
Multi Layer Ceramic Capacitors

SMD Type	5
SMD Type-High Voltage	13
SMD Type-High Frequency	26
Automotive Application	29

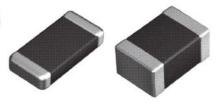
Multi Layer Ceramic Capacitors

Introduction

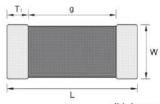
SAMWHA's series of multilayer ceramic(MLC) chip capacitors is designed to meet a wide variety of need. Multilayer ceramic chip capacitors are available in both class I and class II formulations. Temperature compensation formulations are class I and temperature stable and general application formulations are classified at class II. The class I multilayer ceramic capacitors are COG with negligible dependence of electrical properties on temperature, voltage, frequency. The most of commonly used class II dielectric are X7R, X5R and Y5V. The X7R provides intermediate capacitance values which vary $\pm 15\%$ over the temperature range of -55 $^{\circ}$ C to 125 $^{\circ}$ C. The X5R provides intermediate capacitance values which vary $\pm 15\%$ over the temperature range of -55°C to 85°C. The Y5V provides the highest capacitance value which vary from 22% to -82% over the temperature range of -30°C to 85°C. All class II capacitors vary in capacitance value under the influence of temperature, operating voltage and frequency. We offer a complete line of products for both class I and II.

Features

- · Samwha's high density ceramic bodies offer superior performance and reliability
- Samwha offer various temperature characteristics, rated voltage and packing method
- · Material with high dielectric constant and superior manufacturing technology allows very high values in a small size
- Solder coated terminals offer superior solderability


Applications

Wide applications throughout commercial and industrial market.


- Communication products like Cellular Phone, Pager, Codeless phone
- Multimedia products like DVD, CD-ROM, FDD, HDD, Game machine, Computer, Note book, Digital camera, LCD
- Audio visual products like TV, Camcorder, Minidisk, MP3 Player
- Communication products like Electronic tuner, Duplexer, VCXO, TCXO, Modem
- OA equipment products like Printer, Copy Machine, Fax Machine
- * special specification like a Automobile, Medical, Military, Aviation should be discuss with our sales representatives

SMD Type

Shape & Dimensions

(Unit:mm)

			Dimensions		
Code(inch)	Length		W	T1(min)	
	L	Tol(±)	W	Tol(±)	()
0603(0201)	0.60	0.03	0.30	0.03	0.05
1005(0402)	1.00	0.05	0.50	0.05	0.05
1608(0603)	1.60	0.15	0.80	0.10	0.10
2012(0805)	2.00	0.20	1.25	0.15	0.10
3216(1206)	3.20	0.30	1.60	0.20	0.15
3225(1210)	3.20	0.40	2.50	0.25	0.15
4520(1808)	4.50	0.40	2.00	0.25	0.20
4532(1812)	4.50	0.40	3.20	0.30	0.20
5750(2220)	5.70	0.50	5.00	0.40	0.30

^{*1608} Size $\,\geq 10 \mu F \,\Rightarrow\, W: 0.8 \pm 0.15,\, T: 0.8 \pm 0.15$

How to Order(Product Identification)

Type

Size Code

CS: SMD

This is expressed in tens of a millimeter.

SA: ARRAY

The first two digits are the length, the last two digits are width.

Size(mm)	0603	1005	1608	2012	3216	3225	4520	4532	5750
----------	------	------	------	------	------	------	------	------	------

Temperature Coefficient Code

Temperature Characteristice	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range
C0G	-55 to 125°C	0±30ppm/℃	-55 to 125°C
X7R	-55 to 125°C	±15%	-55 to 125°C
X5R	-55 to 85°C	±15%	-55 to 85°C
Y5V	-30 to 85°C	+22, -82%	-30 to 85°C

Capacitance Code(Pico Farads)

The nominal capacitance value in pF is expressed by three digit numbers.

The first two digits represents significant figures and the last digit denotes the number of zero

Ex.) 104 = 100000pF R denotes decimal 8R2 = 8.2pF

5 Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance
В	±0.1pF	М	±20%
С	±0.25pF	P	+100, -0%
D	±0.5pF	Z	+80, -20%
F	±1.0%	Н	+0.25/-0pF
G	±2.0%	I	+0/-0.25pF
J	±5%	U	+5/-0%
K	±10%	٧	+0/-5%

6 Voltage Code

Code	6R3	100	160	250	500	101	201	251	631	302
Vol.	DC 6.3V	DC 10V	DC 16V	DC 25V	DC 50V	DC 100V	DC 200V	DC 250V	DC 630V	DC 3000V

7 Termination Code

Ex.) N: Ni-Sn(Nickel-Tin Plate)

B Packing Code

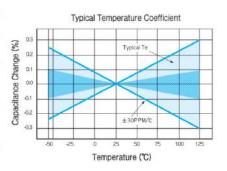
Ex.) R: Reel Type B: Bulk Type

Thickness Option

Sizo/mm\ Thickne	Thicknes	ss(mm)	Codo	Simo(man)	Thickne	Carla	
Size(mm)	t	Tol(±)	Code	Code Size(mm)	1	Tol(±)	Code
0603/1005	0.3	0.03	-	3216	1.15	0.15	Е
1005	0.5	0.05		3216/3225	1.6	0.2	- 1
2012	0.6	0.1	А	3225	1.8	0.2	J
1608	0.8	0.1	В	3225/4532/5750	2	0.25	K
2012/3216	0.85	0.15	В	3225/4532/5750	2.5	0.25	L
2012	1.25	0.15	Е				

Size(mm)	Code	Packaging	Size(mm)	Code	Packaging
0603/1005	-	Paper Taping	3216	E	Embossed Taping
1005		Paper Taping	3216/3225	1	Embossed Taping
2012	А	Paper Taping	3225	J	Embossed Taping
1608	В	Paper Taping	3225/4532/5750	K	Embossed Taping
2012/3216	В	Paper Taping	3225/4532/5750	L	Embossed Taping
2012	E	Embossed Taping			

Typical Performance Characteristics

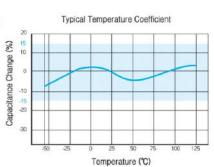

COG

Application

Suited for precision circuits, requiring stable dielectric characteristics, negligible dependence of capacitance and dissipation factor on time, voltage and frequency.

Dielectric Characteristics

Temperature Characteristic	0±30ppm/°C
Operating Temperature	-55~125℃
Capacitance Tolerance	>10pF: \pm 5%, \pm 10%,(\pm 1%, \pm 2%, \pm 20%) \leq 10pF: \pm 0.1pF, \pm 0.25pF, \pm 0.5pF
Dissipation Factor & Q	≥30pF: DF≤0.1%, Q≥1000 <30pF: Q≥400+20×C
Insulation Resistance	More than 10,000MΩ or 500ΩF (Whichever is smaller)
Dielectric Strength	>3×RVDC
Test Voltage	0.5 to 5Vrms(≤1000pF), 1±0.2Vrms(>1000pF)
Test Frequency	1 ± 0.1 MHz(\leq 1000pF), 1 ± 0.1 kHz($>$ 1000pF)

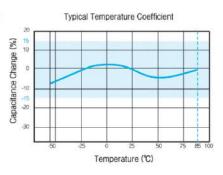

X7R

Application

Stable class || dielectric properties, suited for by-pass and coupling purposes, filtering, frequency discrimination, DC blockage, and as voltage transient suppression elements.

Dielectric Characteristics

Temperature Characteristic	±15%
Operating Temperature	-55~125°C
Capacitance Tolerance	±10%, ±20%,(±5%, +80~-20%)
Dissipation Factor & Q	50V Min.: 2.5% Max. 25V Min.: 3.0% Max. 16V Min.: 3.5% Max. 10V Min.: 5.0% Max. 6.3V Min.: 5.0% Max. Thin layer lange capacitors type 12.5% Max.
Insulation Resistance	More than 10,000M Ω or 500 Ω F(Whichever is smaller) Thin layer lange capacitors type 50 Ω F Min.
Dielectric Strength	>2.5×RVDC
Test Voltage	1±0.2Vrms(≤10 μ F) 0.5±0.1Vrms(>10 μ F)
Test Frequency	1 ± 0.1 kHz(\leq 10 μ F) 120 \pm 24Hz($>$ 10 μ F)

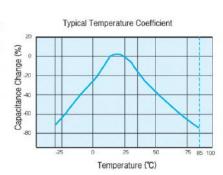

X5R

Application

Stable class || dielectric properties, suited for by-pass and coupling purposes, filtering, frequency discrimination, DC blockage, and as voltage transient suppression elements.

Dielectric Characteristics

Temperature Characteristic	±15%
Operating Temperature	-55~85°C
Capacitance Tolerance	±10%, ±20%,(±5%, +80~-20%)
Dissipation Factor & Q	50V Min.: 2.5% Max. 25V Min.: 3.0% Max. 16V Min.: 3.5% Max. 10V Min.: 5.0% Max. 6.3V Min.: 5.0% Max. Thin layer lange capacitors type 12.5% Max.
Insulation Resistance	More than 10,000M Ω or 500 Ω F (Whichever is smaller) Thin layer lange capacitors type 50Ω F Min.
Dielectric Strength	>2.5×RVDC
Test Voltage	1±0.2Vrms(≤10 μ F) 0.5±0.1Vrms(>10 μ F)
Test Frequency	1 ± 0.1 kHz(\leq 10 μ F) 120 \pm 24Hz($>$ 10 μ F)


Y5V

Application

The Hi-K(Y5V) dielectrics deliver high capacitance density and are ideally suited for applications where space is at a premium, or as replacement for tantalum capacitors. Typically applications include use as by-pass or decoupling elements. Best performance is obtained at or near room temperature, with low DC bias.

