN is set low to reduce power consumption when the A/D converter function is not being used.

Conversion Rate and Timing Diagram

A complete A/D conversion contains two parts, data sampling and data conversion. The data sampling which is defined as t_{ADS} takes 4 A/D clock cycles and the data conversion takes 12 A/D clock cycles. Therefore a total of 16 A/D clock cycles for an external input A/D conversion which is defined as t_{ADC} are necessary.

Maximum single A/D conversion rate=A/D clock period / 16

The accompanying diagram shows graphically the various stages involved in an analog to digital conversion process and its associated timing. After an A/D conversion process has been initiated by the application program, the microcontroller internal hardware will begin to carry out the conversion, during which time the program can continue with other functions. The time taken for the A/D conversion is 16 taddet clock cycles where taddet is equal to the A/D clock period.

A/D Conversion Timing - External Channel Input

Rev. 1.10 98 November 26, 2019

Summary of A/D Conversion Steps

The following summarises the individual steps that should be executed in order to implement an A/D conversion process.

• Step 1

Select the required A/D conversion clock by correctly programming bits SACKS2~SACKS0 in the SADC1 register.

• Step 2

Enable the A/D by setting the ADCEN bit in the SADC0 register to one.

• Step 3

Select which signal is to be connected to the internal A/D converter by correctly configuring the SAINS and SACS bit fields.

Select the external channel input to be converted, go to Step 4.

Select the internal analog signal to be converted, go to Step 5.

• Step 4

If the SAINS field is 0000, 0100 or 11xx, the external channel input can be selected. The dedsired external channel input is selected by configuring the SACS field. When the A/D input signal comes from the external channel input, the corresponding pin should be configured as an A/D input function by configuring the relevant pin-shared function control bits. Then go to Step 6.

• Step 5

If the SAINS field is set to 0x01, 0x10 or 0x11, the relevant internal analog signal will be selected. When the internal analog signal is selected to be converted, the external channel analog input will automatically be disconnected. Then go to Step 6.

• Step 6

Select the reference voltage source by configuring the SAVRS1~SAVRS0 bits in the SADC2 register. Select the PGA input signal and the desired PGA gain if the PGA output voltage is selected as the A/D converter reference voltage.

- Step 7
 - Select A/D converter output data format by setting the ADRFS bit in the SADC0 register.
- Step 8

If A/D conversion interrupt is used, the interrupt control registers must be correctly configured to ensure the A/D interrupt function is active. The master interrupt control bit, EMI, and the A/D conversion interrupt control bit, ADE, must both be set high in advance.

• Step 9

The A/D conversion procedure can now be initialized by setting the START bit from low to high and then low again.

• Step 10

If A/D conversion is in progress, the ADBZ flag will be set high. After the A/D conversion process is complete, the ADBZ flag will go low and then the output data can be read from SADOH and SADOL registers.

Note: When checking for the end of the conversion process, if the method of polling the ADBZ bit in the SADC0 register is used, the interrupt enable step above can be omitted.

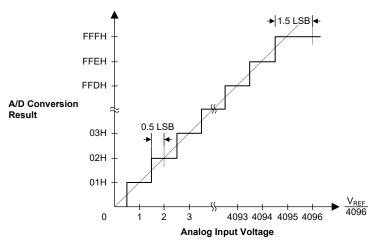
Rev. 1.10 99 November 26, 2019

Programming Considerations

During microcontroller operations where the A/D converter is not being used, the A/D internal circuitry can be switched off to reduce power consumption, by clearing bit ADCEN to 0 in the SADC0 register. When this happens, the internal A/D converter circuits will not consume power irrespective of what analog voltage is applied to their input lines. If the A/D converter input lines are used as normal I/Os, then care must be taken as if the input voltage is not at a valid logic level, then this may lead to some increase in power consumption.

A/D Conversion Function

As the device contains a 12-bit A/D converter, its full-scale converted digitised value is equal to 0FFFH. Since the full-scale analog input value is equal to the actual A/D converter reference voltage, V_{REF} , this gives a single bit analog input value of V_{REF} divided by 4096.


$$1 LSB=V_{REF} \div 4096$$

The A/D Converter input voltage value can be calculated using the following equation:

A/D input voltage=A/D output digital value
$$\times$$
 V_{REF} \div 4096

The diagram shows the ideal transfer function between the analog input value and the digitised output value for the A/D converter. Except for the digitised zero value, the subsequent digitised values will change at a point 0.5 LSB below where they would change without the offset, and the last full scale digitised value will change at a point 1.5 LSB below the V_{REF} level.

Note that here the V_{REF} voltage is the actual A/D converter reference voltage determined by the SAVRS field.

Ideal A/D Transfer Function

Rev. 1.10 100 November 26, 2019

A/D Conversion Programming Examples

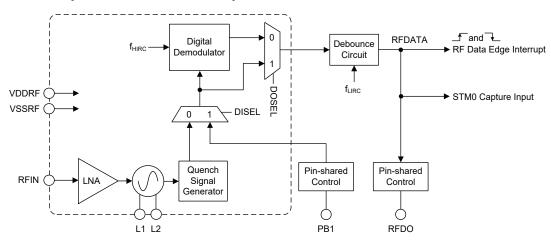
The following two programming examples illustrate how to setup and implement an A/D conversion. In the first example, the method of polling the ADBZ bit in the SADC0 register is used to detect when the conversion cycle is complete, whereas in the second example, the A/D interrupt is used to determine when the conversion is complete.

Example: Using an ADBZ Polling Method to Detect the End of Conversion

```
clr ADE
                    ; disable ADC interrupt
mov a,03H
mov SADC1,a
                    ; select f<sub>SYS</sub>/8 as A/D clock
mov a,00H
                    ; select V_{\text{DD}} as A/D reference voltage source
mov SADC2,a
mov a,0C0H
                    ; setup PAS1 to configure pin AN0
mov PAS1,a
mov a,20H
                   ; enable A/D converter and select ANO as external channel input
mov SADCO, a
start conversion:
                   ; high pulse on start bit to initiate conversion ; reset {\tt A}/{\tt D}
clr START
set START
clr START
                    ; start A/D
polling EOC:
sz ADBZ
                    ; poll the SADCO register ADBZ bit to detect end of A/D conversion
mov SADOL_buffer,a ; save result to user defined register
mov a,SADOH ; read high byte conversion result value mov SADOH_buffer,a ; save result to user defined register
jmp start conversion ; start next A/D conversion
```


Example: Using the Interrupt Method to Detect the End of Conversion

```
clr ADE
                    ; disable ADC interrupt
mov a,03H
mov SADC1,a
                    ; select f<sub>sys</sub>/8 as A/D clock
mov a,00H
                    ; select V_{DD} as A/D reference voltage source
mov SADC2,a
mov a,0C0H
                    ; setup PAS1 to configure pin AN0
mov PAS1,a
mov a,20H
mov SADCO, a
                    ; enable A/D converter and select ANO as external channel input
start conversion:
clr START
                    ; high pulse on START bit to initiate conversion
set START
                     ; reset A/D
clr START
                    ; start A/D
                    ; clear ADC interrupt request flag
clr ADF
                    ; enable ADC interrupt
set ADE
set EMI
                    ; enable global interrupt
; ADC interrupt service routine
ADC ISR:
mov acc stack,a ; save ACC to user defined memory
mov a,STATUS
mov status stack,a ; save STATUS to user defined memory
mov a, SADOL ; read low byte conversion result value
mov SADOL buffer,a ; save result to user defined register
mov a,SADOH ; read high byte conversion result value mov SADOH_buffer,a ; save result to user defined register
EXIT INT ISR:
mov a, status stack
mov STATUS,a ; restore STATUS from user defined memory
                    ; restore ACC from user defined memory
mov a,acc stack
reti
```


