

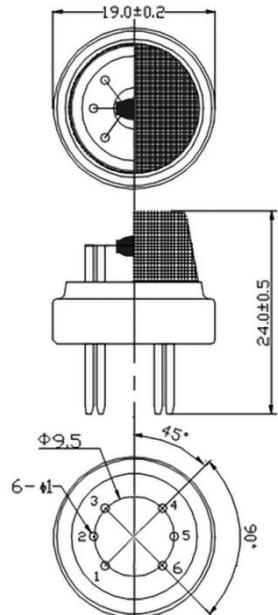
## DL-2 Semiconductor Smoke Gas Sensor

### characteristic:

- \*high sensitivity
- \*Stable performance
- instrument
- \*Quick response and reply time
- \*excellent seismic performance
- \*long life

### apply:

- \*Household Gas Leak Alarm
- \*Portable gas detection
- \*smoke gas alarm




The gas-sensitive material used in gas sensors is tin dioxide ( $\text{SnO}_2$ ), which exhibits low electrical conductivity in clean air. When the sensor is exposed to a detectable gas, its electrical conductivity increases with the concentration of the flammable gas in the air. A simple circuit can convert the change in electrical conductivity into an output signal corresponding to the gas concentration.

This product exhibits good sensitivity to propane and smoke within a wide concentration range.

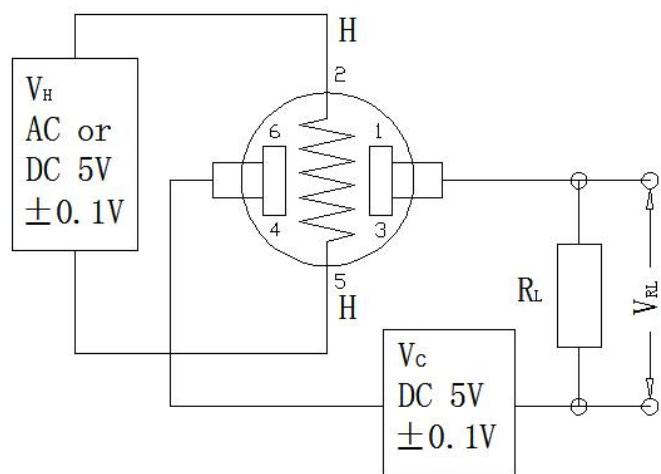
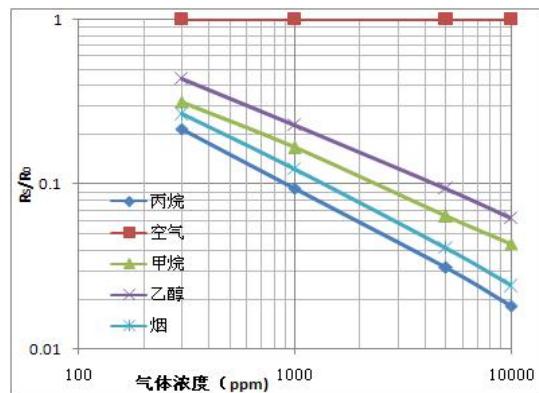

### External dimensions:

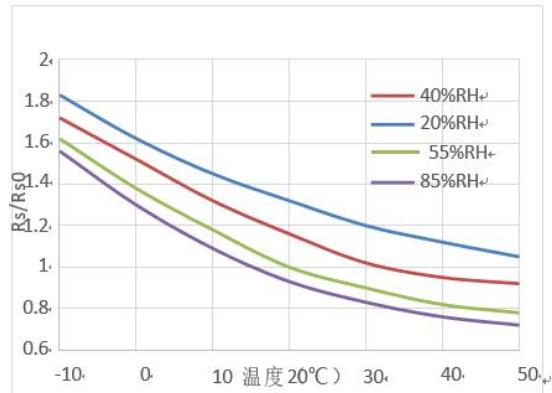
Figure 1 Sensing Structure Diagram



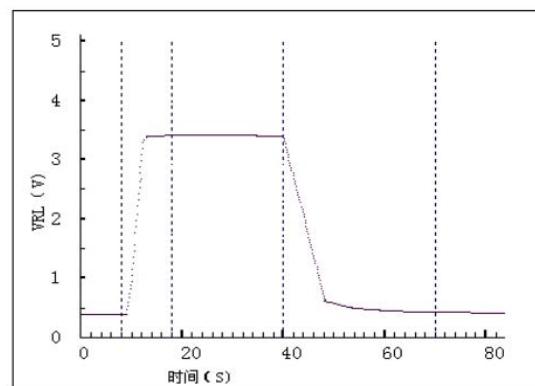
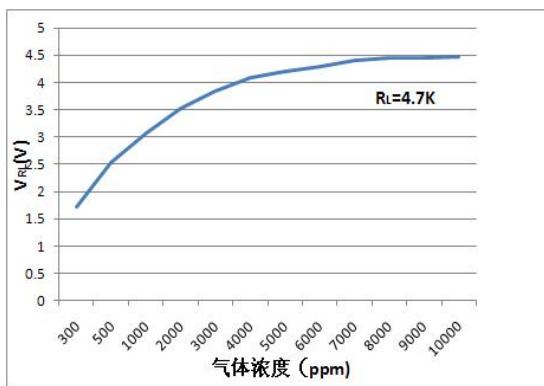
### test circuit:


Figure 2 Test Circuit



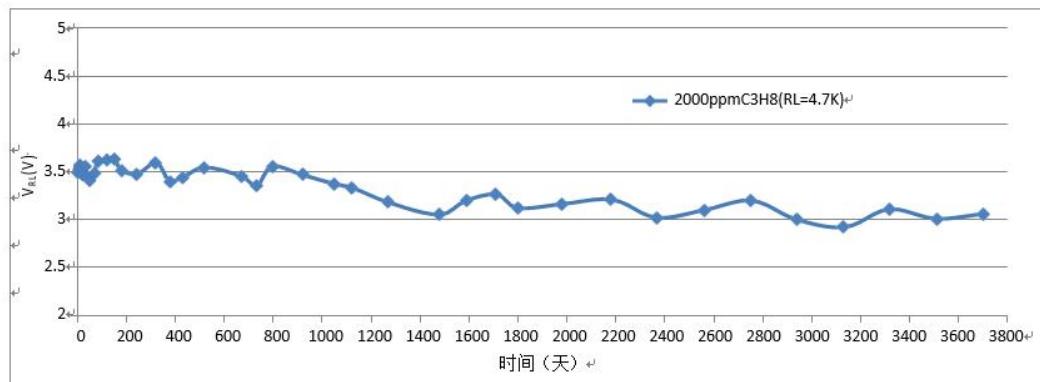

the key technical indexes:

| project                       | parameter                                |
|-------------------------------|------------------------------------------|
| tracer gas                    | Combustible gases, smoke                 |
| Detection concentration       | 300~10000ppm (combustible gas)           |
| heater voltage(VH)            | 5.0V±0.1V AC or DC                       |
| loop voltage                  | ≤24V DC                                  |
| load resistance               | adjustable                               |
| heating resistor (RH)         | 29Ω±3Ω (室温)                              |
| heating power consumption(PH) | ≤950mW                                   |
| sensitivity (S)               | $R_s$ (in air)/ $R_s$ (2000ppm C3H8) ≥ 5 |
| output voltage (VS)           | 2.5V~4.0V (in 2000ppm C3H8)              |
| concentration slope           | ≤0.6 (R3000ppm/R1000ppm C3H8)            |
| testing environment           | 20°C±2°C; 55%±5%RH                       |
| life span                     | 10 年                                     |



sensitivity characteristic:



Temperature and humidity change curve



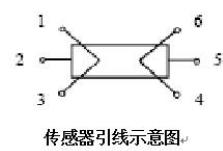

sensitivity characteristic curve:



response recovery curve:

### long term stability curve




### matters need attention:

Do not apply high voltage. If the applied voltage exceeds the specified value, it may damage the sensor and reduce its sensitivity.

\*Avoid exposure to volatile silicon compounds. Refrain from contact with silicone adhesives, hair sprays, silicone rubber, putty, or any materials containing volatile silicon compounds. If the sensor surface accumulates silicon compound vapors, the sensitive material will be encapsulated by silicon dioxide formed through decomposition, resulting in irreversible loss of sensitivity. \*Avoid exposure to highly corrosive environments. When exposed to high concentrations of corrosive gases (e.g., H<sub>2</sub>S, SO<sub>2</sub>, Cl<sub>2</sub>, HCl), the sensor may suffer corrosion or damage to heating elements and leads, along with irreversible degradation of sensitive materials. \*Contamination by alkali, alkali metal salts, or halogens is prohibited. Exposure to alkali metal, particularly salt spray, or halogen compounds such as Freon may also lead to performance degradation.

\*Do not expose to water or gaseous liquids. Spill or immersion in water may cause sensitive materials to detach, leading to performance changes or failure of the sensor.

\*Freezing is prohibited. Ice formation on the sensor's sensitive material surface may cause the sensitive layer to crack and lose its sensitivity. \*Incorrect pin voltage application is prohibited (applicable only to side-heated series). For 6-pin sensors, pins 2 and 5 are heating electrodes, while pins (1,3) and (4,6) are test electrodes. Pins 1 and 3 should be connected, and pins 4 and 6 should be connected. Applying voltage to pins 1,3, or 4,6 may cause lead burnout, while pins 2 and 4 will not receive the signal.



Avoid prolonged storage. When left without power for extended periods, sensors may develop reversible resistance drift due to storage conditions. Store sensors in airtight bags free from volatile silicon compounds. For long-term stored sensors, allow sufficient power exposure before use to achieve stabilization. Recommended storage duration and corresponding aging time are advised:

| period of storage | Recommended aging time |
|-------------------|------------------------|
| Less than 1 month | No less than 48 hours  |
| 1-6 months        | No less than 72 hours  |
| Over 6 months     | No less than 168 hours |

\*Usage conditions: Manual welding is the most ideal method. The recommended welding conditions are as follows:

| item                       | condition                                  |
|----------------------------|--------------------------------------------|
| scaling powder             | Rosin flux with the least chlorine content |
| soldering iron temperature | constant temperature 250°C                 |
| time                       | ≤3S                                        |

The following conditions must be met during wave soldering:

One pass through the wave soldering machine

| project             | condition                                  |
|---------------------|--------------------------------------------|
| scaling powder      | Rosin flux with the least chlorine content |
| velocity            | 1-2M/minute                                |
| preheat temperature | 100±20°C                                   |
| welding temperature | 250±10°C                                   |

Violating the above usage conditions will degrade the sensor performance.