Dielectric Characteristics

Temperature Characteristic	+22%~-82%
Operating Temperature	-30~85°C
Capacitance Tolerance	-20~+80%(±20%)
Dissipation Factor & Q	50V Min.: 5% Max. 25V Min.: 7% Max. 16V Min.: 9% Max. 10V Min.: 12.5% Max. 6.3V Min.: 15% Max. Thin layer lange capacitors type 20% Max.
Insulation Resistance	More than 10,000M Ω or 500 Ω F(Whichever is smaller) Thin layer lange capacitors type 50 Ω F Min.
Dielectric Strength	>2.5×RVDC
Test Voltage	1±0.2Vrms(≤10 μ F) 0.5±0.1Vrms(>10 μ F)
Test Frequency	1±0.1kHz(≤10μF) 120±24Hz(>10μF)

Appendix |

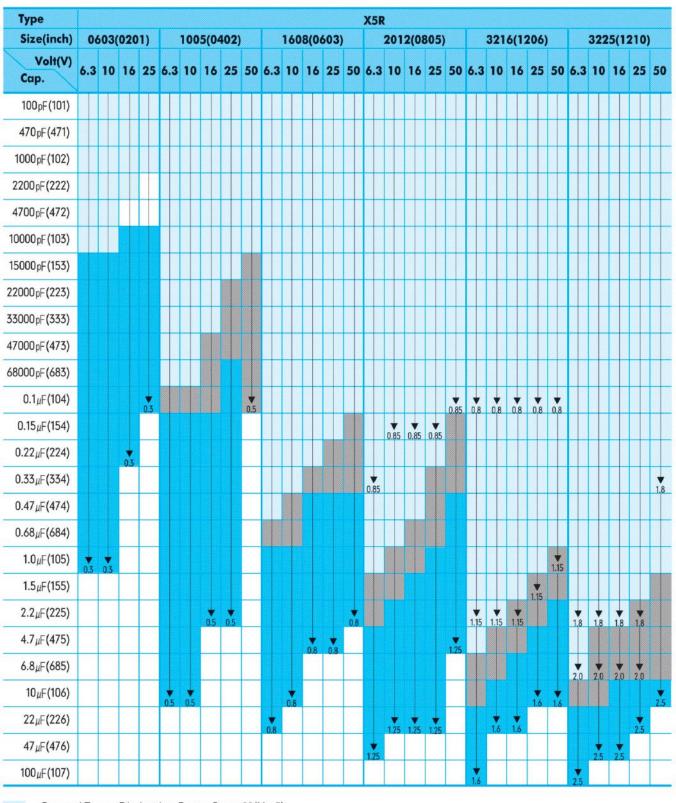
COG-Temperature Compensating Type(0603~3216)

Type Size(inch)	0603((0201)	1005	6(0402)	1608	(0603)	2012	(0805)	3216(1206)
Volt(V) Cap.	25	50	25	50	25	50	25	50	25	50
0.5pF(0R5)										
1 _p F(010)										
2pF(020)										
3 pF (030)										
4pF(040)										
5pF(050)										
6pF(060)										
7 _p F(070)										
8pF(080)										
9pF(090)					Med a					
10pF(100)										
12 pF (120)										
15pF(150)										
18pF(180)										
22pF(220)										
27 pF(270)										
33pF(330)										
39pF(390)										
47 pF (470)										
56pF(560)										
68pF(680)										
82pF(820)										
100 _p F(101)										
120 _p F(121)										
150 _p F(151)										
180 _p F(181)										
220pF(221)		0.3								
270pF(271)										
330pF(331)										
390pF(391)										
470pF(471)										
560pF(561)										
680pF(681)										
820pF(821)										
1000pF(102)	0.3									
1200pF(122)										
1500pF(152)									1.15	1.15
1800pF(182)										
200pF(222)							0.6	0,6		
700 _p F(272)										
300 _p F(332)										
900pF(392)										
700pF(472)										
600pF(562)										
800pF(682)										
200pF(822)				0.5						
0000pF(103)			0.5		0.8	0.8				
2000pF(123)										
000pF(153)										
8000pF(183)										
000pF(223)										
000 _p F(273)							-			
000 _p F(333)							1.25	1.25		
000pF(473)										
000 _p F(563)										
000pF(683)										
000pF(823)										

Temperature Compensating Type : Dissipation Factor Page 22 (No.5)

Appendix ||

X7R-High Dielectric Constant Type(0603~3225) & Thin Layer Large-Capacitance Type


Туре															X71	ł													
Size(inch)	0	603	(020)1)		100)5(0	402)		160	0)8(603)			201	2(0	805)		321	6(1	206)		322	5(1	210)
Volt(V) Cap.	6.3	10	16	25	6.3	10	16	25	50	6.3	3 10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50
100pF(101)					П							П			П										П				П
470pF(471)																													
1000pF(102)					П					П		П								П		П			П				П
2200pF(222)																П							П		Ħ				
4700pF(472)					П																								
10000pF(103)	*	*		0.3	П						Ħ	П									Ħ							Ħ	
15000pF(153)	0.5	0.5	0.5	0.5						П	Ħ														Ħ				
22000pF(223)				T			П			Ħ					П													T	
33000pF(333)										П		П			*	Į.	¥	0.6	*			П			П				
47000pF(473)										Ħ		П			0.6	0.0	0.6	0.6	0.0			Ħ	T						
68000pF(683)										Ħ					П		П	П				П	Ħ						
0.1μF(104)				T				¥	0.5	Ī					V	0.85	V	V											
0.15μF(154)			Г	T				0.5	0.5		Ħ				0.65	0.85	0.85	0.85	0.85	0.65	0.65	0.85	0.65	0.63					
0.22μF(224)							0.5							0.8						Т									
0.33 _µ F(334)							0.5							0.6			П					П	Ħ		П				
0.47 µF (474)						0.5							0.8							V	₩	1.15	115	115					
0.68µF(684)						0.5							0.8			П				1.13	1.13	1.13	1.13	1.13			T	Т	
1.0μF(105)					0.5							0.8							1.25	Т		Ħ	Ħ		*	2.0	*	*	2,0
1.5μF(155)					0.5							0.0							1.23			Ħ			2.0	2.0	2.0	2.0	2.0
2.2μF(225)					T					•	0.8																		
4.7 _μ F(475)					T					0.0	0.0							1.25						1.6	T				2.5
6.8μF(685)																	1.25	1.25						1.0					2.5
10μF(106)															•	1.25						1.6	1.6						
22μF(226)										T					1.25	1.25				V	1.6		1.6				¥	2.5	
47μF(476)															T					1.6	1.6				•	▼ 2.5	2.5	2.5	
100μF(107)											-				\vdash										2.5	2.5			

General Type: Dissipation Factor Page 22(No.5)

*General Type: Dissipation Factor Page 22(No.5)

Thin Layer Large-Capacitance Type: Dissipation Factor Page 22(No.5)

X5R-High Dielectric Constant Type(0603~3225) & Thin Layer Large-Capacitance Type

General Type: Dissipation Factor Page 22(No.5)

*General Type: Dissipation Factor Page 22(No.5)

Thin Layer Large-Capacitance Type: Dissipation Factor Page 22(No.5)

Y5V-High Dielectric Constant Type(0603~3225) & Thin Layer Large-Capacitance Type

Туре													Y5V												
Size(inch)		100	5(04	102)			160	08(0	503)			201	2(08	305)			321	6(1:	206)			322	25(1	210)	
Volt(V)	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50
1000pF(102)																									
2200pF(222)																									
4700pF(472)																									
10000pF(103)																									
15000pF(153)																									
22000pF(223)					0.5																				
33000pF(333)					0.0																				
47000 _p F(473)																									
68000 _p F(683)																									
0.1 _μ F(104)				0.5															T					П	
0.15 _μ F(154)				0.5																					
0.22μF(224)										0.8															
0.33 _μ F(334)										0.0															
0.47µF(474)			0.5						0.8																
0.68µF(684)	-		0.5						0.0																
1.0 _μ F(105)	0.5	0.5													1.25				1.15	1.15					
1.5 _µ F(155)	0.5	0.5													1.23				1.15	1.13					
2.2μF(225)								0.8								¥	1.15	V							
3.3μF(335)							0.8	0.0								1.15	1.15	1.15				V	10	1.8	*
4.7 _μ F(475)	Т					0.8	0.0						105	1.25							1,8	1.0	1.0		1.0
6.8μF(685)						0.8							1.25	1.25							1.8				*
10μF(106)											1.25	1.25									2.0	2.0		2.0	2.0
22μF(226)											1.25	1.25									2.0	2.0	2.0	2.0	2.5
47μF(476)																							2.0		
100μF(107)																1.6	1.6	1.6	1.6	1.6	2.5	2.5			

General Type: Dissipation Factor Page 22(No.5)

*General Type: Dissipation Factor Page 22(No.5)

Thin Layer Large-Capacitance Type: Dissipation Factor Page 22(No.5)

SMD Type-High Voltage

Product Offering

SAMWHA high voltage MLCC products with the temperature characteristics of C0G and X7R are designed for commercial and industrial applications. The products are applied to DC-DC converters and ballast circuit to reduce ripple noise and diverting potentially unsafe transients in various sizes with working voltage up to DC 7kV. These high voltage capacitors feature a special internal electrode design which has capacitor network to reduce voltage concentrations by distributing voltage throughout the entire capacitor.