Rev. 1.10 102 November 26, 2019

RF Receiver

The device contains a ASK/OOK (ON-OFF Keyed) RF receiver. It is in effect a genuine RF antennain to digital data-out fully integrated module. As all the RF and IF circuitry are integrated within the device this results in a huge reduction in the required number of external components. Having such a high degree of functional integration greatly reduces both product and manufacturing costs and provides higher reliability. The simple connection of an antenna and some tuned LC circuits together with several software configurations allows the device to detect RF at their resonant frequency. Then by using an internal low noise amplifier and super-regeneration techniques, the demodulator can generate data on the digital data output pin.

An antenna matching circuit is supplied on the RFIN pin and an LC tank circuit is connected to the L1 and L2 pins to generate the local oscillator frequency. A fully internal high frequency oscillator in the device is used to demodulate the data from the intermediate frequency signal, thus eliminating the need for any further filtering components. The addition of a decoupling capacitor on each of the power is all that is needed to complete the circuit.

RF Receiver Block Diagram

RF Receiver Control Registers

The RF Receiver is controlled by a series of registers. These registers control the overall RF function including power down control, quench signal selection, data output selecton, pulse reset selection, demodulator sampling rate control, debounce stage selection, ect.

Register				Bit				
Name	7	6	5	4	3	2	1	0
RFC0	_	LTMV_fast_sel	DOSR1	DOSR0	DEMOD_RST	S1	S0	PDRF
RFC1*	D7	D6	D5	D4	D3	D2	D1	D0
RFC2*	D7	D6	D5	D4	D3	D2	D1	D0
RFC3*	D7	D6	D5	D4	D3	D2	D1	D0
RFC4*	D7	D6	D5	D4	D3	D2	D1	D0
RFC5*	D7	D6	D5	D4	D3	D2	D1	D0
RFC6	PUL_RST_SEL1	PUL_RST_SEL0	EXT_PUL_RST	RST_THD_SEL1	RST_THD_SEL0	DISEL	DOSEL	CKOFF
RFC7*	D7	D6	D5	D4	D3	D2	D1	D0
RFDEBC	RFDATA	_	_	_	_	DSTAG2	DSTAG1	DSTAG0

Note: * These registers are used for RF performance optimization. Refer to the corresponding application note for details.

RF Receiver Register List

Rev. 1.10 103 November 26, 2019

RFC0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	LTMV_fast_sel	DORS1	DORS0	DEMOD_RST	S1	S0	PDRF
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	0	1	0	1	0	1	1

Bit 7 Unimplemented, read as "0"

Bit 6 LTMV_fast_sel: LTMV fast attack threshold selection

0: 4×LTMV_offset 1: 2×LTMV_offset

It is recommended to remain this bit at its default value.

Bit 5~4 **DORS1~DORS0**: Sampling rate for digital demodulaton

00: 1MHz 01: 500kHz 10: 250kHz 11: 125kHz

Bit 3 **DEMOD_RST**: Digital demodulator software reset

0: Non software reset RF digit demodulator1: Software reset RF digit demodulator

Bit 2~1 S1~S0: Decimator for Quench frequency selection

00: 1/4 01: 1/8 10: 1/16 11: 1/32

Bit 0 **PDRF**: RF power off control

0: RF power on 1: RF power off

This bit determines whether the RF circuit is in the power on or power off status. When a MCU reset occurs or when the DEMOD_RDT bit is set high or when the PDRF bit is set high, the digital demodulator will be reset and be forced to output zero.

Different setting values should be written into this register according to different Quench 0 frequency ranges and different data rates. The recommended setting values are summarised as follows.

170kHz ≤ Quench 0 Frequency ≤ 570kHz

Data Rate (DR) – Hz	Sampling Rate setup by DOSR[1:0] – Hz	Quench Frequency Division Ratio setup by S[1:0]	RFC0 Setup Values
300≤DR<700	125k	1/32	36H
700≤DR≤3k	125k	1/16	34H
3k <dr<8k< td=""><td>250k</td><td>1/8</td><td>22H</td></dr<8k<>	250k	1/8	22H
8k≤DR≤10k	500k	1/4	10H

Quench 0 Frequency > 570kHz

Data Rate (DR) - Hz	Sampling Rate setup by DOSR[1:0] – Hz	Quench Frequency Division Ratio setup by S[1:0]	RFC0 Setup Values
300≤DR≤3k	125k	1/32	36H
3k <dr<8k< td=""><td>250k</td><td>1/16</td><td>24H</td></dr<8k<>	250k	1/16	24H
8k≤DR≤10k	500k	1/8	12H

Rev. 1.10 104 November 26, 2019

RFC6 Register

Bit	7	6	5	4	3	2	1	0
Name	PUL_RST_SEL1	PUL_RST_SEL0	EXT_PUL_RST	RST_THD_SEL1	RST_THD_SEL0	DISEL	DOSEL	CKOFF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	1	0	0	0	1	0	0	0

Bit 7~6 PUL_RST_SEL[1:0]: Pulse reset selection

00: MCU uses software trigger path to control pulse reset

01: Pulse reset per 2 seconds10: Pulse reset per 4 seconds

11: Pulse reset per 8 seconds

Bit 5 EXT_PUL_RST: Software trigger pulse reset control

0: Disable 1: Enable

When the PUL_RST_SEL[1:0] bits are set to 00B, this bit can be used to manually enable or disable the pulse reset function.

Bit 4~3 **RST_THD_SEL[1:0]**: Initial reset threshold selection

00: 32 sampling clocks 01: 48 sampling clocks 10: 64 sampling clocks 11: 90 sampling clocks

The sampling rate is determined by the DOSR1~DOSR0 bits in the RFC0 register. It is recommended to keep these bits at their default values.

Bit 2 **DISEL**: RF quench signal selection

0: Internal RF quench signal – Normal Mode
1: External quench digit signal on the PB1 pin

Bit 1 DOSEL: RF data output source selection

0: Output demodulation data

1: Output quench data

Bit 0 CKOFF: RF clock source (fhire) control

0: On 1: Off

RFDEBC Register

Bit	7	6	5	4	3	2	1	0
Name	RFDATA	_	_	_	_	DSTAGE2	DSTAGE1	DSTAGE0
R/W	R	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	1

Bit 7 **RFDATA**: RF decimator data indicator (after debounce)

Bit 6~3 Unimplemented, read as "0"

Bit 2~0 **DSTAGE2~DSTAGE0**: Debounce stage selection

000: No debounce

001: 1 clock period of f_{LIRC} =0~1 LIRC clock period (Typ. 31.25 μ s/2)

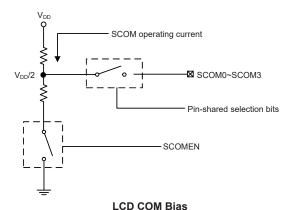
010: 2 clock period of f_{LIRC}=1~2 LIRC clock period (Typ. 62.5μs-15.6μs)

011: 4 clock period of f_{LIRC}=3~4 LIRC clock period (Typ. 125μs-15.6μs)

100: 8 clock period of f_{LIRC}=7~8 LIRC clock period (Typ. 250μs-15.6μs)

101: 16 clock period of f_{LIRC}=15~16 LIRC clock period (Typ. 500μs-15.6μs)

110: No debounce 111: No debounce


SCOM Function for LCD

The device has the capability of driving external LCD panels. The common pins for LCD driving, SCOM0~SCOM3, are pin shared with the I/O pins. The LCD signals (COM and SEG) are generated using the application program.