Features

- · High reliability
- The highest voltage rating by the special internal electrode design
- Wide voltage level: from 100V_{DC} to 7,000V_{DC}
- · Surface mount suited for wave and reflow soldering
- RoHS compliant

Applications

- DC-DC Converters
- Network Equipments
- Back-Lighting Inverter
- Lighting Ballast
- Modem & Power Supply
- LAN/WLAN Interface

* special specification like a Automobile, Medical, Military, Aviation should be discuss with our sales representatives

Special Options for the Safety

- Inset electrode margins to prevent short mode failure resulted from the crack by mechanical bending stress
- · Soft termination is optionally available to reduce possibility for the crack of MLCCs by mechanical bending stress

How to Order(Product Identification)

Type

CS: SMD

Size Code

Size(mm) 1608 2012 3216 3225 4520 4532 5750 7566 9595

3 Dielectric (Temp. Coefficient)

COG, X7R

4 Capacitance

1st two digits are value, 3rd digit denotes number of zeros; 331 = 330pF, 104 = 100000pF, 8R2 = 8.2pF

5 Tolerance

Code	Tolerance	Code	Tolerance
В	±0.1pF	С	±0.25pF
D	±0.50pF	F	±1%
G	±2%	J	±5%
K	±10%	M	±20%
Z	+80~-20%		

6 Rated Voltage Code

1st two digits are value, 3rd digit denotes number of zeros; 302 = 3,000V, 502 = 5,000V, 722 = 7,200V

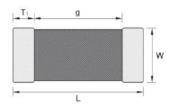
Plating

Ni / Sn Plated

8 Packing

B: Bulk Pack R: Reel Pack C: Case Box

Thickness Option


Si()	Thicknes	s(mm)	Carla	Si/	Thickne	ess(mm)	Carla
Size(mm)	t	Tol(±)	Code	Size(mm)	t	Tol(±)	Code
0603/1005	0.3	0.03	-	3216	1.15	0.15	E
1005	0.5	0.05		3216/3225	1.6	0.2	1
2012	0.6	0.1	Α	3225	1.8	0.2	J
1608	0.8	0.1	В	3225/4532/5750	2	0.25	K
2012/3216	0.85	0.15	В	3225/4532/5750	2.5	0.25	L
2012	1.25	0.15	Е				

Size(mm)	Code	Packaging	Size(mm)	Code	Packaging
0603/1005	4	Paper Taping	3216	Е	Embossed Taping
1005		Paper Taping	3216/3225	1	Embossed Taping
2012	Α	Paper Taping	3225	J	Embossed Taping
1608	В	Paper Taping	3225/4532/5750	K	Embossed Taping
2012/3216	В	Paper Taping	3225/4532/5750	L	Embossed Taping
2012	E	Embossed Taping			

Shape & Dimensions

(Unit:mm)

			Dimensions		
Code	Lei	ngth	Wie	dth	T1(min)
	L	Tol(±)	W	Tol(±)	
1608(0603)	1.60	0.15	0.80	0.10	0.10
2012(0805)	2.00	0.20	1.25	0.15	0.10
3216(1206)	3.20	0.30	1.60	0.20	0.15
3225(1210)	3.20	0.40	2.50	0.25	0.15
4520(1808)	4.50	0.40	2.00	0.25	0.20
4532(1812)	4.50	0.40	3.20	0.30	0.20
5750(2220)	5.70	0.50	5.00	0.40	0.30
7566(3026)	7.50	0.50	6.60	0.50	0.30
9595(3838)	9.50	0.50	9.50	0.50	0.30

^{*1608} Size \geq 10 μ F \Rightarrow W : 0.8 \pm 0.15, T : 0.8 \pm 0.15

Typical Performance Characteristics

Dielectric Characteristics	COG(NPO)	X7R
Dielectric Classification	Ultra Stable	Stable
Rated temperature range	-55°C to +125°C	-55°C to +125°C
TCC(Temperature Characteristics Coefficient)	0±30ppm	±15%
Dissifation Factor(tan δ)	C \geq 30pF: Q \geq 1,000 (DF: \leq 0.1%) C $<$ 30pF: Q \geq 400+20C(DF: \leq 1/(400+20C)	2.5% Max.
IR(Insulation Resistance)	500V Below : Rated voltage 2Min 500V Above : 500V 2Min More than 10,000 №	500V Below:Rated voltage 2Min 500V Above:500V 2Min -DC100V~1KV :C≥0.01μF:More than 100MΩμF :C<0.01μF:More than 10,000MΩ -DC2~3KV:More than6,000 MΩ
Capacitance Tolerance	$\langle 10pF : \pm 0.25pF, \pm 0.5pF$ ≥10pF : ±5%, ±0%	±10%, ±20%
Dielectric strength	630V:150% Rated Voltage 1kV~7.2kV:120% Rated Voltage	100V:150% Rated Voltage 630V:150% Rated Voltage 1kV~7.2kV: 120% Rated Voltage
Aging characteristics	0%	2.5% per decade hr, typical

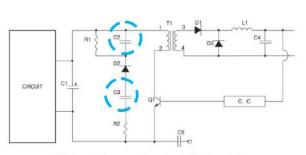
Appendix High Voltage Type(100V~3000V)

COG-Temperature Compensation Type

High voltage type

Туре																C)G															
Size(inch)	1608(0603)	2012	(0805)		321	6(12	(06)			322	25(12	210)			,	4520(1808	3)			4	1532	(1812	2)		7066(3026)		9595(3838	3)
Volt(V) Cap.	100	250	100	250	100	250	630	1000	2000	100	250	630	1000	2000	100	250	630	1000	2000	3000	100	250	630	1000	2000	3000	3000	4000	3000	4000	5000	700
4.7pF(4R7)																																
5pF(050)																																
7pF(070)	IIV											311										TI III		1								
8pF(080)																																
9pF(090)						Zegi,																										
10pF(100)																																
12pF(120)																																
15pF(150)							П																									
18pF(180)																																
22pF(220)																																
47 pF (470)																																
56pF(560)		Ī					Ī																									
68pF(680)																																
82pF(820)																																
100pF(101)																																Г
180 _p F(180)																																
220pF(221)																																
330 _p F(331)																																
470pF(471)																																
560pF(561)																																
680pF(681)																																
1000pF(102)						WIII.																										
1500pF(152)																																
2200pF(222)																																
2700pF(272)																																
3300pF(332)																																
4700pF(472)																									-							
5600pF(562)																																
6800pF(682)																																
10000pF(103)																																
15000pF (153)																								-					=			
22000 pF (223)																																
33000pF(333)																																

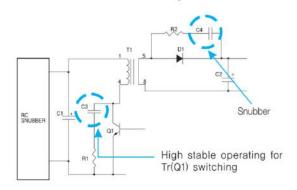
X7R-High Dielectric Type


High voltage type

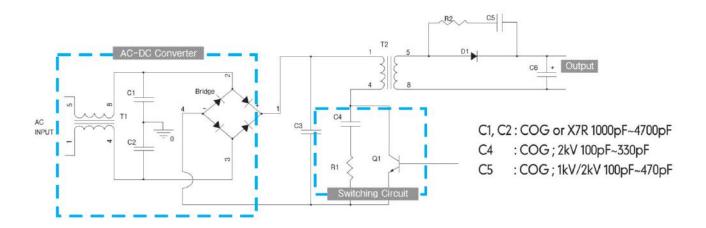
Туре													X	7R												
Size(inch)	1608	(0603)	2012	(0805)		32	16(12	06)			32	25(12	10)				4520	1808)					4532(1812)		
Volt(V) Cap.	100	250	100	250	100	250	630	1000	2000	100	250	630	1000	2000	100	250	630	1000	2000	3000	100	250	630	1000	2000	3000
220pF(221)																										
330pF(331)																										
470pF(471)																										
680pF(681)																										
1000pF(102)																										
1500pF(152)																							OII I			
2200pF(222)																										
3300pF(332)																										
4700 _p F(472)																										
5600pF(562)																										
6800pF(682)								010											The second							
10000pF(103)																										
15000pF(153)																										
18000pF(183)																										
22000pF(223)																										
33000 _p F(333)																										
47000pF(473)																										
68000pF(683)																										
0.1μF(104)																										
0.15μF(154)																										
0.22µF(224)																										
0.33 _μ F(334)																										
0.47μF(474)																										
0.68 _µ F(684)																										
1.0μF(105)																										
2.2µF(225)															-											

Size	Vr(V)	100pF	470pF	1.0nF	2.2nF	10nF	47nF	100nF	150nF
700/	3,000								
3026	4,000								
1	3,000								
3838	4,000		i esiilel						
2020	5,000								1
	7,000								

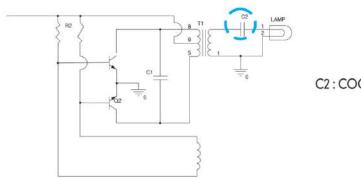
Application(Typical circuit)


DC-DC Converter

High stable operating for Tr(Q1) switching


C2: X7R; 250V 10nF~47nF C3:COG;630V 47pF~100pF

Switching Power Supply



C3: COG, X7R; 2kV 100pF~1000pF C4: COG, X7R; 2kV 100pF~1000pF

Primary circuit and Snubber switching power supply

LCD back light Inverter

C2: COG; 3kV 10~100pF

MLCC Applications for DC-DC Converter Modules

High voltage MLCCs are mainly used to DC-DC converter modules for industrial applications which have high input voltage of typical 48V. These are used as functions of high frequency noise filtering(decoupling) of power line and snubber capacitor to protect switching device from unsafe transients by inductance of transformer or connection line due to switching operation.