LCD Operation

An external LCD panel can be driven using this device by configuring the I/O pins as common pins and using other output ports lines as segment pins. The LCD driver function is controlled using the SCOMC register which in addition to controlling the overall on/off function also controls the bias voltage setup function. This enables the LCD COM driver to generate the necessary $V_{\text{DD}}/2$ voltage levels for LCD 1/2 bias operation.

The SCOMEN bit in the SCOMC register is the overall master control for the LCD driver. The LCD SCOMn pin is selected to be used for LCD driving by the corresponding pin-shared function selection bits. Note that the Port Control register does not need to first setup the pins as outputs to enable the LCD driver operation.

LCD Bias Control

The LCD COM driver enables a range of selections to be provided to suit the requirement of the LCD panel which is being used. The bias resistor choice is implemented using the ISEL1 and ISEL0 bits in the SCOMC register.

SCOMC Register

Bit	7	6	5	4	3	2	1	0
Name	_	ISEL1	ISEL0	SCOMEN	_	_	_	_
R/W	_	R/W	R/W	R/W	_	_	_	_
POR	_	0	0	0	_	_	_	_

Bit 7 Unimplemented, read as "0"

Bit 6~5 **ISEL1~ISEL0**: Select SCOM typical bias current (V_{DD}=5V)

00: 25μA 01: 50μA 10: 100μA 11: 200μA

Bit 4 SCOMEN: SCOM Function enable control

0: Disable 1: Enable

Bit 3~0 Unimplemented, read as "0"

Rev. 1.10 106 November 26, 2019

Interrupts

Interrupts are an important part of any microcontroller system. When an external event or an internal function such as a Timer Module or an A/D converter requires microcontroller attention, their corresponding interrupt will enforce a temporary suspension of the main program allowing the microcontroller to direct attention to their respective needs. The device contains several external interrupt and internal interrupt functions. The external interrupts are generated by the action of the external INT0~INT1 pins, while the internal interrupts are generated by various internal functions such as the TMs, LVD and the A/D converter, etc.

Interrupt Registers

Overall interrupt control, which basically means the setting of request flags when certain microcontroller conditions occur and the setting of interrupt enable bits by the application program, is controlled by a series of registers, located in the Special Purpose Data Memory, as shown in the accompanying table. The number of registers falls into three categories. The first is the INTC0~INTC2 registers which setup the primary interrupts, the second is the MFI0~MFI2 registers which setup the Multi-function interrupts. Finally there is an INTEG register to setup the external interrupt trigger edge type.

Each register contains a number of enable bits to enable or disable individual registers as well as interrupt flags to indicate the presence of an interrupt request. The naming convention of these follows a specific pattern. First is listed an abbreviated interrupt type, then the (optional) number of that interrupt followed by either an "E" for enable/disable bit or "F" for request flag.

Function	Enable Bit	Request Flag	Notes	
Global	EMI	_	_	
INTn Pin	INTnE	INTnF	n=0 or 1	
A/D Converter	ADE	ADF	_	
Time Base	TBnE	TBnF	n=0 or 1	
Multi-function	MFnE	MFnF	n=0~2	
EEPROM	DEE	DEF	_	
LVD	LVE	LVF	_	
RF Receiver	RFINTE	RFINTF	_	
DTM	PTMPE	PTMPF	_	
PTM	PTMAE	PTMAF	_	
STM	STMnPE	STMnPF	n=0.1	
STIVI	STMnAE	STMnAF	- n=0~1	

Interrupt Register Bit Naming Conventions

Register	Bit										
Name	7	6	5	4	3	2	1	0			
INTEG	_	_	_	_	INT1S1	INT1S0	INT0S1	INT0S0			
INTC0	_	TB0F	INT1F	INT0F	TB0E	INT1E	INT0E	EMI			
INTC1	MF2F	MF1F	MF0F	TB1F	MF2E	MF1E	MF0E	TB1E			
INTC2	_	_	_	ADF	_	_	_	ADE			
MFI0	PTMAF	PTMPF	STM0AF	STM0PF	PTMAE	PTMPE	STM0AE	STM0PE			
MFI1	_	_	STM1AF	STM1PF	_	_	STM1AE	STM1PE			
MFI2	_	RFINTF	DEF	LVF	_	RFINTE	DEE	LVE			

Interrupt Registers List

Rev. 1.10 107 November 26, 2019

INTEG Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	INT1S1	INT1S0	INT0S1	INT0S0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3~2 INT1S1~INT1S0: Interrupt edge control for INT1 pin

00: Disable 01: Rising edge 10: Falling edge

11: Rising and falling edges

INT0S1~INT0S0: Interrupt edge control for INT0 pin Bit 1~0

> 00: Disable 01: Rising edge 10: Falling edge

11: Rising and falling edges

INTC0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	TB0F	INT1F	INT0F	TB0E	INT1E	INT0E	EMI
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6 TB0F: Time Base 0 interrupt request flag

0: No request 1: Interrupt request

Bit 5 INT1F: INT1 interrupt request flag

0: No request 1: Interrupt request

INT0F: INT0 interrupt request flag Bit 4

> 0: No request 1: Interrupt request

Bit 3 TB0E: Time Base 0 interrupt control

0: Disable 1: Enable

Bit 2 INT1E: INT1 interrupt control

0: Disable 1: Enable

Bit 1 INT0E: INT0 interrupt control

> 0: Disable 1: Enable

Bit 0 EMI: Global interrupt control

0: Disable 1: Enable

November 26, 2019 Rev. 1.10 108

INTC1 Register

Bit	7	6	5	4	3	2	1	0
Name	MF2F	MF1F	MF0F	TB1F	MF2E	MF1E	MF0E	TB1E
R/W								
POR	0	0	0	0	0	0	0	0

Bit 7 MF2F: Multi-function interrupt 2 request flag

0: No request1: Interrupt request

Bit 6 MF1F: Multi-function interrupt 1 request flag

0: No request1: Interrupt request

Bit 5 MF0F: Multi-function interrupt 0 request flag

0: No request1: Interrupt request

Bit 4 TB1F: Time Base 1 interrupt request flag

0: No request1: Interrupt request

Bit 3 MF2E: Multi-function interrupt 2 control

0: Disable 1: Enable

Bit 2 MF1E: Multi-function interrupt 1 control

0: Disable 1: Enable

Bit 1 MF0E: Multi-function interrupt 0 control

0: Disable 1: Enable

Bit 0 **TB1E**: Time Base 1 interrupt control

0: Disable 1: Enable

INTC2 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	ADF	_	_	_	ADE
R/W	_	_	_	R/W	_	_	_	R/W
POR	_	_	_	0	_	_	_	0

Bit 7~5 Unimplemented, read as "0"

Bit 4 ADF: A/D Converter request flag

0: No request1: Interrupt request

Bit 3~1 Unimplemented, read as "0"

Bit 0 **ADE**: A/D Converter interrupt control

0: Disable 1: Enable

MFI0 Register

Bit	7	6	5	4	3	2	1	0
Name	PTMAF	PTMPF	STM0AF	STM0PF	PTMAE	PTMPE	STM0AE	STM0PE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 **PTMAF**: PTM Comparator A match interrupt request flag

0: No request1: Interrupt request

Bit 6 **PTMPF**: PTM Comparator P match interrupt request flag

0: No request1: Interrupt request

Bit 5 STM0AF: STM0 Comparator A match interrupt request flag

0: No request1: Interrupt request

Bit 4 STM0PF: STM0 Comparator P match interrupt request flag

0: No request1: Interrupt request

Bit 3 **PTMAE**: PTM Comparator A match interrupt control

0: Disable 1: Enable

Bit 2 **PTMPE**: PTM Comparator P match interrupt control

0: Disable1: Enable

Bit 1 STM0AE: STM0 Comparator A match interrupt control

0: Disable 1: Enable

Bit 0 STM0PE: STM0 Comparator P match interrupt control

0: Disable 1: Enable

MFI1 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	STM1AF	STM1PF	_	_	STM1AE	STM1PE
R/W	_	_	R/W	R/W	_	_	R/W	R/W
POR	_	_	0	0	_	_	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5 STM1AF: STM1 Comparator A match interrupt request flag

0: No request1: Interrupt request

Bit 4 STM1PF: STM1 Comparator P match interrupt request flag

0: No request1: Interrupt request

Bit 3~2 Unimplemented, read as "0"

Bit 1 STM1AE: STM1 Comparator A match interrupt control

0: Disable 1: Enable

Bit 0 **STM1PE**: STM1 Comparator P match interrupt control

0: Disable 1: Enable

Rev. 1.10 110 November 26, 2019

MFI2 Register

Bit	7	6	5	4	3	2	1	0
Name	_	RFINTF	DEF	LVF	_	RFINTE	DEE	LVE
R/W	_	R/W	R/W	R/W	_	R/W	R/W	R/W
POR	_	0	0	0	_	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6 RFINTF: RF data rising and falling edges interrupt request flag

0: No request1: Interrupt request

Bit 5 **DEF**: Data EEPROM interrupt request flag

0: No request1: Interrupt request

Bit 4 LVF: LVD interrupt request flag

0: No request1: Interrupt request

Bit 3 Unimplemented, read as "0"

Bit 2 RFINTE: RF data rising and falling edges interrupt control

0: Disable 1: Enable

Bit 1 **DEE**: Data EEPROM interrupt control

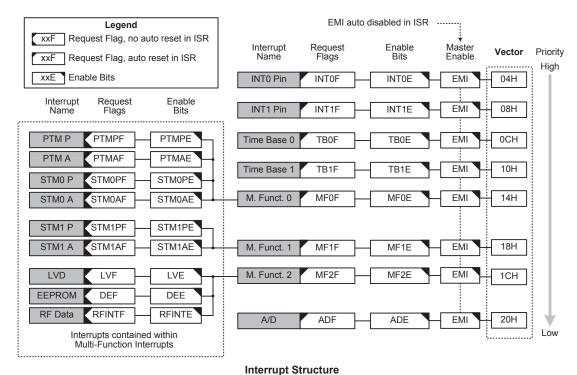
0: Disable 1: Enable

Bit 0 LVE: LVD interrupt control

0: Disable 1: Enable

Interrupt Operation

When the conditions for an interrupt event occur, such as a TM Comparator P or Comparator A match or A/D conversion completion etc., the relevant interrupt request flag will be set. Whether the request flag actually generates a program jump to the relevant interrupt vector is determined by the condition of the interrupt enable bit. If the enable bit is set high then the program will jump to its relevant vector; if the enable bit is zero then although the interrupt request flag is set an actual interrupt will not be generated and the program will not jump to the relevant interrupt vector. The global interrupt enable bit, if cleared to zero, will disable all interrupts.


When an interrupt is generated, the Program Counter, which stores the address of the next instruction to be executed, will be transferred onto the stack. The Program Counter will then be loaded with a new address which will be the value of the corresponding interrupt vector. The microcontroller will then fetch its next instruction from this interrupt vector. The instruction at this vector will usually be a "JMP" which will jump to another section of program which is known as the interrupt service routine. Here is located the code to control the appropriate interrupt. The interrupt service routine must be terminated with a "RETI", which retrieves the original Program Counter address from the stack and allows the microcontroller to continue with normal execution at the point where the interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the accompanying diagrams with their order of priority. Some interrupt sources have their own individual vector while others share the same multi-function interrupt vector. Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the global interrupt enable bit, EMI bit will be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if other interrupt requests occur during this interval, although the interrupt will not be immediately serviced, the request flag will still be recorded.

Rev. 1.10 111 November 26, 2019

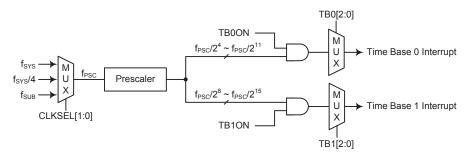
If an interrupt requires immediate servicing while the program is already in another interrupt service routine, the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired, the stack must be prevented from becoming full. In case of simultaneous requests, the accompanying diagram shows the priority that is applied. All of the interrupt request flags when set will wake-up the device if it is in SLEEP or IDLE Mode, however to prevent a wake-up from occurring the corresponding flag should be set before the device is in SLEEP or IDLE Mode.

External Interrupts

The external interrupts are controlled by signal transitions on the pins INT0~INT1. An external interrupt request will take place when the external interrupt request flags, INT0F~INT1F, are set, which will occur when a transition, whose type is chosen by the edge select bits, appears on the external interrupt pins. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and respective external interrupt enable bit, INT0E~INT1E, must first be set. Additionally the correct interrupt edge type must be selected using the INTEG register to enable the external interrupt function and to choose the trigger edge type. As the external interrupt pins are pin-shared with I/O pins, they can only be configured as external interrupt pins if their external interrupt enable bit in the corresponding interrupt register has been set and the external interrupt pin is selected by the corresponding pin-shared function selection bits. The pin must also be setup as an input by setting the corresponding bit in the port control register. When the interrupt is enabled, the stack is not full and the correct transition type appears on the external interrupt pin, a subroutine call to the external interrupt vector, will take place. When the interrupt is serviced, the external interrupt request flags, INT0F~INT1F, will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-high resistor selections on the external interrupt pins will remain valid even if the pin is used as an external interrupt input.

Rev. 1.10 112 November 26, 2019

The INTEG register is used to select the type of active edge that will trigger the external interrupt. A choice of either rising or falling or both edge types can be chosen to trigger an external interrupt. Note that the INTEG register can also be used to disable the external interrupt function.