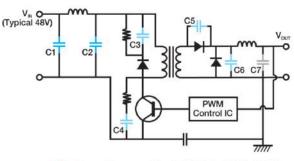

For these applications, MLCCs have merits for high allowable ripple current and high reliability.

Figure 2 shows isolated DC-DC converter circuit diagram and MLCC applications such as decoupling and snubber. Input voltage is 36~75V_{DC}(typical 48V_{DC}) for general industrial applications such as base station, server and network equipments. Decoupling MLCCs are applied to input and output(based on viewpoint of switch or transformer) power line to reduce ripple voltage, and MLCCs for snubber application used to absorb surge energy. SAMWHA MLCCs are recommended for each application as shown in Table 1.

Table 1. MLCC recommendation for isolated type DC-DC converter module

Items	MLCC Recommendation
*Input (C1, C2)	1210 X7R 470nF 100V 1812 X7R 1.0uF 100V
Snubber (C3~C6)	Available wide range of products 250V ~2kV (Available up to 7.2 kV) 100pF~2.2nF(Available up to 470nF)
Output (C7)	(High Capacitance Application) 1210 X5R 100uF 6.3V 1206 X5R 47uF 6.3V 0805 X5R 47uF 6.3V

^{*}Typical input voltage of 48V for industrial application

- Input Decoupling MLCC (~1.0uF 100V)
- + Snubber Cap.(100pF~2.2nF 250V~2kV)
- Output Decoupling MLCC(10~100uF 6.3V

MLCC Applications for Ballast Circuits

High voltage MLCCs are suitable for the ballast circuit as a function of resonant capacitor as presented in Figure 3. MLCCs with high voltage rating from 1kV to 3kV(available up to 7.2kV) are mainly used for these application. SAMWHA offers wide range of capacitance and rated voltage with high reliability.

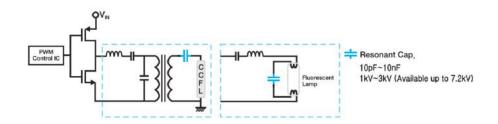


Fig. 3. Typical electronic ballast circuit and MLCC application

Caution(Rating)

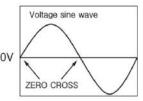
1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p Value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DV Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	V0-p	V0-p	Vp-p	Vp-p	Vp-p

2. Test condition for AC withstanding Voltage


(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave. If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the

*zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the OV capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave

(3) Dielectric strength testing method

In case of dielectric strength test, the capacitor's is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.

3. Soldering

If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, follow our recommendations below for adequate soldering conditions. Carefully perform preheating

so that temperature difference(ΔT) between the solder and component surface is in the following range. The smaller the temperatures difference (ΔT) between the solder and component surface is, the smaller the influence on the chip is.

Chip Size Soldering Method	3.2×1.6mm and under	3.2×2.5mm and over
Reflow Method or Soldering Lron Method	∆ T≦ 190°C	⊿ T≦ 130℃

SAMWHA CAPACITOR CO., LTD offers a line of MLCC(Multilayer Ceramic Capacitor). These parts are rated at 3kV dc and safety approved and certified to UL (Underwriters Laboratories Inc. ®)

UI ONLINE CERTIFICATIONS DIRECTORY

OCD Home Quick Guide Contact Us UL.com

NWGQ8.E304146 Information Technology Equipment Including Electrical Business Equipment Certified for Canada - Component

Page Bottom

Information Technology Equipment Including Electrical Business Equipment Certified for Canada - Component

See General Information for Information Technology Equipment Including Electrical Business Equipment Certified for Canada -Component

SAMWHA CAPACITOR CO LTD

F304146

124 BUK-RI

NAMSA-MYEUN

YONGIN-SHI, KYONGGI-DO 449-880 REPUBLIC OF KOREA

Component Recognition, Model(s) CS45XXYYYTTTA302NRE.

Marking: Company name, model designation and Recognized Component Mark for Canada,

Last Updated on 2006-04-28

Questions?

Notice of Disclaimer

Page Top

Copyright @ 2006 Underwriters Laboratories Inc. @

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright @ 2006 Underwriters Laboratories Inc.@"

Reliability and Test Conditions(General Type)

				Chara	cteristi	c				Tes	t Method:	5
No.	lte	m	Temperature Compensating Type	,	ligh Di	electri	c Cons	tant Ty	ре	and	Condition	าร
1	Operating Temperatur	e Range	C0G: -55 to +125°C		: -55 to : -30 to		X5R:	-55 to	+85℃			
2	Insulation Re	esistance	More than 10,000ΜΩ c	or 500 (or 500ΩF(Whichever is smaller)				 Applied the rated voltage for 2 minutes of charging. The charge/discharge current is less than 50mA. 			
3	Dielectric St	rength	No defects or abnorm	alities						- C0G : The ra - X7R, X5R, Y9 - Applied be for 1 to 5 sea - The charge, less than 50	5V: / tween the conds. /discharge	×250% terminations
4	Capacitance	9	Within the specified to	leranc	е							_
5	Dissipation	Factor	30pF Min.:	Char.	50V Min. ≤2.5%/	25V ≤3%/	16V ≤3.5%/	10V ≤5%/	6.3V ≤5%/	The capacita measured at and voltage	25°C at the	e frequency
			Q≥1,000(DF≤0.1%) 30pF Max.:	X5R	≤2.5%/ *≤5%/	100000000000000000000000000000000000000	1,022,000	1, -1, -1, -1	* ≤10%	Cap.	Testing Frequency	Testing Voltage
			Q≥400+20C (DF≤1/(400+20C))	Y5V	*≤9% You can	*≤9%	* ≤12.5%	*≤15%	≤15%	C0G (C≤1000pF)	1±0.1MHz	0.5 to 5Vrms
				1	the appoint	endix f				COG (C >1000pF)	1±0.1kHz	1±0.2Vrms
										X7R, X5R, Y5V (C≤10µF) X7R, X5R, Y5V (C >10µF)	1±0.1kHz 120±24Hz	1±0.2Vrms 0.5±0.1Vrms
6	Solderabilit Termination		Termination should be 75% of new solder	cover	red with	more	than			- Pb-Free Typ Solder : 96.5 Solder Tem Immersion T - Pre-Heating at 80~120°C	SSn-3Ag-0.5 perature : 2 Time : 3±0.	260±5°C 1sec
7	Resistance	Appearance	No marked defect							- Preheat the o		
	to Soldering Heat		Within $\pm 2.5\%$ or $\pm 0.25 pF$ (whichever is larger)	X7R, Y5V	X5R : ≤ : ≤	±7.59				Step2:170℃	tep1:100°C to 200°C,1n	to 120°C, 1min nin) Immerse the
		Dissipation	30pF Min.:	Char.	50V Min.	25V	16V	10V	6.3V	capacitor in a - Soldering Te		
		Factor (or Q)	Q≥1,000(DF≤0.1%) 30 _p F Max.:	X7R X5R	≤2.5%/ ∗≤5%	≤3%/ *≤7%	≤3.5%/ ∗≤7%	≤5%/ *≤10%	≤5%/ *≤10%	- Immersion Ti - Initial measur	rement	sec rement accordi
			Q≥400+20C (DF≤1/(400+20C))	Y5V	≤5%/ *≤9%	≤7%/ *≤9%	≤9% *≤12.5%	≤12.5%/ *≤15%	≤15%	to Note1 for 0 - Measuremen	Class nt after test	
										Perform the f to Note2 for		ement according Class
		I.R.	More than 10,000MΩ o	or 500 (2.F (W h	icheve	r is sma	aller)		-		

				Characteristic	Test Methods			
No.	Ite	m	Temperature Compensating Type	High Dielectric Constant Type	and Conditions			
8	Temperature Cycle	Appearance	No marking defects	VAD VED WASHING A TEN	Perform the five cycless according to the four heat treatments listed in the following table.			
		Capacitance Change	Within $\pm 2.5\%$ or $\pm 0.25 pF$ (whichever is larger)	X7R, X5R : Within ±7.5% Y5V : Within ±20%	Step 1 2 3 4			
		Dissipation Factor (or Q)	30 _p F Min. : Q≥1,000 (DF≤0.1%)	Char. 50V Min. 25V 16V 10V 6.3V X7R ≤5%/ ≤5%/ ≤5%/ ≤7.5%/ ≤7.5%/	Min. Temp. Operating (°C) Temp. +0, −3 Temp. +3, −0 Max. Operating Room Temp. +3, −0			
		(0. 0)	30pF Max.:	X5R * \(\pm \) *	Time (Min) 30±3 2 to 3 30±3 2 to 3			
			Q≥400+20C (DF≤1/(400+20C))	Y5V \$\leq 7.5\% / \cdot \cdot 210\% / \cdot 212.5\% \$\leq 12.5\% \cdot 215\% / \cdot \cdot 220\% \$\leq 12.5\% \cdot 212.5\% \cdot 215\% \cdot 220\% \$\leq 12.5\% \cdot 215\% \cdot 220\%	- Initial measurement Perform the initial measurement according to Note1 for Class - Measurement after test Perform the final measurement according to Note2 for Class and Class			
		I.R.	More than 10,000M Ω o	r 500Ω. F(Whichever is smaller)				
9	Humidity	Appearance	No marking defects		- Temperature : 40±2°C			
	Load	Capacitance Change	Within ±7.5% or ±0.75pF (whichever is larger)	X7R, X5R : Within ±12.5% Y5V : Within +30%, -40% (Y5V/1.0μF, 2.2μF, 4.7μF/10V) Within ±30% (others)	 - Humidity: 90~95% - Hour: 500±12hrs - Test Voltage: The rated voltage - Initial measurement - Perform the initial measurement 			
		Dissipation	30pF Min.:	Char. 50V Min. 25V 16V 10V 6.3V	according to Note1 for Class - Measurement after test			
		Factor (or Q)	Q≥200 (DF≤0.5%) 30pF Max.: Q≥100 +10/3C	X7R \(\le 5\% \right) \(\le 5\% \right) \) \(\le 5\% \right) \(\le 5\% \right) \) \(\le 7.5\% \right) \(\le 7.5\% \right) \) \(\le 7.5\% \right) \(\le 10\% \right) \) \(\le 10\% \right) \(\le 10\% \right) \) \(\le 10\% \right) \(\le 10\% \right) \) \(\le 10\% \right) \(\le 10\% \right) \) \(\le 10\% \right) \(\le 10\% \right) \) \(\le 10\% \right) \(\le 10\% \right) \) \(\le 10\% \right) \(\le 10\% \right) \\(\le 10\% \right) \\(\le 10\% \right) \\(\l	Perform the final measurement accord to Note2 for Class and Class			
			(DF≤1/(100+10/3C))	Y5V \$\leq 7.5\% / \ *\leq 12.5\% \$\leq 12.5\% \$\leq 12.5\% \$\leq 12.5\% \$\leq 12.5\% \$\leq 20\% \$\leq 20\%				
		I.R.	More than 500MΩ or 2	5Ω.F(Whichever is smaller)				
10	High Temperature	Appearance	No marking defects		- Testing time : 1000±12hrs			
	Load	Capacitance Change	Within $\pm 3\%$ or $\pm 0.3 \mathrm{pF}$ (whichever is larger)	X7R, X5R : Within $\pm 12.5\%$ Y5V : Within $\pm 30\%$ (Cap. $< 1.0\mu$ F) Within $+30\%$, -40% (Cap. $\ge 1.0\mu$ F)	- Applied voltage : Rated voltage < DC250V : ×200% - Temperature : COG, X7R → 125±3°C X5R, Y5V → 85±3°C			
		Dissipation Factor (or Q)	30pF Min.: $Q \ge 350$ (DF $\le 0.3\%$) $10pF \le Cp \le 30pF$: $Q \ge 275 + 5/2C$ (DF $\le 1/(275 + 5/2C)$) 10pF Max.: $Q \ge 200 + 10C$ (DF $\le 1/(200 + 10C)$)	Char. 50V Min. 25V 16V 10V 6.3V X7R \$5\%/\$ \$ \$5\%/\$ \$ \$5\%/\$ \$ \$7.5\%/\$ \$ \$7.5\%/\$ \$ \$7.5\%/\$ \$ \$10\%/\$ \$ \$12.5\%/\$ \$ \$12.5\%/\$ \$ \$12.5\%/\$ \$ \$212.5\%/\$ \$ \$215\%/\$ \$ \$20\% Y5V \$ \$12.5\%/\$ \$ \$12.5\%/\$ \$ \$15\%/\$ \$ \$20\% \$20\%	- Initial measurement Perform the initial measurement according to Note1 for Class - Measurement after test Perform the final measurement accordin to Note2 for Class and Class			
	l l	I.R.	More than 1000MO o	r 50Ω. F(Whichever & Smaller)	1			

				Characteristic	Test Methods
No.	lte	em	Temperature Compensating Type	High Dielectric Constant Type	and Conditions
11	Bending Strength	Capacitance Change	No cracking of Within ±5% or ±0.5pF (whichever is larger)	Pr marking defects shall occur X7R, X5R: Within ±12.5% Y5V: Within ±30%	- Substrate Material : Glass EPOXY Board - Board Thickness : 1.6mm 0.8mm(0603/1005size) * Test Condition - Bending Limit : 1mm - Pressurizing Speed : 1mm/sec - Holding Time: 5±1 sec
12	Vibration	Appearance	No defects or abnorma	atta.	* After soldering and then let sit for
14	Resistance		Whin the specified tole	5.00 CC 55 H 55 F	24hr+4hr (temperature compensating type), 24hr+4hr(high
		Q/DF	30 _p F Min.: Q 1,000 (DF 0.1%) 30 _p F Max.: Q 400+20C (DF 1/ (400+20C))	Char. 50V Min. 25V 16V 10V 6.3V X7R ≤2.5%/ ≤3%/ ≤3.5%/ ≤5%/ ≤5%/ ≤5%/ ≤5%/ ×≤10% ±≤10% ±≤10% ±≤10% ±≤10% ±≤10% ±≤15% ≤15%/ ≤15%/ ±≤15%/	dielectric constant type) at room temperature. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz, shall be traversed(from 10Hz to 55Hz then 10Hz again) in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions(total is 6hours).
13	Humidity Steady	Appearance	No marking defects		- Temperature : 40±2°C
	State	Capacitance Change	Within ±5% or ±0.5 _p F (whichever is larger)	X7R, X5R : Within ±12.5% Y5V : Within ±30%	- Humidity : 90~95% - Hour : 500±12hours
		Dissipation (or Q)	30pF Min.: Q≥350 (DF≤0.3%) 10pF≤Cp≤30pF: Q≥275+5/2C (DF≤1/(275+5/2C)) 10pF Max.: Q≥200+10C (DF≤1/(200+10C))	Char. 50V Min. 25V 16V 10V 6.3V X7R ≤5%/ ≤5%/ ≤7.5%/ ≤7.5%/ ≤7.5%/ ≤7.5%/ ≤7.5%/ ≤10%/ ≈≤10.% ≈≤12.5% ≈≤12.5% ≈≤12.5% ≤12.5%/ ≈≤20% ≤20%	- Initial measurement Perform the initial measurement accordin to Note1 for Class - Measurement after test Perform the final measurement according to Note2 for Class and Class
		I.R	A COMPANY CONTRACTOR	50Ω,F (Whichever is Smaller)	

						Charact	eristic				Test Methods
No.	lte	m	Temperature Compensating Type High Dielectric Constant Type					nt Type	and Conditions		
14	Capacitance Temperature	Capacitance Change				Char.	Temp. Range	Reference Temp.	Cap. Change	The t	erature Compensating Type: emperature coefficient is
	Characteristics					X7R	-55 to +125°C		Within ±15%	meas	mined using the capacitance ured in step 3 as a reference, n cycling the temperature
						X5R	-55 to +85°C	25℃	Within ±15%	seque	entially from step 1 through 5, $+25$ to 125° C) the capacitance
						Y5V	+85°C		Within 22% -82%	shall	be with in the specified ance for the temperature
		_								betwee values	dividing the difference een the maximum measured is in the step 1, 3 and 5 by the value in step 3
		Temperature Coefficient	Char.	Temp. Range	Temperature Coefficient					Step	Temperature(°C)
		Coefficient		-55 to	Coemicien					1	25±2
			(1)(2	+125°C	±30ppm/℃					3	-55±3 25+2
										4	125±3(for C0G)
										5	25±2
										The rachang value	Dielectric Constant Type: anges of capacitance ge compared with the 25°C over the temperature a shown in the table shall the specified range.
15	Preservation	on(keeping)	E-20 0 - 20 1 -		erability is					\$3500 5.5	perature : 25°C ±10°C ive Humidity : Below 70% RH
16	The regula environme pollution m	ntal		d, Hg							document. I diphenyl ethers),

- In case of high Voltage and thin layer type Capacitor, it can be different from nomal specification. So Please ask to our sales person.
- Note1. Initial Measurement for Class 11 Perform a heart tertment at 150+0, -10℃ for one hour and then let sit for 24±2 hours at room temperature, then measure
- Note2. Measurement after test
- 1. Class |

Let sit for 24 ± 2 hours at room temperature, then measurement

2. Class ||

Perform a heart treatment at 150±0, -10°C for one hour and then let sit for 24±2 hours at room temperature, then measure

SMD Type - High Frequency Capacitors

SAMWHA high frequency MLCC(CF) products offers excellent performance in demanding high RF power applications requiring consistent and reliable operation.

The copper electrodes allow for Ultra -low ESR and high Q in the GHz frequencies.

The CF series products are your best choice for high RF power applications from UHF through microwave frequencies.

Applications

- · RF Power Amplifiers, Low Noise Amplifiers
- Filter Networks
- Cable TV and telecommunication networks
- GPS, Bluetooth and TV set-top boxes
- MRI Systems

Features

- Ultra Low ESR
- · High Q
- · High Self Resonance
- · Capacitance Range: 0.5pF to 100pF
- · Temperature characteristics: C0G

How to Order(Product Identification)

- 1 CF: High Frequency(SMD)
- Size Code

This is expressed in tens of a millimeter.

The first two digits are the length, The last two digits are width.

Temperature Coefficient Code

Classification	Code	Temperature Range	Temperature Coefficient	
Class	C0G	-55 to +125°C	±30 ppm/℃	

4 Capacitance Code(Pico farads)

The nominal capacitance value in pF is expressed by three digit numbers.