A/D Converter Interrupt

An A/D Converter Interrupt request will take place when the A/D Converter Interrupt request flag, ADF, is set, which occurs when the A/D conversion process finishes. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and A/D Interrupt enable bit, ADE, must first be set. When the interrupt is enabled, the stack is not full and the A/D conversion process has ended, a subroutine call to the A/D Interrupt vector, will take place. When the A/D Converter Interrupt is serviced, the A/D Interrupt flag, ADF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

Time Base Interrupts

The function of the Time Base Interrupts is to provide regular time signal in the form of an internal interrupt. They are controlled by the overflow signals from their respective timer functions. When these happens their respective interrupt request flags, TB0F or TB1F will be set. To allow the program to branch to their respective interrupt vector addresses, the global interrupt enable bit, EMI and Time Base enable bits, TB0E or TB1E, must first be set. When the interrupt is enabled, the stack is not full and the Time Base overflows, a subroutine call to their respective vector locations will take place. When the interrupt is serviced, the respective interrupt request flag, TB0F or TB1F, will be automatically reset and the EMI bit will be cleared to disable other interrupts.

The Time Base clock source, f_{PSC}, originates from the internal clock source f_{SYS}, f_{SYS}/4 or f_{SUB} and then passes through a divider, the division ratio of which is selected by programming the appropriate bits in the TB0C and TB1C registers to obtain longer interrupt periods whose value ranges. The clock source which in turn controls the Time Base interrupt period is selected using the CLKSEL1~CLKSEL0 bits in the PSCR register.

Time Base Interrupts

PSCR Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	CLKSEL1	CLKSEL0
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 CLKSEL1~CLKSEL0: Prescaler clock source selection

 $00: f_{SYS} \\ 01: f_{SYS}/4 \\ 1x: f_{SUB}$

TB0C Register

Bit	7	6	5	4	3	2	1	0
Name	TB00N	_	_	_	_	TB02	TB01	TB00
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 **TB0ON**: Time Base 0 Control

0: Disable 1: Enable

Bit 6~3 Unimplemented, read as "0"

Bit 2~0 **TB02~TB00**: Select Time Base 0 Time-out Period

000: 2⁴/f_{PSC} 001: 2⁵/f_{PSC} 010: 2⁶/f_{PSC} 011: 2⁷/f_{PSC} 100: 2⁸/f_{PSC} 101: 2⁹/f_{PSC} 110: 2¹⁰/f_{PSC} 111: 2¹¹/f_{PSC}

TB1C Register

Bit	7	6	5	4	3	2	1	0
Name	TB10N	_	_	_	_	TB12	TB11	TB10
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 **TB1ON**: Time Base 1 Control

0: Disable 1: Enable

Bit 6~3 Unimplemented, read as "0"

Bit 2~0 TB12~TB10: Select Time Base 1 Time-out Period

 $\begin{array}{l} 000:\ 2^8/f_{PSC} \\ 001:\ 2^9/f_{PSC} \\ 010:\ 2^{10}/f_{PSC} \\ 010:\ 2^{10}/f_{PSC} \\ 011:\ 2^{11}/f_{PSC} \\ 100:\ 2^{12}/f_{PSC} \\ 101:\ 2^{13}/f_{PSC} \\ 110:\ 2^{14}/f_{PSC} \\ 111:\ 2^{15}/f_{PSC} \end{array}$

RF Data Edge Interrupt

The RF Data Edge Interrupt is contained within the Multi-function Interrupt. The RF Data Edge Interrupt will take place when its Interrupt request flag, RFINTF, is set, which occurs when the RF data output appears as rising edge and falling edges. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, the RF Data Edge Interrupt enable bit, RFINTE, and associated Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not full and the RF data output appears as rising edge and falling edges, a subroutine call to the respective interrupt vector, will take place. When the interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the Multi-function interrupt request flag will be also automatically cleared. As the RFINTF flag will not be automatically cleared, it has to be cleared by the application program.

Rev. 1.10 114 November 26, 2019

Multi-function Interrupts

Within the device there are up to three Multi-function interrupts. Unlike the other independent interrupts, these interrupts have no independent source, but rather are formed from other existing interrupt sources, namely the TM Interrupts, EEPROM Interrupt, LVD Interrupt and RF Data Edge Interrupt.

A Multi-function interrupt request will take place when any of the Multi-function interrupt request flags, MFnF are set. The Multi-function interrupt flags will be set when any of their included functions generate an interrupt request flag. When the Multi-function interrupt is enabled and the stack is not full, and either one of the interrupts contained within each of Multi-function interrupt occurs, a subroutine call to one of the Multi-function interrupt vectors will take place. When the interrupt is serviced, the related Multi-Function request flag will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts.

However, it must be noted that, although the Multi-function Interrupt flags will be automatically reset when the interrupt is serviced, the request flags from the original source of the Multi-function interrupts will not be automatically reset and must be manually reset by the application program.

EEPROM Interrupt

The EEPROM interrupt is contained within the Multi-function Interrupt. An EEPROM Interrupt request will take place when the EEPROM Interrupt request flag, DEF, is set, which occurs when an EEPROM Write cycle ends. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and EEPROM Interrupt enable bit, DEE, and associated Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not full and an EEPROM Write cycle ends, a subroutine call to the respective EEPROM Interrupt vector will take place. When the EEPROM Interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the Multi-function interrupt request flag will be also automatically cleared. As the DEF flag will not be automatically cleared, it has to be cleared by the application program.

LVD Interrupt

The Low Voltage Detector Interrupt is contained within the Multi-function Interrupt. An LVD Interrupt request will take place when the LVD Interrupt request flag, LVF, is set, which occurs when the Low Voltage Detector function detects a low power supply voltage. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, Low Voltage Interrupt enable bit, LVE, and associated Multi-function interrupt enable bit, must first be set. When the interrupt is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to the Multi-function Interrupt vector, will take place. When the Low Voltage Interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the Multi-function interrupt request flag will be also automatically cleared. As the LVF flag will not be automatically cleared, it has to be cleared by the application program.

TM Interrupts

The Standard and Periodic Type TMs each have two interrupts, one comes from the comparator A match situation and the other comes from the comparator P match situation. All of the TM interrupts are contained within the Multi-function Interrupts. For all of the TM types there are two interrupt request flags and two enable control bits. A TM interrupt request will take place when any of the TM request flags are set, a situation which occurs when a TM comparator P or A match situation happens.

Rev. 1.10 115 November 26, 2019

To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, respective TM Interrupt enable bit, and relevant Multi-function Interrupt enable bit, MFnE, must first be set. When the interrupt is enabled, the stack is not full and a TM comparator match situation occurs, a subroutine call to the relevant Multi-function Interrupt vector locations, will take place. When the TM interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the related MFnF flag will be automatically cleared. As the TM interrupt request flags will not be automatically cleared, they have to be cleared by the application program.

Interrupt Wake-up Function

Each of the interrupt functions has the capability of waking up the microcontroller when in the SLEEP or IDLE Mode. A wake-up is generated when an interrupt request flag changes from low to high and is independent of whether the interrupt is enabled or not. Therefore, even though the device is in the SLEEP or IDLE Mode and its system oscillator stopped, situations such as external edge transitions on the external interrupt pins or a low power supply voltage may cause their respective interrupt flag to be set high and consequently generate an interrupt. Care must therefore be taken if spurious wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then the corresponding interrupt request flag should be set high before the device enters the SLEEP or IDLE Mode. The interrupt enable bits have no effect on the interrupt wake-up function.