The first two digits represents significant figures and the last digit denotes the number of zero

Ex.) 104 = 100000pFR denotes decimal 8R2 = 8.2pF

5 Capacitance Tolerance Code

Code	Tolerance	Code	Tolerance
В	±0.1pF	G	±2.0%
С	±0.25pF	J	±5%
D	±0.5pF	K	±10%
F	±1.0%	М	±20%

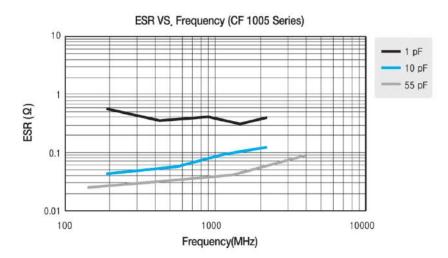
6 Voltage Code

Code	250	500	101	201	251
Rated	DC	DC	DC	DC	DC
Voltage	25V	50V	100V	200V	250V

7 Termination Code

N: Nickel-Tin Plate

B Packing Code


R: Reel Type, B: Bulk Type

Thickness Option

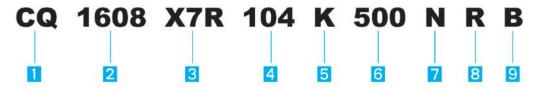
Sizo/mm)	Thickness(mm)		Cada	Simp/mm)	Thickne	Code	
Size(mm)	t	Tol(±)	Code	Size(mm)	t	Tol(±)	Code
0603/1005	0.3	0.03	-	3216	1.15	0.15	E
1005	0.5	0.05		3216/3225	1.6	0.2	1
2012	0.6	0.1	Α	3225	1.8	0.2	J
1608	0.8	0.1	В	3225/4532/5750	2	0.25	K
2012/3216	0.85	0.15	В	3225/4532/5750	2.5	0.25	L
2012	1.25	0.15	Е				

Size(mm)	Code	Packaging	Size(mm)	Code	Packaging
0603/1005	-	Paper Taping	3216	E	Embossed Taping
1005		Paper Taping	3216/3225	- 1	Embossed Taping
2012	Α	Paper Taping	3225	J	Embossed Taping
1608	В	Paper Taping	3225/4532/5750	K	Embossed Taping
2012/3216	В	Paper Taping	3225/4532/5750	L	Embossed Taping
2012	Е	Embossed Taping			

Appendix |

Туре			CO				
Size(inch)	1005(0402)	1608(0	0603)	2012(0805)		
Volt(V) Cap.	25	50	50	100	50	100	
0.5pF(0R5)							
1pF(010)							
2pF(020)							
3pF(030)							
4pF(040)							
5pF(050)							
6pF(060)							
7pF(070)							
8pF(080)							
9pF(090)							
10 _p F(100)							
12pF(120)							
15pF(150)							
18 _p F(180)							
22pF(220)							
27 pF(270)							
33pF(330)							
39pF(390)	NEADER NE						
47 pF (470)							
56pF(560)		1					
68pF(680)						110000000000000000000000000000000000000	
82pF(820)							

Automotive Applications


Features

- SAMWHA Series meet AEC-Q200 requirements
- SAMWHA Series Certify IATF 16949(ISO/TS 16949), ISO 9001, ISO 14001
- SAMWHA Series are RoHS Compliant

Applications

Automotive electronic equipment

How to Order(Product Identification)

- Monolithic Multilayer Ceramic Capacitor Leadless Type for Automotive Application
- 2 Size Code

This is expressed in tens of a millimeter.

The first two digits are the length, The last two digits are width.

Temperature Coefficient Code

Classification	Code	Temperature Range	Capacitance Change or Temperature Coefficient
Class	C0G	-55 to +125°C	±30 ppm/°C
Class II	X7R	-55 to +125°C	±15%
Class II	X8R	-55 to +150°C	±15%

Capacitance Code(Pico farads)

The nominal capacitance value in pF is expressed by three digit numbers.

The first two digits represents significant figures and the last digit denotes the number of zero

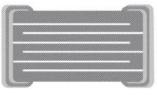
Ex.) 104 = 100000pF

R denotes decimal

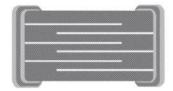
8R2 = 8.2pF

5 Capacitance Tolerance Code

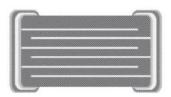
Code	Tolerance	Code	Tolerance
В	±0.1pF	G	±2.0%
С	±0.25pF	J	±5%
D	±0.5pF	K	±10%
F	±1.0%	М	±20%


6 Voltage Code

Code	6R3	100	160	250	500	101	201	251	501	631	102	202	302
Rated	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC
Voltage	6.3V	10V	16V	25V	50V	100V	200V	250V	500V	630V	1KV	2KV	3KV


Termination & Design Code

 $N: Nickel-Tin\ Plate\ A: Nickel-Tin\ Plate (Soft\ Termination)\ O: Open\ Mode\ F: Floating\ electrode$

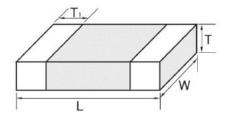

S: Ag/Ni-SN(Ag Epoxy/Nickel-Tin Plate)+Open mode type

Open Mode Type

Soft Termination Type

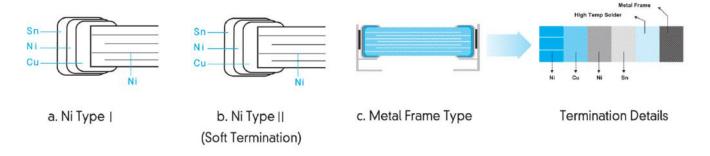
8 Packing Code

R: Reel Type, B: Bulk Type


Thickness Option

Cina/mm)	Thickne	ss(mm)	Code	Simple (mm)	Thickne	ess(mm)	Code	
Size(mm)	t	Tol(±)	Code	Size(mm)	1	Tol(±)	Code	
0603/1005	0.3	0.03		3216	1.15	0.15	E	
1005	0.5	0.05	90.	3216/3225	1.6	0.2	- 1	
2012	0.6	0.1	Α	3225	1.8	0.2	J	
1608	0.8	0.1	В	3225/4532/5750	2	0.25	K	
2012/3216	0.85	0.15	В	3225/4532/5750	2.5	0.25	L	
2012	1.25	0.15	Е					

Size(mm)	Code	Packaging	Size(mm)	Code	Packaging
0603/1005	-	Paper Taping	3216	Е	Embossed Taping
1005		Paper Taping	3216/3225	1	Embossed Taping
2012	Α	Paper Taping	3225	J	Embossed Taping
1608	В	Paper Taping	3225/4532/5750	K	Embossed Taping
2012/3216	В	Paper Taping	3225/4532/5750	L	Embossed Taping
2012	E	Embossed Taping			


Temperature Characteristics See Page 39 (No.21)

Dimensions

			Dimensions			
Code	Le	ngth	Wi	idth	T1(min)	
	L	Tol(±)	W	Tol(±)		
1005(0402)	1.00	0.05	0.50	0.05	0.05	
1608(0603)	1.60	0.15	0.80	0.10	0.10	
2012(0805)	2.00	0.20	1.25	0.15	0.10	
3216(1206)	3.20	0.30	1.60	0.20	0.15	
3225(1210)	3.20	0.40	2.50	0.25	0.15	

Construction of Termination

Capacitance Table.

Class I (C0G)

Size Code (EIA Code)		1005(0402)				1608	(0603)			2012	(0805)			3216	(1206)	1	3225(1210)			
Rated Volt.(V)																				
Cap.	16	25	50	100	16	25	50	100	16	25	50	100	16	25	50	100	16	25	50	10
0.5pF(0R5)																				
1 _p F(010)																				
2.2pF(2R2)																				
3pF(030)																				
4pF(040)								1100												
4.7 pF(4R7)																				
5pF(050)						2000-0														
6.8pF(6R8)			11						FILE OF							-				Г
7pF(070)																				
8pF(080)																				T
9pF(090)																				Г
10 _p F(100)																				
12 _p F(120)																				
15 _p F(150)																				Г
18 _p F(180)																				Г
22pF(220)																				T
27 pF (270)																				T
33 _p F(330)		100																		Н
39pF(390)																				
47 pF (470)																				H
56pF(560)																				Н
68pF(680)																				
82 pF (820)				2																Н
100 _p F(101)																				Н
120pF(121)																				H
150 _p F(151)																				H
180 _p F(181)																				H
220pF(221)																				
270 _p F(271)																				Н
330 _p F(331)																				
390 _p F (391)																				
470 _p F(471)																	11			
560 _p F(561)								-												
		7.																		
680 _p F(681) 820 _p F(821)																				
1000 _p F(102)																				
						100100	1100													
1200 _p F(102)																				
1500pF(152)																				
1800pF(182)																				
2200 pF(222)													OLI						RIIII	
3300pF(332)																				
4700pF(472)																		11 333	0.000	

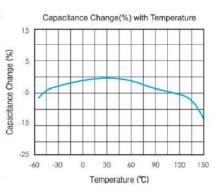
Class II (X7R)

Size Code (EIA Code)		1005(0402)				1608	(0603)		2012(0805)			3216(1206)				3225(1210)				
Rated Volt.(V)																				
Cap.	16	25	50	100	16	25	50	100	16	25	50	100	16	25	50	100	16	25	50	10
1000pF(102)																				
1500pF(152)																				
2200pF(222)																				
3300 _p F(332)																				
4700pF(472)																				
6800pF(682)																				
10000pF(103)																				10
15000 _p F(153)																				
22000pF(223)																				
33000 _p F(333)																				
47000pF(473)																				
68000pF(683)																				
0.1uF(104)																				
0.15uF(154)																				
0.22uF(224)																				
0.33uF(334)																				
0.47uF(474)																				
0.68uF(684)																				
1.0uF(105)																				
2.2uF(225)																				
4.7uF(475)																				
10uF(106)																				
22uF(226)																				

General Type for Automotive Application

Thin Layer Large-Capacitance Type for Automotive Application

Typical Performance Characteristics


X8R

Application

The X8R series could be applicable to devices that operating in high-temperature environments Temperature Characteristics (x8r, -55 to 150 $^{\circ}$ C, Capacitance Change \pm 15%) Excellent DC-bias, Temperature and Aging properties

Dielectric Characteristics

Temperature Characteristic	±15%
Operating Temperature	-55~150°C
Capacitance Tolerance	±10%, ±20%,
Dissipation Factor	50V : 2.5% max. 25V : 3.0% max.
	16V: 3.5% max. 10V: 5.0% max
Insulation Resistance	More than 10,000M Ω or 50Ω F (Whichever is smaller)
Dielectric Strength	>2.5×RVDC
Test Voltage	0.5 ~1.0Vrms
Test Frequency	1±0.1kHz

Size Code (EIA Code)		1608	(0603)			2012	(0805)	3216(1206)				
Rated Volt.(V)	16	25	50	100	16	25	50	100	16	25	50	100
Cap.	10	23	30	100	10	23	30	100	10	23	30	100
1000pF(102)												
4700pF(472)												
6800pF(682)	1000											
10000pF(103)												
22000pF(223)										-		
470000pF(473)	PE BUDI	0.500				11 1222				iigii Soy		
680000pF(683)												
0.1uF(104)												
0.15uF(154)												
0.22uF(224)												
0.47uF(474)												
0.68uF(684)											mane	
1.0uF(105)												
2.2uF(225)												
4.7uF(475)												
10uF(106)												
22uF(226)												
47uF(226)												
100uF(226)												

Specifications and Test Methods(For Automotive Applications)

No.	AEC	0200	Specific	ation	Test Methods and Conditions							
NO.	AEC	·Q200	Class	Class	les	r merno	as ana	Condition	ns			
1.	Pre-and Post-S Electrical Test	itress										
2.	High	Appearance	No marking defects		Temperature: 150±3°C Maintenance Time: 1000+48/-0 hrs Let sit for 24±2 hours at room temperature, then measure.							
	Temperature Exposure	Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	Within±10.0%								
	(Storage)	Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.								
		I.R.	More than $10,000M\Omega$ or 500Ω	Prichever is smaller)								
3.	Temperature	Appearance	No marking defects		Perform t		*					
	Cycle	Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	Within±10.0%	heat treat Let sit for then mean	r 24±2 h		the state of the s				
		Q/D.F.	30pF Min.: Q≥1000	Rated Voltage	Step	1	2	3	4			
			30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	16V Min.: 0.05 Max. 10V: 0.075 Max.	Temp.(°C) Time(min)	************	25±2	125+3/-0 15±3	25±2			
		I.R.	More than $10,000M\Omega$ or 500Ω	2- F(Whichever is smaller)	Initial measurement Perform the initial measurement according Note 1 for Class II.							
4.	Destructive Ph	ysical Analysis	No defects or abnormalities		Per EIA-469							
5.	Moisture	Appearance	No marking defects		Temperat	ure : 25~6	5℃, Hum	idity : 80~9	8%			
	Resistance	Capacitance Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger)	Within±12.5%	Cycle Time: 24 hrs/cycle, 10 cycles **C							
		Q/D.F.	30pF Min.: Q≥350 10pF Min. and 30pF Max.: Q≥275+5/2×C 10pF Max.: Q≥200+10×C C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.								
		I.R.	More than $10,000M\Omega$ or 500Ω	P-F(Whichever is smaller)		0123456	7 8 9 10 11 12 13 14 Hours	5 16 17 18 19 20 21 22 23 2	Ä			
6.	Biased	Appearance	No marking defects		Temperat	ure : 85±	3 ℃					
	Humidity	Capacitance Change	Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger)	Within±12.5%	Humidity: 80~85% Applied Voltage: Rated Voltage and 1.3+0.2/-0							
		Q/D.F.	30pF Min.: Q≥200 30pF Max.: Q≥100+10/3×C C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.	 Maintenance Time: 1000+48/-0 hrs Let sit for 24±2 hours at room temper then measure. The charge/discharge current is less 							
		I.R.	More than 10,000MΩ or 500Ω	F(Whichever is smaller)	50mA.							
7.	Operational	Appearance	No marking defects		Temperat	ure : 125±	:3℃					
	Life	Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within±12.5%	Applied \	nce Time	: 1000+48.	/-0 hrs				
		Q/D.F.	30pF Min.: Q≥350 10pF Min. and 30pF Max.: Q≥275+5/2×C 10pF Max.: Q≥200+10×C C: Nominal Capacitance(pF)	Rated Voltage 16V Min.: 0.05 Max. 10V: 0.075 Max.	Let sit for then mea less than S Initial Mea Applied 2	sure. The 50mA. asuremen 500% of th	charge/ t for Clas e rated v	discharge s II oltage for	current is			
		I.R.	More than 10,000MΩ or 500Ω) [(A)/Link access in a consultant)	at $125\pm3\%$ Remove and let sit for 24 ± 2 hours a room temperature, then measure.							

No.	AEC	Q200	Specific	ation	Total Marshada and Conditions
NO.	AEC-	Q200	Class	Class	Test Methods and Conditions
8.	External Visual		No defects or abnormalities		Visual inspection
9.	Physical Dimer	nsion	Within the specified dimension	ons	Using calipers
10.	Resistance to	Appearance	No marking defects		Per MIL-STD-202 Method 215
	Solvents	Capacitance Change	Within the specified tolerance	e	
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	
		I.R.	More than 10,000MΩ or 500Ω	?·F(Whichever is smaller)	
11.	Mechanical	Appearance	No marking defects		Three shocks in each direction should be
	Shock	Capacitance Change	Within the specified tolerance	e	applied along 3 mutually perpendicular axes of the test specimen (18 shocks) Test Pulse
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	Wave form: Half-sine Duration: 0.5ms Peak value: 1,500G Velocity change: 4.7m/s
		I.R.	More than 10,000MΩ or 500Ω	?-F(Whichever is smaller)	
12.	Vibration	Appearance	No defects or abnormalities		The specimens should be subjected to a
		Capacitance Change	Within the specified tolerance	e	simple harmonic motion having a total amplitude of 1.5mm. The entire frequency range of 10 to 2,000 Hz and return to 10 Hz
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	should be traversed in 20 minutes. This cycle should be performed 12 times in each of three mutually perpendicular directions (total of 36 times).
		I.R.	More than 10,000MΩ or 500Ω	?-F(Whichever is smaller)	
13.	Resistance to	Appearance	No marking defects		Temperature(Eutectic solder solution) : 260±5℃
	Soldering Heat	Capacitance Change	Within the specified tolerance	e	Dipping Time: 10±1s Let sit for 24±2 hours at room temperature, then measure.
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	Initial measurement Perform the initial measurement according to Note 1 for Class II.
		I.R.	More than 10,000MΩ or 500Ω). F(Whichever is smaller)	

No.	AEC-Q200		Specific	ation	Test Methods and Conditions			
NO.			Class	rest Methods and Conditions				
14.	Thermal Shock	Appearance Capacitance Change Q/D.F.	No marking defects Within $\pm 3.0\%$ or ± 0.30 pF (Whichever is larger) 30pF Min.: $Q \ge 1000$ Rated Voltage		Perform the 300 cycles according to the heat treatments listed in the following table Transfer Time: 20s Max. Let sit for 24±2 hours at room temperature,			
		I.R.	30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	measure. Step Temp.(°C) Time(min) Initial measure	-55+0 15±	/-3	2 125+3/-0 15±3
		I.K.	More than 10,000MΩ or 500Ω	2- F(whichever is smaller)	Perform the i Note 1 for Cla	nitial mea	surement a	ccording to
15.	ESD	Appearance	No marking defects		Per AEC-Q200	-002		
		Capacitance Change	Within the specified tolerance	e				
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.				
		I.R.	More than 10,000MΩ or 500Ω					
16.	Solderability		95% of the terminations is to be and continuously.	(a) Preheat immerse the and rosin. Im for 5+0/-0.5 se (b) Steam agithe capacitor Immerse in el seconds at 23 (c) Steam agithe capacitor Immerse in el seconds at 26	capacitor merse in a conds at 2 ang for 8 h in a solution by the solution of t	in a solution eutectic solution eutectic solution eutectic solution ours, and the on of ethanours, and the on of ethanours, and the on of ethanours.	n of ethanol der solution nen immerse ol and rosin. In for 5+0/-0.5 nen immerse ol and rosin.	
17.	Electrical	Appearance	No defects or abnormalities		The capacitan			
	Characteriza -tion	Capacitance Change	Within the specified tolerance	e	25°C at the fre table		nd voltage :	shown in the
		Q/D.F.	30pF Min.: Q≥1000 30pF Max.: Q≥400+20×C C: Nominal Capacitance(pF)	Rated Voltage 50V: 0.025 Max. 25V: 0.03 Max. 16V: 0.035 Max. 10V: 0.05 Max.	Class I C:	citance (C) ≤1000pF >1000pF ≤110µF C>10µF	1±0.1MHz 1±0.1kHz 1±0.1kHz 1±0.1kHz 120±24Hz	Voltage 0.5-5Vrms 1±0.2Vrms 1±0.2Vrms 0.5±0.1Vrms
		I.R. at 25°C	More than $100,000M\Omega$ or $1,000\Omega \cdot F$ (Whichever is smaller)	More than $100,000M\Omega$ or 500Ω -F (Whichever is smaller)	Should be m exceeding ra minutes of cha	ted voltag		and the state of t
		I.R. at 125°C	More than $10,000M\Omega$ or $100\Omega \cdot F$ (Whichever is smaller)	More than 10,000M Ω or 10 Ω ·F (Whichever is smaller)				