Programming Considerations

By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being serviced, however, once an interrupt request flag is set, it will remain in this condition in the interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by the application program.

Where a certain interrupt is contained within a Multi-function interrupt, then when the interrupt service routine is executed, as only the Multi-function interrupt request flags, MFnF, will be automatically cleared, the individual request flag for the function needs to be cleared by the application program.

It is recommended that programs do not use the "CALL" instruction within the interrupt service subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately. If only one stack is left and the interrupt is not well controlled, the original control sequence will be damaged once a CALL subroutine is executed in the interrupt subroutine.

Every interrupt has the capability of waking up the microcontroller when it is in the SLEEP or IDLE Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is required to prevent a certain interrupt from waking up the microcontroller then its respective request flag should be first set high before enter SLEEP or IDLE Mode.

As only the Program Counter is pushed onto the stack, then when the interrupt is serviced, if the contents of the accumulator, status register or other registers are altered by the interrupt service program, their contents should be saved to the memory at the beginning of the interrupt service routine

To return from an interrupt subroutine, either a RET or RETI instruction may be executed. The RETI instruction in addition to executing a return to the main program also automatically sets the EMI bit high to allow further interrupts. The RET instruction however only executes a return to the main program leaving the EMI bit in its present zero state and therefore disabling the execution of further interrupts.

Rev. 1.10 116 November 26, 2019

Low Voltage Detector – LVD

This device has a Low Voltage Detector function, also known as LVD. This enabled the device to monitor the power supply voltage, V_{DD} , and provide a warning signal should it fall below a certain level. This function may be especially useful in battery applications where the supply voltage will gradually reduce as the battery ages, as it allows an early warning battery low signal to be generated. The Low Voltage Detector also has the capability of generating an interrupt signal.

LVD Register

The Low Voltage Detector function is controlled using a single register with the name LVDC. Three bits in this register, VLVD2 \sim VLVD0, are used to select one of eight fixed voltages below which a low voltage condition will be determined. A low voltage condition is indicated when the LVDO bit is set. If the LVDO bit is low, this indicates that the V_{DD} voltage is above the preset low voltage value. The LVDEN bit is used to control the overall on/off function of the low voltage detector. Setting the bit high will enable the low voltage detector. Clearing the bit to zero will switch off the internal low voltage detector circuits. As the low voltage detector will consume a certain amount of power, it may be desirable to switch off the circuit when not in use, an important consideration in power sensitive battery powered applications.

LVDC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	LVDO	LVDEN	VBGEN	VLVD2	VLVD1	VLVD0
R/W	_	_	R	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5 LVDO: LVD Output flag

0: No Low Voltage Detected
1: Low Voltage Detected

Bit 4 LVDEN: Low Voltage Detector Enable control

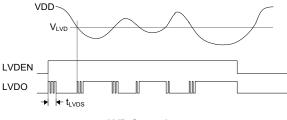
0: Disable 1: Enable

Bit 3 VBGEN: Bandgap Voltage Output Enable control

0: Disable 1: Enable

Note that the Bandgap circuit is enabled when the LVD or LVR function is enabled or when the VBGEN bit is set to 1.

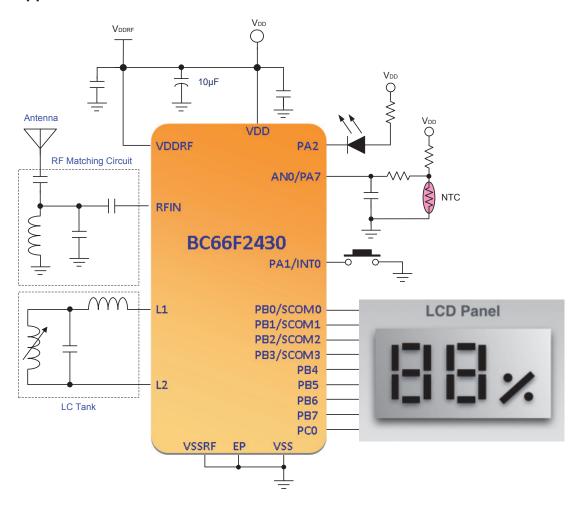
Bit 2~0 VLVD2~VLVD0: LVD Voltage selection


000: 2.0V 001: 2.2V 010: 2.4V 011: 2.7V 100: 3.0V 101: 3.3V 110: 3.6V

111: 4.0V

LVD Operation

The Low Voltage Detector function operates by comparing the power supply voltage, V_{DD} , with a pre-specified voltage level stored in the LVDC register. This has a range of between 2.0V and 4.0V. When the power supply voltage, V_{DD} , falls below this pre-determined value, the LVDO bit will be set high indicating a low power supply voltage condition. When the device is in the SLEEP mode, the low voltage detector will be disabled even if the LVDEN bit is high. After enabling the Low Voltage Detector, a time delay $t_{\rm LVDS}$ should be allowed for the circuitry to stabilise before reading the LVDO bit. Note also that as the $V_{\rm DD}$ voltage may rise and fall rather slowly, at the voltage nears that of $V_{\rm LVD}$, there may be multiple bit LVDO transitions.


LVD Operation

The Low Voltage Detector also has its own interrupt which is contained within one of the Multi-function interrupts, providing an alternative means of low voltage detection, in addition to polling the LVDO bit. The interrupt will only be generated after a delay of t_{LVD} after the LVDO bit has been set high by a low voltage condition. In this case, the LVF interrupt request flag will be set, causing an interrupt to be generated if V_{DD} falls below the preset LVD voltage. This will cause the device to wake-up from the IDLE Mode, however if the Low Voltage Detector wake up function is not required then the LVF flag should be first set high before the device enters the IDLE Mode.

Rev. 1.10 118 November 26, 2019

Application Circuits

Instruction Set

Introduction

Central to the successful operation of any microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to perform certain operations. In the case of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are required. One instruction cycle is equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions would be implemented within 0.5µs and branch or call instructions would be implemented within 1µs. Although instructions which require one more cycle to implement are generally limited to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions which involve manipulation of the Program Counter Low register or PCL will also take one more cycle to implement. As instructions which change the contents of the PCL will imply a direct jump to that new address, one more cycle will be required. Examples of such instructions would be "CLR PCL" or "MOV PCL, A". For the case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then this will also take one more cycle, if no skip is involved then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used operations. Making use of three kinds of MOV instructions, data can be transferred from registers to the Accumulator and vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most important data transfer applications is to receive data from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature of most microcontroller applications. Within the Holtek microcontroller instruction set are a range of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the values in the destination specified.

Rev. 1.10 120 November 26, 2019

Logical and Rotate Operation

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction within the Holtek microcontroller instruction set. As with the case of most instructions involving data manipulation, data must pass through the Accumulator which may involve additional programming steps. In all logical data operations, the zero flag may be set if the result of the operation is zero. Another form of logical data manipulation comes from the rotate instructions such as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for serial port programming applications where data can be rotated from an internal register into the Carry bit from where it can be examined and the necessary serial bit set high or low. Another application which rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subroutine call, the program must return to the instruction immediately when the subroutine has been carried out. This is done by placing a return instruction "RET" in the subroutine which will cause the program to jump back to the address right after the CALL instruction. In the case of a JMP instruction, the program simply jumps to the desired location. There is no requirement to jump back to the original jumping off point as in the case of the CALL instruction. One special and extremely useful set of branch instructions are the conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program will continue with the next instruction or skip over it and jump to the following instruction. These instructions are the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek microcontrollers. This feature is especially useful for output port bit programming where individual bits or port pins can be directly set high or low using either the "SET [m].i" or "CLR [m].i" instructions respectively. The feature removes the need for programmers to first read the 8-bit output port, manipulate the input data to ensure that other bits are not changed and then output the port with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program Memory to be set as a table where data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as the "HALT" instruction for Power-down operations and instructions to control the operation of the Watchdog Timer for reliable program operations under extreme electric or electromagnetic environments. For their relevant operations, refer to the functional related sections.

Rev. 1.10 121 November 26, 2019

Instruction Set Summary

The following table depicts a summary of the instruction set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.

Table Conventions

x: Bits immediate datam: Data Memory address

A: Accumulator i: 0~7 number of bits

addr: Program memory address

Mnemonic	Description	Cycles	Flag Affected
Arithmetic			
ADD A,[m]	Add Data Memory to ACC	1	Z, C, AC, OV
ADDM A,[m]	Add ACC to Data Memory	1 ^{Note}	Z, C, AC, OV
ADD A,x	Add immediate data to ACC	1	Z, C, AC, OV
ADC A,[m]	Add Data Memory to ACC with Carry	1	Z, C, AC, OV
ADCM A,[m]	Add ACC to Data memory with Carry	1 ^{Note}	Z, C, AC, OV
SUB A,x	Subtract immediate data from the ACC	1	Z, C, AC, OV
SUB A,[m]	Subtract Data Memory from ACC	1	Z, C, AC, OV
SUBM A,[m]	Subtract Data Memory from ACC with result in Data Memory	1 ^{Note}	Z, C, AC, OV
SBC A,[m]	Subtract Data Memory from ACC with Carry	1	Z, C, AC, OV
SBCM A,[m]	Subtract Data Memory from ACC with Carry, result in Data Memory	1 ^{Note}	Z, C, AC, OV
DAA [m]	Decimal adjust ACC for Addition with result in Data Memory	1 ^{Note}	С
Logic Operation			
AND A,[m]	Logical AND Data Memory to ACC	1	Z
OR A,[m]	Logical OR Data Memory to ACC	1	Z
XOR A,[m]	Logical XOR Data Memory to ACC	1	Z
ANDM A,[m]	Logical AND ACC to Data Memory	1 ^{Note}	Z
ORM A,[m]	Logical OR ACC to Data Memory	1 ^{Note}	Z
XORM A,[m]	Logical XOR ACC to Data Memory	1 ^{Note}	Z
AND A,x	Logical AND immediate Data to ACC	1	Z
OR A,x	Logical OR immediate Data to ACC	1	Z
XOR A,x	Logical XOR immediate Data to ACC	1	Z
CPL [m]	Complement Data Memory	1 ^{Note}	Z
CPLA [m]	Complement Data Memory with result in ACC	1	Z
Increment & Deci	rement		
INCA [m]	Increment Data Memory with result in ACC	1	Z
INC [m]	Increment Data Memory	1 ^{Note}	Z
DECA [m]	Decrement Data Memory with result in ACC	1	Z
DEC [m]	Decrement Data Memory	1 ^{Note}	Z
Rotate			
RRA [m]	Rotate Data Memory right with result in ACC	1	None
RR [m]	Rotate Data Memory right	1 ^{Note}	None
RRCA [m]	Rotate Data Memory right through Carry with result in ACC	1	С
RRC [m]	Rotate Data Memory right through Carry	1 ^{Note}	С
RLA [m]	Rotate Data Memory left with result in ACC	1	None
RL [m]	Rotate Data Memory left	1 ^{Note}	None
RLCA [m]	Rotate Data Memory left through Carry with result in ACC	1	С
RLC [m]	Rotate Data Memory left through Carry	1 ^{Note}	С

Rev. 1.10 122 November 26, 2019

Mnemonic	Description	Cycles	Flag Affected
Data Move			
MOV A,[m]	Move Data Memory to ACC	1	None
MOV [m],A	Move ACC to Data Memory	1 ^{Note}	None
MOV A,x	Move immediate data to ACC	1	None
Bit Operation			
CLR [m].i	Clear bit of Data Memory	1 ^{Note}	None
SET [m].i	Set bit of Data Memory	1 ^{Note}	None
Branch Operatio	n	,	
JMP addr	Jump unconditionally	2	None
SZ [m]	Skip if Data Memory is zero	1 Note	None
SZA [m]	Skip if Data Memory is zero with data movement to ACC	1 Note	None
SZ [m].i	Skip if bit i of Data Memory is zero	1 ^{Note}	None
SNZ [m].i	Skip if bit i of Data Memory is not zero	1 ^{Note}	None
SIZ [m]	Skip if increment Data Memory is zero	1 ^{Note}	None
SDZ [m]	Skip if decrement Data Memory is zero	1 ^{Note}	None
SIZA [m]	Skip if increment Data Memory is zero with result in ACC	1 ^{Note}	None
SDZA [m]	Skip if decrement Data Memory is zero with result in ACC	1 Note	None
CALL addr	Subroutine call	2	None
RET	Return from subroutine	2	None
RET A,x	Return from subroutine and load immediate data to ACC	2	None
RETI	Return from interrupt	2	None
Table Read Oper	ation		
TABRD [m]	Read table (specific page) to TBLH and Data Memory	2 ^{Note}	None
TABRDC [m]	Read table (current page) to TBLH and Data Memory	2 ^{Note}	None
TABRDL [m]	Read table (last page) to TBLH and Data Memory	2 ^{Note}	None
Miscellaneous			
NOP	No operation	1	None
CLR [m]	Clear Data Memory	1 Note	None
SET [m]	Set Data Memory	1 Note	None
CLR WDT	Clear Watchdog Timer	1	TO, PDF
CLR WDT1	Pre-clear Watchdog Timer	1	TO, PDF
CLR WDT2	Pre-clear Watchdog Timer	1	TO, PDF
SWAP [m]	Swap nibbles of Data Memory	1 ^{Note}	None
SWAPA [m]	Swap nibbles of Data Memory with result in ACC	1	None
HALT	Enter power down mode	1	TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required, if no skip takes place only one cycle is required.

- 2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
- 3. For the "CLR WDT1" and "CLR WDT2" instructions the TO and PDF flags may be affected by the execution status. The TO and PDF flags are cleared after both "CLR WDT1" and "CLR WDT2" instructions are consecutively executed. Otherwise the TO and PDF flags remain unchanged.

Rev. 1.10 123 November 26, 2019

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the specified Data Memory.

Operation $[m] \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + x$ Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the specified Data Memory.

 $\label{eq:continuous} \begin{array}{ll} \text{Operation} & & [m] \leftarrow ACC + [m] \\ \text{Affected flag(s)} & & \text{OV, Z, AC, C} \end{array}$

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "AND" [m]$

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bit wise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC$ "AND" x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "AND" [m]$

Affected flag(s) Z

Rev. 1.10 124 November 26, 2019

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then

increments by 1 to obtain the address of the next instruction which is then pushed onto the stack. The specified address is then loaded and the program continues execution from this new address. As this instruction requires an additional operation, it is a two cycle instruction.