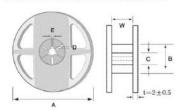
No.	AEC-	-Q200		Specific	ation		Test Methods and Conditions		
			Class		Class				
17.		Dielectric Strength	No dielectric breakdown or m		nechanical breakdown		Applied 250% of the rated voltage for 1~5 seconds The charge/discharge current is less than 50mA.		
18.	Board Flex	Appearance	No marking defect	s			Apply a force in the direction shown in the		
		Capacitance Change	Within ±5.0% or ±1 (Whichever is large	50.	Within±10.0%		following figure for 5±1 seconds. Support Solder Chp Printed circuit board before testing 45±2 Frobe to exert bending force Speed: 1.0mm/s Flexure for Class I: ≤3mm for Class II: ≤2mm		
10			No marking defects				Apply *18N force in parallel with the test jig for		
19.	Terminal Strength	Appearance	-				60±1 seconds.		
	, and the second	Capacitance Change	Within ±5.0% or ±1 (Whichever is large	- 50	Within±10.0%		*10N for 1608(EIA:0603) size 2N for 1005(EIA:0402) size		
20.	Beam Load Te	est	The chip endure fo	llowing fo	rce.		Apply a force as shown in the following figure.		
			Chip Length	Thickne		Force	(i) Chip Length: 2.5mm Max.		
			2.5mm Max.	T≤0.5 T>0.5		8N 20N	Beam Speed : 0.5mm/s		
			3.2mm Min.	T<1.25 T≥1	mm	15N 54.5N	Iron Board		
							(ii) Chip Length : 3.2mm Min. Beam Speed : 2.5mm/s		

A-1-2	AEC-Q200		Specif	ication	Total Market de conditions		
No.			Class	Class	Test Methods and Conditions		
21.	Capacitance Temperature	Capacitance Change		Within±15%	(i) Class I The temperature coefficient is determined		
	Characteristics	Temperature Coefficient	0±30 ppm/℃		using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the		
		Capacitance Drift	Within $\pm 0.2\%$ or ± 0.05 pF (Whichever is larger)		capacitance should be within the specified tolerance for the temperature coefficient.		
			,		The capacitance drift is calculated by dividing the differences		
			between the maximum and minimum measured values in steps				
					1, 3 and 5 by the capacitance value in step 3.		
				Step 1 2 3 4 5 Temp.(℃) 25±2 -55±3 25±2 125±3 25±2			
			(ii) Class II The ranges of capacitance change compared with the 25℃ value over the temperature range from -55℃ to 125℃				
					Initial measurement Perform the initial measurement according to Note 1 for Class II.		

*Note 1. Initial Measurement for Class II

Perform a heat treatment at 150+0/-10 $^{\circ}\mathrm{C}$ for one hour, and then let sit for 24 \pm 2 hours at room temperature, then measure.

Packing

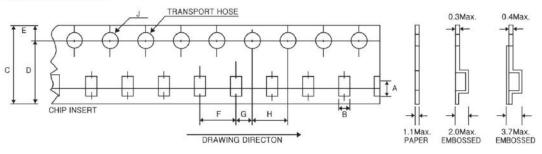

Bulk packing

- ① 1000 pcs per Polybag
- 2 5 Polybags per Inner box
- 3 10 Inner boxes per Out box

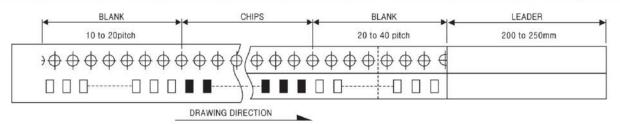
Reel Packing

- ① 8~10 Reels per Inner box
- 2 10 Inner boxes per Out box

Reel Dimensions



Mark	Size Code	EIA Code	Α	В	C	D	E	W
7" REEL	1005~3225	0402~1210	Ø178±2	Ø50Min.	Ø13±0.5	Ø21±0.8	2±0.5	10±1.5
13" REEL	1005~3225	0402~1210	Ø330±2	Ø70Min.	Ø13±0.5	Ø21±0.8	2±0.5	10±1.5


Number of Packages

Туре	EIA CODE	7" Quantity(EA)/Reel	13" Quantity(EA)/Reel
1005	0402	10,000	50,000
1608	0603	4,000	16,000
2012	0805	3,000 ~ 4,000	10,000
3216	1206	2,000 ~ 4,000	6,000 ~ 10,000
3225	1210	1,000 ~ 3,000	4,000 ~ 10,000

Tape Dimensions

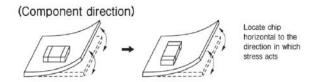
TYPE	EIA CODE	Α	В	C	D	E	F	G	Н	J
1005	0402	1.15±0.1	0.65 ± 0.1	8.0 ± 0.3	3.5 ± 0.05	1.75±0.1	2.0±0.05	2.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1
1608	0603	1.9 ± 0.2	1.10±0.2	8.0 ± 0.3	3.5 ± 0.05	1.75±0.1	4.0±0.1	2.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1
2012	0805	2.4 ± 0.2	1.65 ± 0.2	8.0 ± 0.3	3.5 ± 0.05	1.75 ± 0.1	4.0 ± 0.1	2.0 ± 0.1	4.0 ± 0.1	1.5 ± 0.1
3216	1206	3.6 ± 0.2	2.00±0.2	8.0 ± 0.3	3.5 ± 0.05	1.75±0.1	4.0±0.1	2.0±0.1	4.0 ± 0.1	1.5±0.1
3225	1210	3.6 ± 0.2	2.80 ± 0.2	$8.0\!\pm\!0.3$	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	$2.0\!\pm\!0.1$	4.0 ± 0.1	1.5 ± 0.1

Caution

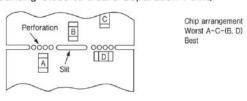
Storage Condition

When solderability is considered, capacitor are recommended to be used in 12 months.

(1) Temperature: 25°c ± 10°c


(2) Relative Humidity: Below 70% RH

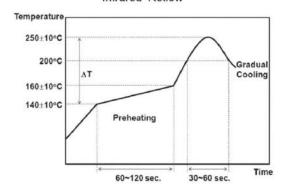
▶ The Regulation of Environmental Pollution Materials


Never use materials mentioned below in MLCC products regulated this document. Pb, Cd, Hg, Cr+6, PBB(Polybrominated biphenyl), PBDE(Polybrominated diphenyl ethers), asbestos

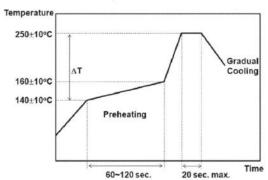
► Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

(Chip Mounting Close to Board Separation Point)


▶ Reflow Soldering

- 1. The sudden temperature change easily causes mechanical damages to ceramic components. Therefore, the preheating procedures should be required for the soldering of ceramic components.
- 2. Please refer to the recommended soldering profiles as shown in figures, and keep the temperature difference($\triangle T$) within the range recommended in Table 1.


Table 1.

Size code (EIA Code)	Temperature Difference		
1005~3216 (0402~1206)	∆T≤190°C		
3225 (1210)	∆T≤130℃		

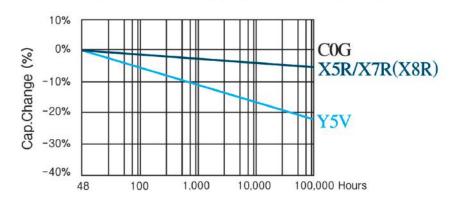
Infrared Reflow

▶ 'Aging'/'De-aging' behavior of high dielectric constant type MLCCs

(Typically represented by X7R temperature characteristic of which main composition is BaTiO3)

'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note that high dielectric type dielectric ceramic capacitors have a "normal" 'aging' behavior / characteristic, that is; their capacitance value decreases with time from its value when it was first manufactured. From that date, the capacitance value begins to decrease at a logarithmic rate defined by:

$$C_t = C_{48}(1 - k \log 10 t)$$


Ct: Capacitance value, thours after the start of 'aging'

C₄₈: Capacitance value, 48 hours after its manufacture

k: Aging constant (capacitance decrease per decade-hour)

t: time, in hours, from the start of 'aging'

Ceramic's Capacitance Change(%) versus Time (hours)

The capacitance value can be restored(also known as 'de-aged') by exposing the component to elevated temperatures approaching its curie temperature(approximately 120℃). This 'de-aging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing, or by baking at 150℃ for about 1 hour.

Dielectric	Maximum percent capacitance loss per decade hour, k
C0G	0
X7R	~3%