 $Operation \hspace{1cm} Stack \leftarrow Program \ Counter + 1$

Program Counter ← addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation $[m] \leftarrow 00H$ Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i \leftarrow 0 Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

 $TO \leftarrow 0$ $PDF \leftarrow 0$

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in

conjunction with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Repetitively executing this instruction without alternately executing CLR WDT2 will

have no effect.

Operation WDT cleared

 $\begin{aligned} & TO \leftarrow 0 \\ & PDF \leftarrow 0 \end{aligned}$

PDF ← U

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction

with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect.

Repetitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

 $TO \leftarrow 0$ $PDF \leftarrow 0$

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa.

Operation $[m] \leftarrow \overline{[m]}$

Affected flag(s) Z

Rev. 1.10 125 November 26, 2019

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m]$

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value

resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag may be affected by this instruction which indicates that if the original BCD sum is greater than

100, it allows multiple precision decimal addition.

Operation $[m] \leftarrow ACC + 00H$ or

 $[m] \leftarrow ACC + 06H \text{ or}$ $[m] \leftarrow ACC + 60H \text{ or}$ $[m] \leftarrow ACC + 66H$

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation $[m] \leftarrow [m] - 1$

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the

Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] - 1$

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents of

the Data Memory and registers are retained. The WDT and prescaler are cleared. The power

down flag PDF is set and the WDT time-out flag TO is cleared.

Operation $TO \leftarrow 0$

 $PDF \leftarrow 1$

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation $[m] \leftarrow [m] + 1$

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator.

The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] + 1$

Affected flag(s) Z

Rev. 1.10 126 November 26, 2019

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter ← addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

 $\begin{array}{ll} \text{Operation} & \quad & \text{ACC} \leftarrow [m] \\ \text{Affected flag(s)} & \quad & \text{None} \\ \end{array}$

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation $ACC \leftarrow x$ Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation $[m] \leftarrow ACC$ Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation
Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise

logical OR operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" [m]$

Affected flag(s) Z

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" x$

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "OR" [m]$

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the restored

address.

Operation Program Counter ← Stack

Affected flag(s) None

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the specified

immediate data. Program execution continues at the restored address.

Operation Program Counter ← Stack

 $ACC \leftarrow x$

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by setting the

EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the RETI instruction is executed, the pending Interrupt routine will be processed before returning

to the main program.

Operation Program Counter ← Stack

 $EMI \leftarrow 1$

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow [m].7$

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow [m].7$

Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s)

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the

Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.

Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$

 $[m].7 \leftarrow [m].0$

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory is rotated right by 1 bit with bit 0 rotated into bit 7.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow [m].0$

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$

 $[m].7 \leftarrow C$ $C \leftarrow [m].0$

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces

the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow C$ $C \leftarrow [m].0$

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m] - C$

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m] - C$

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] - 1$

Skip if [m]=0

Affected flag(s) None

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0,

the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] - 1$

Skip if ACC=0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation $[m] \leftarrow FFH$ Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

 $\begin{array}{ll} \text{Operation} & \quad [m].i \leftarrow 1 \\ \text{Affected flag(s)} & \quad \text{None} \end{array}$

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] + 1$

Skip if [m]=0

Affected flag(s) None

Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] + 1$

Skip if ACC=0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m]. $i \neq 0$

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m]$

Affected flag(s) OV, Z, AC, C

Rev. 1.10 130 November 26, 2019

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

 $\begin{array}{ll} \text{Operation} & & [m] \leftarrow ACC - [m] \\ \text{Affected flag(s)} & & \text{OV, Z, AC, C} \end{array}$

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumulator.

The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - x$ Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation $[m].3\sim[m].0 \leftrightarrow [m].7\sim[m].4$

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 \sim ACC.0 \leftarrow [m].7 \sim [m].4

 $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction.

Operation Skip if [m]=0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero,

the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation $ACC \leftarrow [m]$

Skip if [m]=0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires

the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle

instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i=0

Affected flag(s) None

Rev. 1.10 131 November 26, 2019

BC66F2430 315/433MHz RF Super-Regenerative Receiver SoC A/D Flash MCU

TABRD [m] Read table (specific page) to TBLH and Data Memory

Description The low byte of the program code (specific page) addressed by the table pointer pair

(TBHP and TBLP) is moved to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow program code (low byte)$

TBLH ← program code (high byte)

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow \text{program code (low byte)}$

TBLH ← program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved

to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow \text{program code (low byte)}$

TBLH ← program code (high byte)

Affected flag(s) None

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XOR A.x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

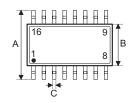
Operation $ACC \leftarrow ACC "XOR" x$

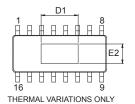
Affected flag(s) Z

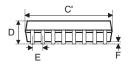
Rev. 1.10 132 November 26, 2019

Package Information

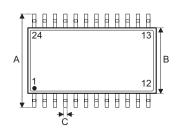
Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

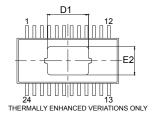

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

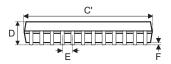

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

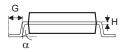

Rev. 1.10 133 November 26, 2019

16-pin NSOP (150mil) Outline Dimensions (Exposed Pad)


Cymphol		Dimensions in inch	
Symbol	Min.	Nom.	Max.
A	_	0.236 BSC	_
В	_	0.154 BSC	_
С	0.012	_	0.020
C'	_	0.390 BSC	_
D	_	_	0.069
D1	0.059	_	_
E	_	0.050 BSC	_
E2	0.039	_	_
F	0.004	_	0.010
G	0.016	_	0.050
Н	0.004	_	0.010
α	0°	_	8°


Symbol	Dimensions in mm			
	Min.	Nom.	Max.	
A	_	6.00 BSC	_	
В	_	3.90 BSC	_	
С	0.31	_	0.51	
C'	_	9.90 BSC	_	
D	_	_	1.75	
D1	1.50	_	_	
E	_	1.27 BSC	_	
E2	1.00	_	_	
F	0.10	_	0.25	
G	0.40	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	


Rev. 1.10 November 26, 2019



24-pin SSOP (150mil) Outline Dimensions (Exposed Pad)

Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
A	_	0.236 BSC	_	
В	_	0.154 BSC	_	
С	0.008	_	0.012	
C'	_	0.341 BSC	_	
D	_	_	0.069	
D1	_	0.140	_	
E	_	0.025 BSC	_	
E2	_	0.096	_	
F	0.004	_	0.010	
G	0.016	_	0.050	
Н	0.004	_	0.010	
α	0°	_	8°	

Symbol	Dimensions mm			
	Min.	Nom.	Max.	
A	_	6.00 BSC	_	
В	_	3.90 BSC	_	
С	0.20	_	0.30	
C'	_	8.66 BSC	_	
D	_	_	1.75	
D1	_	3.56	_	
E	_	0.635 BSC	_	
E2	_	2.44	_	
F	0.10	_	0.25	
G	0.41	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

Rev. 1.10 135 November 26, 2019

Copyright® 2019 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.

Rev. 1.10 136 November 26, 2019